生物技术药物与疫苗
- 格式:pptx
- 大小:619.63 KB
- 文档页数:40
生物技术在医药领域的应用与前景随着科技的发展,生物技术在医药领域的应用越来越广泛,给医学带来了革命性的变革。
生物技术的前景也非常广阔,将对人类健康产生深远的影响。
一、基因工程与药物研发基因工程是生物技术在医药领域的重要应用之一。
科学家们通过剪切和重组DNA分子,获取具有特定功能的基因,从而研发出新型药物。
这种方法不仅可以改良传统药物,还能创造全新的治疗方式。
例如,基因工程技术已经成功应用于生产重组蛋白类药物,如人胰岛素、重组生长激素等。
这些药物可以替代传统的化学合成药物,更加安全有效地治疗疾病。
此外,基因工程还可以用于生产免疫疫苗,例如人乙肝疫苗和人乳头瘤疫苗,预防重大传染病的发生。
二、基因治疗与疾病防控基因治疗是生物技术在医药领域的另一大突破。
通过操纵人体细胞的基因,可以矫正或替换存在缺陷的基因,从而治愈某些遗传性疾病。
例如,严重缺乏特定基因的患者,可以通过基因治疗来补充缺失的基因,恢复正常功能。
基因治疗还可以用于治疗癌症等难以治愈的疾病。
科学家们可以设计特定的基因改造病毒,使其能够攻击癌细胞,抑制其生长和扩散,从而实现癌症的治疗。
这种个性化治疗的方法将成为未来医学的重要方向。
三、生物芯片与个性化医疗生物芯片是生物技术在医药领域的又一创新应用。
它可以将药物、疫苗等直接加载到芯片上,通过微流控技术将其传递到患者体内。
这种个性化医疗的方式可以根据每个人的具体病情和需求来定制治疗方案,提高治疗效果。
生物芯片还可以用于疾病的早期诊断和预防。
通过分析体液中的特定生物标志物,可以早期发现疾病的迹象,采取相应的干预措施,大大降低患病风险。
未来,生物芯片有望成为家庭医疗的重要工具,每个人都可以随时随地进行健康监测。
四、生物仿制药与市场前景生物仿制药是指通过生物技术制造的与已上市药物类似的治疗药物。
由于原研药研发周期长、成本高,很多生物药物的专利期到期后,仿制药就会进入市场。
生物仿制药的出现,使得药物价格大幅降低,提高了人们获取治疗的机会。
以新冠疫苗为例,我们可以论述生物技术药物的特点。
新冠疫苗是一种生物技术药物,具有以下特点:
1. 基于基因工程技术:新冠疫苗是通过利用基因工程技术开发的。
它利用了先进的生物
技术手段,通过重组DNA或RNA来合成疫苗所需的抗原蛋白,以激发免疫系统产生对新冠病毒的免疫反应。
2. 高度精准和特异性:生物技术药物具有高度的精准性和特异性。
新冠疫苗通过选择性
地引入新冠病毒的抗原蛋白,能够激活免疫系统产生对该病毒的特异性免疫反应,从而提供保护作用。
3. 安全性和可控性:生物技术药物在设计和生产过程中具有较高的安全性和可控性。
新
冠疫苗的制备经过严格的质量控制和安全评估,以确保其安全性和有效性。
生物技术的先进性使得疫苗的生产过程能够被准确监控和调整,从而提高药物的质量和一致
性。
4. 增强免疫效果:生物技术药物能够激发更强大的免疫反应。
新冠疫苗通过模拟自然感
染的过程,激活机体的免疫系统,使其产生更多的抗体和免疫记忆细胞,以便在真正感染时提供更强的保护作用。
5. 个体差异性和定制化:生物技术药物可以更好地满足个体的差异性需求。
新冠疫苗的
研发和生产过程具有一定的灵活性,可以根据不同人群的需求进行调整和优化,以提供更好的免疫保护。
总之,生物技术药物如新冠疫苗具有精准性、安全性、高效性和个体定制化等特点,这些特点使得它们成为当前疫苗研发和治疗领域的重要创新和突破点。
随着生物技术的不断发展,我们可以期待更多创新性的生物技术药物的问世。
生物化学技术在疫苗生产中的应用随着科学技术的不断发展,生物化学技术在疫苗生产中扮演着越来越重要的角色。
生物化学技术的特点是能够快速准确地检测出病菌的蛋白质、核酸和多糖等生物分子,从而使疫苗生产的效率和质量都得到了极大的提升。
1. 引言:疫苗生产的现状疫苗是预防传染病的最佳方法之一,对于人类的健康和生命都有着至关重要的作用。
但是,疫苗的生产一直是一个非常复杂和耗时的过程。
传统的疫苗生产方法通常需要在动物体内培养病菌,然后从中提取病毒和细菌,接着将其灭活或者削弱后制成疫苗。
这种方法需要投入大量时间和资源,并存在着病毒和细菌污染的风险。
因此,在现代的生物化学技术的帮助下,疫苗生产方式已得到了极大的改善。
2. 疫苗生产中的蛋白质工程技术利用蛋白质工程技术生产疫苗是现代疫苗生产的主流方式之一。
这种技术可以将特定基因转移到真核生物或革兰氏阳性菌中,利用宿主细胞表达蛋白并进行纯化和制备。
这种制备方式相比于传统制备方式更高效、更稳定,并且更能确保疫苗的质量。
例如,人乙肝病毒疫苗就是利用蛋白质工程技术制备的。
3. 多糖疫苗的生产多糖疫苗是一种针对细菌多糖抗原所制备的疫苗,多糖抗原存在于如肺炎球菌和流感嗜血杆菌等致病菌中。
这种疫苗生产通常需要先将多糖抗原进行化学修饰,才能达到更强的免疫原性。
然后将多糖抗原和一些蛋白质等辅助抗原结合在一起形成疫苗。
在生产多糖疫苗时,生物化学技术的主要作用是检测和分析多糖的结构,以及确定辅助抗原的最佳配比和结构,以此确保疫苗的高效性和安全性。
4. DNA疫苗DNA疫苗是一种基于蛋白质工程技术和基因工程技术的新型疫苗。
这种疫苗的制备方式是将目标基因注入表达载体中,然后利用该载体将基因导入到宿主细胞中,达到表达的效果。
DNA疫苗具有诸多优点,如制备简单、流程短、质量稳定等。
然而,DNA疫苗的应用目前还存在着一些挑战,如如如如如如中间部分省略如如如如如如5. 疫苗生产中的生物化学检测技术生物化学检测技术是生产高效而安全的疫苗的关键之一。
1、生物技术药物:生物技术药物又称基因工程药物,通常指以DNA重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体和细胞因子类药物,也包括用蛋白质工程技术制造的上述产品及其修饰物。
另外,应用生物技术研究开发的反义药物和用于基因治疗的基因药物和核酶也属于生物技术药物发展领域。
2、药物受体:存在于细胞膜,细胞浆和细胞核内,是一些能与生物活性分子如神经递质、激素、药物等相互作用的分子,蛋白质是最重要的一类药物受体,除此之外还有细胞的其他成分,如核酸等3、新药:指未曾在中国境内上市销售的药品。
对已经上市的药品改变其剂型、改变给药途径、增加新适应症的药品注册任然按照新药申请的程序申报。
4、竞争性与非竞争性受体拮抗剂:竞争性受体拮抗剂:内在活性为0,与受体结合后本身不产生生物效应,但与激动剂竞争相同受体,拮抗作用是可逆的,使用足够浓度的激动剂仍可达到最大效应,即拮抗作用可以随着激动剂浓度的增加而解除。
非竞争性受体拮抗剂:在任何浓度下都可阻止激动剂在特定受体产生最大效应,使激动剂的量-效曲线向右移,但斜率及最大效应均降低,它与受体结合后,可以妨碍激动剂与受体的结合,或使激动剂与受体结合后不产生生物效应。
因此增加激动剂浓度不能解除非竞争性拮抗剂的拮抗作用。
5、先导化合物:从众多天然来源或化学合成的候选化合物中发现具有进一步研究开发意义的物质,具有特定生理活性的化合物,可作为结构修饰和改造的模型,从而获得预期药理作用的药物称为先导化合物,是新药研究的起始和基础。
6、高通量药物筛选:高通量药物筛选(high throughput screening,HTS)是近年发展起来的新药筛选新方法,主要由自动化操作系统、高灵敏度检测系统、分子细胞水平的高特异性体外筛选模型及被筛样品管理库(即样品库)的建立、数据采集传输处理系统等5个主要部分组成,使实验过程程序化,有合理、科学的管理系统。
由于这些筛选方法是在微量条件下进行,同时采用自动化操作系统,可以实现大规模的筛选,因而称为高通量药物筛选。
生物技术在医学领域的应用
生物技术在医学领域的应用非常广泛,包括以下几个方面:
1.药物研发:生物技术是药物研发的重要工具,利用生物反应器和重组DNA技术生产新的治疗药物。
例如,激素、抗体和疫苗等。
2.基因诊断和基因治疗:这是生物技术在医学领域的重要应用之一。
利用分子生物学
技术,可以精确识别疾病基因,并开发出有效的基因诊断和基因治疗方法。
3.人工器官:利用细胞培养和组织工程技术,可以培养出人工心脏、人工肾脏等器官,为病患提供重要的治疗手段。
4.生物芯片技术:生物芯片技术是一种高通量筛选、分析和诊断技术,可以用于疾病
检测、药物筛选、毒理学研究和基因表达分析等方面。
5.夜光细菌:利用夜光细菌制成的荧光药物是一种新的抗癌药物。
它可以利用癌细胞
的代谢途径,直接附着于癌细胞并发出荧光信号,便于检测和治疗。
生物技术在医学领域的应用还有很多,随着技术的不断发展,将为人类健康提供更多
的可能性。
生物药物分类
生物药物可以分为以下几类:
1. 蛋白质药物:这是最常见的一类生物药物,包括单克隆抗体、重组蛋白等。
它们通常通过基因工程技术制造,用于治疗癌症、免疫性疾病等。
2. 疫苗:疫苗是预防感染性疾病的生物药物,包括病毒疫苗、细菌疫苗等。
疫苗通过激发免疫系统产生特定的抗体和记忆细胞,提高身体对疾病的免疫力。
3. 基因治疗药物:这种药物通过植入、修复或更改患者的基因来治疗遗传性疾病。
它们可以直接修改患者的DNA序列,用于治疗血友病、肌营养不良等。
4. 基因工程细胞疗法:这种药物利用经过基因工程改造的细胞来治疗疾病。
常见的基因工程细胞疗法包括CAR-T细胞疗法,它使用改造的T 细胞来攻击癌症细胞。
5. 血液因子药物:血液因子是血液中的蛋白质,参与凝血、免疫等功能。
血液因子药物用于治疗血友病等凝血功能障碍性疾病。
6. 生物合成药物:这类药物是通过微生物或其他生物合成的化合物,包括抗生素、酶类药物等。
生物药物是利用生命科学的知识和技术制造的药物,具有高度的特异性和生物活性。
与传统的化学合成药物相比,生物药物更适合治疗一些复杂的疾病。
生物技术药物名词解释生物技术药物是指利用生物技术手段制备的用于预防、诊断和治疗疾病的药物。
这类药物主要包括基因工程药物、单克隆抗体药物、细胞治疗药物和疫苗等。
基因工程药物是通过改变生物体的遗传信息,使其产生有治疗作用的蛋白质。
这包括使用重组DNA技术制备的蛋白质药物,如重组人胰岛素、重组人生长激素和重组人血小板生成素等。
这些药物可以通过基因工程技术在大规模的细胞培养系统中生产,具有高效、纯度高、无细菌污染的特点。
单克隆抗体药物是利用单克隆抗体对特定疾病靶点进行干预的药物。
单克隆抗体通过经过控制的细胞培养系统制备,可以精确地识别并与特定疾病相关蛋白质结合,从而抑制或阻断其功能。
这类药物拥有高度的特异性和亲和力,对疾病靶点的选择性较高,能够更加精确地治疗患者,例如利妥昔单抗(Rituximab)用于治疗非霍奇金淋巴瘤等。
细胞治疗药物是利用细胞工程技术对细胞进行改造,使其具备治疗作用的药物。
这类药物包括干细胞治疗药物、基因修复细胞治疗药物和载体细胞治疗药物等。
干细胞治疗药物利用干细胞的自我更新和多向分化的能力,修复受损组织或器官。
基因修复细胞治疗药物通过引入功能性基因修复病变的遗传异常。
载体细胞治疗药物则将基因治疗载体介导的基因转移给宿主细胞。
疫苗是指通过接种疫苗激活人体免疫系统,产生特异性的免疫应答,预防和控制疾病的药物。
疫苗一般由病原体的抗原成分制成,可以是整活疫苗、灭活疫苗或亚单位疫苗等。
疫苗通过模拟疾病感染过程,使免疫系统产生特异性的抗体和细胞免疫应答,从而使人体对疾病具备免疫防御能力。
疫苗是预防传染病的重要手段,如乙肝疫苗、麻疹疫苗和人乳头瘤病毒疫苗等。
生物技术药物的发展为疾病治疗提供了更多选择和潜力。
这些药物具有更高的特异性和有效性,可以提供个体化的医疗方案,为治疗效果的提高和患者的生活质量的改善提供了新的途径。
随着生物技术的不断发展,生物技术药物将在未来的医药领域发挥越来越重要的作用。
生物制药新技术在医学领域的应用生物制药新技术在医学领域的应用已经取得了显著的成果,为疾病的预防、诊断和治疗提供了新的手段。
以下是一些生物制药新技术在医学领域的具体应用:1. 基因工程药物:基因工程药物是通过将正常基因导入人体细胞,以修复或替换异常基因来治疗疾病的一种方法。
例如,利用基因工程技术生产的胰岛素、干扰素等药物已经在临床上得到广泛应用。
此外,基因编辑技术如CRISPR/Cas9也在研究阶段,有望为遗传性疾病的治疗带来革命性的突破。
2. 蛋白质工程药物:蛋白质工程药物是通过改造蛋白质的结构或功能,以提高其药效、降低副作用或延长作用时间等目的。
例如,通过改变抗体的结构,可以使其更有效地结合到病原体上,从而提高药物的疗效。
此外,蛋白质工程还可以用于生产长效胰岛素、生长激素等药物。
3. 细胞治疗:细胞治疗是一种通过将活体细胞移植到患者体内,以达到治疗疾病的目的的方法。
常见的细胞治疗包括造血干细胞移植、间充质干细胞移植等。
这些治疗方法已经在白血病、肌萎缩侧索硬化症等疾病的治疗中取得了显著的疗效。
4. 组织工程:组织工程是一种通过将细胞种植在生物材料支架上,模拟体内微环境,促使细胞增殖、分化和重建组织的技术。
组织工程在皮肤移植、软骨修复、神经再生等领域具有广泛的应用前景。
5. 生物制剂:生物制剂是利用生物技术生产的药物,包括抗体药物、疫苗、生物类似药等。
例如,抗肿瘤药物赫赛汀(Herceptin)就是一种靶向HER2受体的单克隆抗体药物,已经在乳腺癌的治疗中取得了显著的疗效。
此外,新冠病毒疫苗的研发也得益于生物制剂技术的进步。
6. 精准医疗:精准医疗是一种根据个体的基因组信息、蛋白质组信息和代谢组信息,为患者提供个性化治疗方案的新型医疗模式。
生物制药新技术为精准医疗提供了强大的技术支持,使得疾病的预防、诊断和治疗更加精确、有效。
生物制药技术在预防与控制传染病中的应用近年来,随着科学技术的不断发展和生物制药技术的不断突破,生物制药技术在预防与控制传染病方面的应用越来越广泛。
传染病是指由病原体引起并能通过直接或间接接触传播的疾病。
这类疾病对人类健康和社会稳定都带来了严重的威胁,因此,有效地预防和控制传染病成为当代生物医学领域的重要课题之一。
生物制药技术是指利用生物学原理和方法,通过对生物活性分子(如蛋白质和核酸)的研究、制备和应用,为医疗保健提供新的药物、治疗方法和疫苗等。
它可以为传染病的预防与控制提供有效的解决方案。
下面,我们将从疫苗、抗体制备和基因工程药物等几个方面来探讨生物制药技术在预防与控制传染病中的应用。
首先,生物制药技术在疫苗的研制和应用方面具有重要作用。
疫苗是一种通过模拟病原体感染的方法,引起人体免疫反应以提高机体对病原体的抵抗力的药物。
传统的疫苗制备常常需要从病原体中提取、杀灭或削弱后注射给人体,但这种方法有风险,可能导致副作用。
而生物制药技术可以通过基因工程等手段,获得病原体特异性抗原,并以重组蛋白质的形式制备疫苗。
这种技术不仅能够避免对真菌的大量繁殖,也能够避免携带其他病原体的风险。
例如,人乳头瘤病毒(HPV)疫苗就是一种利用生物制药技术制备的疫苗。
HPV是一种引起生殖器乳头状瘤和颈部癌变的病原体。
传统的HPV疫苗常常需要从病人体中提取,而新一代的HPV疫苗则是通过生物制药技术制备的,利用了HPV的抗原基因,通过转基因技术将其导入其他生物体,制造出能够刺激人体免疫系统产生抗HPV抗体的疫苗。
这种疫苗不仅效果更好,而且副作用更小。
其次,生物制药技术在抗体制备方面也有重要应用。
抗体是免疫系统产生的一类具有特异性的蛋白质分子,能够识别并结合病原体,从而促使免疫系统对其进行攻击和清除。
利用生物制药技术可以制备特异性的抗体,用于疾病的诊断和治疗。
例如,近年来COVID-19新冠疫苗的研发就是一个典型的例子。
COVID-19是由一种名为SARS-CoV-2的冠状病毒引起的传染病。
植物生物技术在医药中的应用植物生物技术,即将植物作为生产工厂进行遗传改造,制造相应产品的生物技术,近年来在医药领域中得到了广泛应用。
植物生物技术制造的生物制品相比传统的生产方式,有着更高的效率和更低的成本,并且能够获得更高的纯度和比较稳定的质量,从而可以达到更好的治疗效果。
下面,我们将对植物生物技术在医药中的应用进行一个简要的探讨。
一、植物生物技术在药物生产中的应用1. 植物基因工程药物利用植物转化的方法,以植物细胞为工厂,将人源蛋白质的基因转入植物细胞内,让植物细胞帮我们生产所需的药物。
这种方法可以利用植物的生长周期和生命力,批量生产药物,以及利用植物所具有的分泌蛋白质的特性,将药物直接分泌到外部,很好地解决了蛋白质的提取和纯化困难的问题,并在一定程度上降低了生产成本。
2. 植物药物辅料和载体植物不仅可以生产药物,还可以生产药物辅料和载体。
例如,植物衍生的氢氧化铝可以增强疫苗的免疫效果,植物衍生的糖可作为裸体DNA疫苗的载体,这些辅料和载体的应用可以提高药效和延长药物的作用时间。
二、植物生物技术在疫苗生产中的应用对于许多疾病,预防比治疗更加重要。
传统的疫苗生产方法一般采用培养微生物来制造病毒或细菌等疫苗。
然而,植物生物技术可以利用植物细胞为载体制造病毒样颗粒疫苗,其与传统疫苗的制造方式相比具有更高的安全性,不会带来任何感染的风险。
因此,植物生物技术为疫苗的生产提供了一种全新的方式。
三、植物生物技术在细胞工程中的应用现代医学已经越来越重视对于细胞的研究和治疗。
植物细胞客体是一种新的疗法,这种疗法基于植物细胞扮演的媒介角色,来帮助改变身体内部某些功能失常的细胞。
植物细胞客体可以在身体内发挥生物识别的特性,识别出需要治疗的细胞,再释放出身体需要的治疗物质,可以应用于慢性疾病、恶性肿瘤和积雪病等疾病的治疗。
植物细胞客体丰富的营养组成和增殖特性,也为未来细胞工程带来了新的发展和突破。
结语植物生物技术在医药领域已经得到广泛应用,从药物生产到疫苗临床试验,再到细胞工程治疗,都有着固定的体系和实用性范围。
生物技术在医疗领域发挥的作用随着科技的发展,生物技术在医疗领域的应用越来越广泛。
生物技术是指将自然界中的生物体,利用分子、细胞、组织等技术手段改造为人类需要的物质或工具的过程。
在医疗领域,生物技术可以通过基因编辑、细胞培养等手段来开发新药、治疗疾病,为医疗产业注入了新的活力。
1. 生物技术在药物开发中的应用生物技术为药物研发提供了新的思路和方法。
传统的化学合成药物只能作用于特定的分子,而生物技术则可以通过修改基因和蛋白,进行高效和精准药物研发。
例如,利用蛋白质工程技术,可以生产大量的重组蛋白,包括重组人胰岛素、乙肝疫苗、白介素等生物制品,取得了非常好的治疗效果。
同时,生物技术还可以加速药物的研发时间,提高药物的治疗效果和减少不良反应。
新药的研发需要通过严格的临床试验,而生物技术则可以提供更加准确的模型,模拟人体对药物的反应,进而大大缩短了研发时间。
此外,生物技术还可以利用基因编辑技术,针对个体的基因缺陷、疾病相关基因进行治疗,提高治疗的精准度和疗效。
2. 生物技术在临床治疗中的应用生物技术可以通过细胞培养和再生医学技术,治疗一些传统治疗无法根治的疾病,如癌症、糖尿病、心血管疾病等。
例如,肝细胞的再生医学技术,可以在患有肝病时,重新培育出一批新的肝细胞,代替原有的受损细胞,提供新的治疗手段。
此外,生物技术还可以为重大疾病的早期诊断提供帮助。
例如,液体活检技术可以通过抽取血液,分离出病原体的核酸和蛋白,检测和诊断乳腺癌、肺癌等癌症的早期受损。
而基因检测技术,可以通过检测基因的变异,快速诊断出某些重大疾病的患者,及时采取有效的医疗手段。
3. 生物技术在医疗领域面临的挑战尽管生物技术在医疗领域的应用得到了广泛认可,但是它仍然面临很多的挑战。
首先,生物技术研发成本高,需要耗费巨额的资金,人力和物力的支持。
其次,生物技术在应用过程中,需要面临复杂的伦理、道德等问题,需要研究人员和医生们慎重考虑和权衡。
只有遵守伦理和合法原则,才能使生物技术更好地为人类服务。
第3节生物技术药物与疫苗【教学目标】知识与能力方面:1.简述生物技术药物的概念。
2.举例说明基因工程药物、细胞工程药物的生产原理和意义。
3.举例说明生物技术疫苗的生产原理和意义。
4.进一步体验科学技术是一个不断发展的过程及理解科学、技术、社会三者间的关系。
过程与方法方面:本节课主要采取学生通过小组合作探究的方法,并通过浏览网站资料来了解当前在生物技术药物和疫苗技术的科学进展。
能够说书生物技术药物的各个种类及生产过程,在小组合作探究中理解科学、技术、社会三者的关系。
培养学生的合作探究精神,和自我学习、搜集信息和处理信息的能力。
情感态度、价值观方面:【教学重点】1.基因工程药物、细胞工程药物的生产原理和意义。
2.生物技术疫苗的生产原理和意义。
【教学难点】细胞工程药物的生产原理。
【教学方法】讲授法和学生合作学习相结合【教学课时】2课时。
【教学过程】(导入新课)师:教师用课件展示资料介绍中国发生的SARS对国民的危害,激发学生的学习兴趣。
教师提出问题:目前有没有治疗SARS的方法?学生围绕着这个问题展开讨论,然后小组汇报交流。
教师:生物技术药物内容是什么?目前主要的方法有哪些?(学生活动)学生阅读教材解答以上两个问题。
生物技术药物的内容是:生物技术药物一般是利用DNA重组技术或其他生物技术的药物。
包括基因工程药物、酶工程药物、发酵工程药物、细胞工程药物等等。
教师:生产各种生物技术药物的过程分别是什么?教师对学生进行分组,不同的组承担不同的药物生产过程内容的探究。
(主要探究基因工程和细胞工程研制的药物)学生分组探究学习结束后,进行交流。
解答以下问题并展示:1.基因工程药物(1)过程(2)常见的基因工程药物(教师用多媒体展示):(3)在基因工程药物的生产的过程中,最主要的环节是构建工程菌,即通过转基因工程技术将目的基因转入细菌(大肠杆菌)中,形成基因重组工程细菌。
2.细胞工程的大致过程(1)植物细胞培养制备药物的流程植物细胞株固体培养液体悬浮培养收集细胞提取纯化产物药物制剂(2)动物细胞培养过程幼龄动物剪碎组织胰蛋白酶处理细胞培养教师:(提出问题)何为生物技术疫苗?目前常见的生物技术疫苗有哪些?学生活动(自主看书)目前常见的疫苗有:1. 利用基因工程将病原体的某个抗原基因或某几个抗原基因转入适当的宿主,进行表达,获得的表达产物作为免疫原使用,这称为基因工程疫苗。