平行线与相交线培优训练
- 格式:doc
- 大小:178.50 KB
- 文档页数:4
1、下列命题中:方程有两个不相等的实数根;不等式的最大整数解是2;顺次连接对角线相等的四边形各边中点得到的四边形是矩形;直角三角形的两条直角边长分别为6和8,则它的外接圆的半径为.其中是真命题的个数有A.1个B.2个C.3个D.4个2、下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若A B=B C,则点B是线段A C的中点.其中正确的有()A.1个B.2个C.3个D.4个3、如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,则图中阴影部分的面积是()A.2B.3C.4D.无法计算4、如图,直角三角形A B C的直角边A B=6,B C=8,将直角三角形A B C 沿边B C的方向平移到三角形D E F的位置,D E交A C于点G,B E=2,三角形C E G的面积为13.5,下列结论:①三角形A B C平移的距离是4;②E G=4.5;③A D∥C F;④四边形A D F C的面积为6.其中正确的结论是()A.①②B.②③C.③④D.②④5、如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含角直角三角板的斜边与纸条一边重合,含角的三角板的一个顶点在纸条的另一边,则的度数是()A.14°B.15°C.20°D.30°6、下列说法:①平方等于其本身的数有0,±1;②32x y3是4次单项式;③将方程中的分母化为整数,得;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个7、如图,已知正方形A B C D,顶点A(1,3),B(1,1),C(3,1),规定“把正方形A B C D先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2018次变换后,正方形A B C D的对角线交点M的坐标变为()A.(-2016,2)B.(-2016,-2)C.(-2017,-2)D.(-2017,2)8、如图,抛物线与x轴交于A、B两点,过B的直线交抛物线于E,,且t a n∠E B A=,有一只蚂蚁从A出发,先以1单位/s 的速度爬到线段B E上的点D处,再以1.25单位/s的速度沿着D E爬到E点处觅食,则蚂蚁从A到E的最短时间是________s9、如图,长方形A B C D中,A B=6,第1次平移将长方形A B C D沿A B 的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),则A B n长为.10、如图,平分平分,则______.11、如图,直线M N∥P Q,点A在直线M N与P Q之间,点B在直线M N 上,连结A B.∠A B M的平分线B C交P Q于点C,连结A C,过点A作A D⊥P Q交P Q于点D,作A F⊥A B交P Q于点F,A E平分∠D A F交P Q于点E,若∠C A E=45°,∠A C B=∠D A E,则∠A C D的度数是_____.12、如图,已知直线A B,C D相交于点O,O E平分∠C O B,若∠E O B=55°,则∠B O D=_________.13、规律探究:同一平面内有直线、、,,,若,,,,,按此规律,与的位置关系是______.14、如图,两直线A B、C D平行,则______.15、规律探究:同一平面内有直线、、,,,若,,,,,按此规律,与的位置关系是______.16、如图,两直线A B、C D平行,则______.17、如图,有一条折线,它是由过,,组成的折线依次平移4,8,12,个单位得到的,直线与此折线恰有,且为整数个交点,则k的值为______.18、如图,A B∥C D,A C∥B D,C E平分∠A C D,交B D于点E,点F在C D的延长线上,且∠B E F=∠C E F,若∠DE F=∠E D F,则∠A的度数为_____.19、已知:如图放置的长方形和等腰直角三角形E F G中,∠F=90°,F E=F G=4c m,A B=2c m,A D=4c m,且点F,G,D,C在同一直线上,点G和点D重合.现将△E F G沿射线F C向右平移,当点F 和点C重合时停止移动.若△E F G与长方形重叠部分的面积是4c m2,则△E F G向右平移了____c m.20、如图,O为坐标原点,△O A B是等腰直角三角形,∠O A B=90°,点B的坐标为,将该三角形沿轴向右平移得到,此时点的坐标为,则线段O A在平移过程中扫过部分的图形面积为______.21、与的两边互相垂直,且,则的度数为_________.22、定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:的图象向左平移2个单位,再向下平移1个单位得到的图象,则是y与x的“反比例平移函数”.如图,在平面直角坐标系中,点O为原点,矩形O A B C的顶点A、C的坐标分别为(9,0)、(0,3).点D是O A的中点,连接O B、C D交于点E,“反比例平移函数”的图象经过B、E两点.则这个“反比例平移函数”的表达式为____________;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,则写出这个反比例函数的表达式为________________.23、若平面上四条直线两两相交,且无三线共点,则一共有___________对内错角.24、(3分)如图,直线与x轴交于点B,与y轴交于点A,以线段A B为边,在第一象限内作正方形A B C D,点C落在双曲线()上,将正方形A B C D沿x轴负方向平移a个单位长度,使点D恰好落在双曲线()上的点D 1处,则a=.25、如图,矩形中,,第次平移将矩形沿的方向向右平移个单位,得到矩形,第二次平移将矩形沿的方向向右平移个单位,得到矩形,第次平移将矩形沿的方向平移个单位,得到矩形.()__________.__________.()若的长为,则__________.26、如图,在平面直角坐标系中,△的顶点、在坐标轴上,点的坐标是(2,2).将△A B C沿轴向左平移得到△A 1B1C1,点落在函数y=-.如果此时四边形的面积等于,那么点的坐标是________.27、如图,已知A B∥C D,C E、B E的交点为E,现作如下操作:第一次操作,分别作∠A B E和∠D C E的平分线,交点为E1,第二次操作,分别作∠A B E1和∠D C E1的平分线,交点为E2,第三次操作,分别作∠A B E2和∠D C E2的平分线,交点为E3,…,第n次操作,分别作∠A B E n﹣1和∠D C E n﹣1的平分线,交点为E n.若∠E n=1度,那∠B E C等于度28、如图是超市里购物车的侧面示意图,扶手A B与车底C D平行,∠2比∠3大10°,∠1是∠2的倍,则∠2的度数是_____.29、如图,矩形中,,第次平移将矩形沿的方向向右平移个单位,得到矩形,第二次平移将矩形沿的方向向右平移个单位,得到矩形,第次平移将矩形沿的方向平移个单位,得到矩形.()__________.__________.()若的长为,则__________.30、某校九年级四个班的代表队准备举行篮球友谊赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“902班得冠军,904班得第三”;乙说:“901班得第四,903班得亚军”;丙说:“903班得第三,904班得冠军”.赛后得知,三人都只猜对了一半,则得冠军的是_________.31、两个角的两边分别平行,一个角是50°,那么另一个角是__________.32、如图所示,一条公路修到湖边时,需拐弯绕湖而过,在A,B,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即A E∥C D),若∠A=120°,∠B=150°,则∠C的度数是_________.33、问题背景:数学活动课上老师出示问题,如图1,有边长为a的正方形纸片一张,三边长分别为a、b、c的全等直角三角形纸片两张,且.请你用这三张纸片拼出一个图案,并将这个图案的某部分进行旋转或平移变换之后,提出一个问题(可以添加其他条件,例如可以给出a、b的值等等).解决问题:下面是两个学习小组拼出图案后提出的问题,请你解决他们提出的问题.(1)“爱心”小组提出的问题是:如图2,将△D F C绕点F逆时针旋转,使点D恰好落在A D边上的点D′处,猜想此时四边形A E F D′是什么特殊四边形,并加以证明;(2)“希望”小组提出的问题是:如图3,点M为B E中点,将△D C F向左平移至D F恰好过点M时停止,且补充条件a=6,b=2,求△D C F平移的距离.自主创新:(3)请你仿照上述小组的同学,在下面图4的空白处用实线画出你拼出的图案,用虚线画出变换图,并在横线处写出你提出的问题.(不必解答)你提出的问题:________.34、已知:直线,点、分别在直线,上,点为平面内一点.()如图,,,的数量关系是__________.()利用()的结论解决问题:如图,已知,平分,平分,,求得度数.()如图,点为上一点,,,交于点,直接写出,,之间的数量关系.(用含的式子表示)35、已知,直线A B∥D C,点P为平面上一点,连接A P与C P.(1)如图1,点P在直线A B、C D之间,当∠B A P=60°,∠D C P=20°时,求∠A P C.(2)如图2,点P在直线A B、C D之间,∠B A P与∠D C P的角平分线相交于点K,写出∠A K C与∠A P C之间的数量关系,并说明理由.(3)如图3,点P落在C D外,∠B A P与∠D C P的角平分线相交于点K,∠A K C与∠A P C有何数量关系?并说明理由.36、已知如图1,抛物线y=﹣x2﹣x+3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接B C、A C(1)求出直线A D的解析式;(2)如图2,若在直线A C上方的抛物线上有一点F,当△A D F的面积最大时,有一线段M N=(点M在点N的左侧)在直线B D上移动,首尾顺次连接点A、M、N、F构成四边形A M N F,请求出四边形A M N F的周长最小时点N的横坐标;(3)如图3,将△D B C绕点D逆时针旋转α°(0<α°<180°),记旋转中的△D B C为△D B′C′,若直线B′C′与直线A C 交于点P,直线B′C′与直线D C交于点Q,当△C P Q是等腰三角形时,求C P的值.37、如图,在平面直角坐标系中,A M、D M分别平分∠B A C,∠O D E,且∠M D O﹣∠M A C=45°,A B交y轴于F:①猜想D E与A B的位置关系,并说明理由;②已知点A(﹣4,0),点B(2,2),点C(3,0),点D(0,4),点E(6,6).坐标轴上是否存在点P,使得△P D E的面积和△B D E的面积相等?若存在,请直接写出点P的坐标,不用说明理由;若不存在,请说明理由.38、已知:如图,A D⊥B C于点D,E G⊥B C于点G,∠E=∠A F E。
中考数学数学第五章相交线与平行线的专项培优练习题(及答案一、选择题1.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个B.2个C.3个D.4个2.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角3.如图,AB∥CD,∠1=120°,则∠2=()A.50°B.70°C.120°D.130°4.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.115°B.65°C.35°D.25°5.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A .70°B .45°C .110°D .135°6.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒7.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°8.两条平行线被第三条直线所截,则下列说法错误的是( )A .一对邻补角的平分线互相垂直B .一对同位角的平分线互相平行C .一对内错角的平分线互相平行D .一对同旁内角的平分线互相平行9.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个10.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70°所以3180418011070︒︒︒︒∠=-∠=-=二、填空题11.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;12.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.13.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).14.如图,∠AEM =∠DFN =a ,∠EMN =∠MNF =b ,∠PEM =12∠AEM ,∠MNP =12∠FNP ,∠BEP ,∠NFD 的角平分线交于点I ,若∠I =∠P ,则a 和b 的数量关系为_____(用含a 的式子表示b ).15.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .16.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.17.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________18.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.19.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 ;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE .①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).22.为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?23.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150F AGF ∠=︒,求F ∠的度数.24.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.25.如图,AB ∥CD .(1)如图1,∠A 、∠E 、∠C 的数量关系为 .(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数;(3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.26. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.2.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 3.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.4.D解析:D【解析】解:∵直线a∥b,∴∠1+∠ABC+∠2=180°.又∵BC⊥AB,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D.5.C解析:C【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a∥b,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C.【点睛】本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.6.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.7.C解析:C【解析】【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.【详解】作AB∥a,由直线a平移后得到直线b,所以,AB∥a∥b所以,∠2=180°-∠1+∠3,所以,∠2-∠3=180°-∠1=180°-70°=110°.故选:C【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.8.D解析:D【解析】试题分析:A 、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B 、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C 、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D 、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误; 故选:D .9.A解析:A【解析】试题分析:根据题意可知:①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.故选:A10.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠GFD=12∠EFD=12×64°=32°, ∵AB ∥CD ,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.13.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.14..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=, ∵∠EPN =∠EIF ,∴3902x x ︒-+=x +2y , ∴339042b ︒-a =, ∴91358b a =︒-, ∴81209b -︒a =,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.15.3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC<,故这种情况不成立;②如图解析:3或2+22【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得DG=22,而DC<22,故这种情况不成立;②如图2,由平移的性质得到△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG是等腰直角三角形,∴△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得:DG=22,而DC=2<22,故这种情况不成立;②如图2.∵△EFG是等腰直角三角形,∴△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI =12DG2-12CG2=4,即:12DG2-12(DG-2)2=4,解得:DG=3;③如图3.∵△EFG是等腰直角三角形,∴△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI =12EF2-12CG2=4,即:12×42-12(DG-2)2=4,解得:DG=222+或222-(舍去).故答案为:3或222.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.16.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.17.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC ═3(x°+y°),即可得出答案.【详解】连接AC ,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB ∥CD ,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE )=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA )=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC , 即:4∠AFC=3∠AEC ,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.18.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.19.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD=∠DAE=45°;当BC ∥AD 时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAE =∠B =60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°,∴∠BAD =∠DAE +∠EAB =45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).20.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.三、解答题21.(1)60°;(2)①75°,②当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n,推导见解析.【分析】(1)直接利用k系补周角的定义列方程求解即可.(2)①依据k系补周角的定义及平行线的性质,建立∠B ED、∠B、∠D的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),又由于点P是∠ABE角平分线BG上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P点,再通过推理论证得到k的值(含n的表达式),即说明点P即为所求.【详解】解:(1)设∠H的4系补周角的度数为x,则有120°+4x=360°,解得:x=60°∴∠H的4系补周角的度数为60°;(2)①如图,过点E作EF//AB,∵AB//EF,∴EF//CD,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D ,即∠B ED=∠B+∠D ,∵∠BED+3∠B=360°,∠D =60,∴360360B B ︒-∠=∠+︒,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n.理由如下:若∠BPD 是∠F 的k 系补周角,则∠F+k ∠BPD=360°,∴k ∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F , ∴k ∠BPD=∠ABF+∠CDF ,又∵∠ABF =n ∠ABE ,∠CDF =n ∠CDE ,∴k ∠BPD= n ∠ABE+ n ∠CDE ,∵∠BPD=∠PHD+∠PDH,∵AB//CD ,PG 平分∠ABE ,PD 平分∠CDE ,∴∠PHD=∠ABH=12ABE ∠ ,∠PDH=12CDE ∠, ∴2k (ABE ∠+CDE ∠)=n(∠ABE+∠CDE), ∴k=2n.【点睛】本题主要考查平行线的基本性质及基本构图的应用.题型较新颖,发散性较强,理解题意,熟练掌握平行线的性质及其基本构图是解题的关键.22.(1) 16; (2) 56; (3)(1)12n n +⎡⎤+⎢⎥⎣⎦部分 【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分; (2)通过已知探究结果,写出一般规律,当直线为n 条时,把平面最多分成1+1+2+3+…+n ,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n 时,把平面最多分成1+1+2+3+…+n=(1)12n n +⎡⎤+⎢⎥⎣⎦部分. 【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.23.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论. 【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.24.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.25.(1)∠AEC =∠C +∠A ;(2)∠C ﹣∠E =15°;(3)2∠AGF +∠GDC =90°.理由见解析.【分析】(1)过点E 作EF ∥AB ,知AB ∥CD ∥EF ,据此得∠A=∠AEF ,∠C=∠CEF ,根据∠AEC=∠AEF+∠CEF 可得答案;(2)分别过点E 、F 作FM ∥AB ,EN ∥AB ,设∠NEF=x=∠EFM ,知∠AEF=x+50°,∠MFC=115°-x ,据此得∠C=180°-(115°-x )=x+65°,进一步计算可得答案;(3)分别过点E 、F 、G 作FM ∥AB ,EN ∥AB ,GH ∥AB ,设∠GAE=x=∠GAB ,∠GFM=y ,∠MPC=z ,知∠GPE=y+z ,从而得2x+2y+z=90°,∠C=180°-z ,根据GD ∥FC 得∠D=z ,由GH ∥AB ,AB ∥CD 知∠AGF=x+y ,继而代入可得答案.【详解】(1)∠AEC =∠C +∠A ,如图1,过点E 作EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠C=∠CEF,则∠AEC=∠AEF+∠CEF=∠A+∠C,故答案为:∠AEC=∠C+∠A;(2)如图2,分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,∴∠C=180°﹣(115°﹣x)=x+65°,∴∠C﹣∠E=x+65°﹣(x+50°)=15°;(3)如图3,分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,则∠GPE=y+z,∴2x+2y+z=90°,∠C=180°﹣z,∵GD∥FC,∴∠D=z,∵GH∥AB,AB∥CD,∴∠AGF=x+y,∴2∠AGF+∠GDC=90°.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.26.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.。
平行线与相交线培优训练平行线的判定:⑴ ___________________(2)(3)平行线的性质:⑴ ___________________(2)(3)例题精讲例1 :如图 1-18,直线a∥b,直线 AB交 a与 b于 A,B,CA平分∠1,CB平分∠2,求证:∠C=90°练习1.思考:两直线a,b被直线AB所截(如图1-18所示),CA,CB分别是∠1与∠2的平分线,若∠C=90°,问直线a与直线b是否一定平行?”练习2.如图所示,AA1∥BA2时,则A BEGC DDBCAFE规律:同一方向的所有角的和等于另规律:所有角的和=(角的个数—1)×练习3.如图已知,AB∥CD.,AF CF分别是EAB∠、ECD∠的角平分线,F是两条角平分线的交点;求证:12F AEC∠=∠.例2:求证:三角形内角之和等于180°练习1.求证:四边形内角和等于360°ABC DEFABCDE2.证明:五边形内角和等于540°例3: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .练习1.如图,已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。
练习2.已知:如图,DE ∥CB ,求证:∠AED=∠A+∠B321nmba 练习3.已知AB //DE ,∠ABC =80°,∠CDE =140°,求∠BCD .例4.如图,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,在图中,∠1=43°,∠2=27°,试问光的传播方向改变了多少度?练习1.甲驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐30°第二次向右拐30° B. 第一次向右拐50°第二次向左拐130 C. 第一次向右拐50°第二次向右拐130° D. 第一次向左拐50°第二次向左拐130° 练习2.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °. (2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °. (3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时, 可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后, 入射光线m 与反射光线n 平行.你能说明理由吗?EDCBAPQ图4MNF E DCB A综合练习:1、(1).如图,直线AB//CD.(1)在图1中,∠BME 、∠E ,∠END 的数量关系为: ;在图2中,∠BMF 、∠F ,∠FND 的数量关系为: ;(3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,EQ//NP ,则∠FEQ 的大小是否发生变化,若变化,说明理由,若不变化,求∠FEQ 的度数。
七年级下册相交线与平行线培优训练1.如图,若∠1=∠2,∠A=∠3.则可以推出AC∥DE.请完成下面的推理过程:因为∠1=∠2,所以AB∥所以∠A=∠4又因为∠A=∠3,所以∠3=∠所以AC∥DE2.如图,已知∠1=∠BDE,∠2+∠3=180°(1)证明:AD∥EF.(2)若DA平分∠BDE,FE⊥AF于点F,∠1=40°,求∠BAC的度数.3.如图,AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠BAE=∠DCF.(1)求证:AE=CF;(2)连结AF、EC,若AE=AF,试猜想四边形AECF是什么四边形,并证明你的结论.4.【问题原型】如图①,AB∥CD,点M在直线AB、CD之间,则∠M=∠B+∠D,小明解决上述问题的过程如下:如图②,过点M作MN∥AB则∠B=()∵AB∥CD,(已知)MN∥AB(辅助线的做法)∴MN∥CD()∴∠=∠D()∴∠B+∠D=∠BMD请完成小明上面的过程.【问题迁移】如图③,AB∥CD,点M与直线CD分别在AB的两侧,猜想∠M、∠B、∠D之间有怎样的数量关系,并加以说明.【推广应用】(1)如图④,AB∥CD,点M在直线AB、CD之间,∠ABM的平分线与∠CDM的平分线交于点N,∠M=96°,则∠N=°;(2)如图⑤,AB∥CD,点M与直线CD分别在AB的两侧,∠ABM的平分线与∠CDM的平分线交于点N,∠N=25°,则∠M=°;(3)如图⑥,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠G=78°,∠F=64°,∠E=64°,则∠M=°.5.感知:如图①,若AB∥CD,点P在AB、CD内部,则∠P、∠A、∠C满足的数量关系是.探究:如图②,若AB∥CD,点P在AB、CD外部,则∠APC、∠A、∠C满足的数量关系是.请补全以下证明过程:证明:如图③,过点P作PQ∥AB∴∠A=∵AB∥CD,PQ∥AB∴∥CD∴∠C=∠∵∠APC=∠﹣∠∴∠APC=应用:(1)如图④,为北斗七星的位置图,如图⑤,将北斗七星分别标为A、B、C、D、E、F、G,其中B、C、D三点在一条直线上,AB∥EF,则∠B、∠D、∠E满足的数量关系是.(2)如图⑥,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E 分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,则∠D﹣∠P=°.6.如图,直线AB与CD相交于点O,OD平分∠BOE.(1)图中∠AOD的补角是(把符合条件的角都填出来);(2)若∠AOC=28°,求∠BOE的度数.7.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=°;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=m°(m>90°)(如图2),则∠AEG﹣∠CEG =°(用m的代数式表示).8.如图,射线OA∥射线CB,∠C=∠OAB=120°.点D、E在线段BC上,且∠DOB=∠BOA,OE平分∠DOC.(1)说明AB∥OC的理由;(2)求∠BOE的度数;(3)平移线段AB,若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC 的度数.9.如图,在△ABC中,∠A=∠B,D、E是边AB上的点,DG∥AC,EF∥BC,DG、EF 相交于点H.(1)∠HDE与∠HED是否相等?并说明理由.解:∠HDE=∠HED.理由如下:∵DG∥AC(已知)∴=()∵EF∥BC(已知)∴=()又∵∠A=∠B(已知)∴=().(2)如果∠C=90°,DG、EF有何位置关系?并仿照(1)中的解答方法说明理由.解:.理由如下:10.如图,已知直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OM是∠BOF的角平分线.(1)若∠AOC=25°,求∠BOD和∠COE的度数;(2)若∠AOC=α,求∠EOM的度数(用含α的代数式表示).参考答案1.解:∵∠1=∠2,∴AB∥CE,∴∠A=∠4(两直线平行,内错角相等,∵∠A=∠3,∴∠3=∠4,∴AC∥DE(内错角相等,两直线平行),故答案为:CE,(内错角相等,两直线平行),4,(内错角相等,两直线平行).2.(1)证明:∵∠1=∠BDE,∴AC∥DE,∴∠2=∠ADE,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD∥EF;(2)∵∠1=∠BDE,∠1=40°,∴∠BDE=40°,∵DA平分∠BDE,∴∠ADE=BDE=20°,∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE⊥AF,∴∠F=90°,∴∠B=360°﹣90°﹣160°﹣40°=70°,在△ABC中,∠BAC=180°﹣∠1﹣∠B=180°﹣40°﹣70°=70°.3.(1)证明:∵AB∥CD∴∠B=∠D又∵AB=CD,∠BAE=∠DCF∴△BAE≌△DCF(ASA)∴AE=CF(2)四边形AECF是菱形,证明如下:由(1)△BAE≌△DCF得:∠AEB=∠CFD∴∠AEF=∠CFE∴AE∥CF又∵AE=CF∴四边形AECF为平行四边形∵AE=AF∴四边形AECF为菱形.4.解:【问题原型】如图①,过点M作MN∥AB,则∠B=∠BMN(两直线平行,内错角相等)∵AB∥CD,(已知)∴MN∥AB(辅助线的做法)∴MN∥CD(平行于同一条直线的两直线平行)∴∠NMD=∠D(两直线平行,内错角相等)∴∠B+∠D=∠BMD,故答案为:∠BMN,两直线平行,内错角相等,平行于同一条直线的两直线平行,∠NMD,两直线平行,内错角相等,【问题迁移】过点M作MN∥AB,∴∠1=∠B,∵AB∥CD,∴MN∥AB,∴∠NMD=∠D,∵∠NMD=∠1+∠BMD,∴∠BMD=∠D﹣∠B;【推广应用】如图④,由如图①的结论可得,∠ABM+∠CDM=∠M=96°,∠N=∠ABN+∠CDN,∵BN,DN分别平分∠ABM,∠CDM,∴∠ABN+∠CDN==(∠ABM+∠CDM)=48°,∴∠N=48°;如图⑤,由如图②的结论可得,∠M=∠CDM﹣∠ABM,∵BN,DN分别平分∠ABM,∠CDM,∴∠CDN﹣∠ABN=∠CDM﹣∠ABM=(∠CDM﹣∠ABM)=M=∠N=25°,∴∠M=50°;如图⑥,过G,F,E分别作GN∥AB,FH∥AB,EP∥AB,∵AB∥CD,∴AB∥GN∥FH∥EP∥CD,∴∠2=∠GFH,∠3=∠EFH,∴∠2+∠3=∠GFE=64°,∴∠1+∠4=∠BGF+∠DEF﹣∠GFE=78°,∵AB∥GN,EP∥CD,∴∠ABG=∠1,∠CDE=∠4,∴∠ABG+∠CDE=78°,∵BM,DM分别平分∠ABG,∠CDE,∴∠ABM=∠ABG,∠CDM=∠CDE,由如图①中的结论可得∠M=∠ABM+∠CDM=(∠ABG+∠CDE)=78°=39°,故答案为:48,50,39.5.解:感知:如图①,过点P作PQ∥AB∴∠A=∠APQ,∵AB∥CD,PQ∥AB∴PQ∥CD,∴∠C=∠QPC,∴∠APQ+∠QPC=∠A+∠C,∠APC=∠A+∠C.故答案为∠P=∠A+∠C;探究:证明:如图③,过点P作PQ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C.故答案为:∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C.应用:(1)如图⑤,过点D作DH∥EF,∴∠HDE=∠E,∵AB∥EF,DH∥EF∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°﹣∠B,∴∠HDE+∠BDH=∠E+180°﹣∠B,即∠BDE+∠B﹣∠E=180°,故答案为∠D+∠B﹣∠E=180°,(2)如图⑥,过点P作PH∥EF,∴∠EPH=∠NEP,∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=180°,∵BD平分∠MBP,∠MBD=25°,∠MBP=2∠MBD=2×25°=50°,∠BPH=180°﹣50°=130°,∵EN平分∠DEP,∴∠NEP=∠DEN∴∠BPE=∠BPH﹣∠EPH=∠BPH﹣∠NEP=∠BPH﹣∠DEN=130°﹣(180°﹣∠DEF)=∠DEF﹣50°由①∠D+∠ABD﹣∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+∠155°﹣∠DEF=180°,∴∠DEF=∠D﹣25°∴∠BPE=∠DEF﹣50°=∠D﹣25°﹣50°=∠D﹣75°∠D﹣∠BPE=75°即∠D﹣∠P=75°,故答案75.6.解:(1)由图示可得,∠AOD+∠AOC=180°,∠AOD+∠BOD=180°,∵OD平分∠BOE,∴∠BOD=∠DOE,∴∠AOD+∠DOE=180°,故∠AOD的补角是∠AOC、∠BOD、∠EOD;故答案为:∠AOC、∠EOD、∠DOB.(2)∵直线AB与CD相交于点O,∠AOC=28°,∴∠BOD=∠AOC=28°.又∵OD平分∠BOE,∴∠BOE=2∠BOD=56°.答:∠BOE的度数是56°.7.解:(1)设∠BEC=x°,根据题意,可列方程:180﹣x=3(90﹣x),解得x=45°,故∠BEC=45°故答案为:45°(2)∵∠CEG=∠AEG﹣25°∴∠AEG=180°﹣∠BEC﹣∠CEG=180°﹣45°﹣(∠AEG﹣25°)=160°﹣∠AEG ∴∠AEG=80°(3)∵EF平分∠AED,∴∠AEF=∠DEF,设∠AEF=∠DEF=α,∠AEG=∠FEG﹣∠AEF=m﹣α,∠CEG=180°﹣∠GEF﹣DEF =180﹣m﹣α,∴∠AEG﹣∠CEG=m﹣α﹣(180﹣m﹣α)=2m﹣180故答案为:2m﹣1808.解:(1)∵OA∥CB,∴∠OAB+∠ABC=180°,∵∠C=∠OAB=120°,∴∠C+∠ABC=180°,∴AB∥OC(2)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣120°=60°,∵OE平分∠COD,∴∠COE=∠EOD,∵∠DOB=∠AOB,∴∠EOB=∠EOD+∠DOB=∠AOC=×60°=30°;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OD是∠AOC的四等分线,∴∠COE=∠AOC=×60°=15°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣120°﹣15°=45°,∴∠OEC=∠OBA,此时∠OEC=∠OBA=45°9.解:(1)∠HDE=∠HED.理由如下:∵DG∥AC(已知)∴∠A=∠HDE(两直线平行,同位角相等)∵EF∥BC(已知)∴∠B=∠HED(两直线平行,同位角相等)又∵∠A=∠B(已知)∴∠HDE=∠HED(等量代换).(2)DG⊥EF.理由如下:∵EF∥BC∴∠AFE=∠C=90°∵AC∥DG∴∠DHE=∠AFE=90°∴DG⊥EF.故答案为:∠A,∠HDE,两直线平行,同位角相等;∠B,∠HED,两直线平行,同位角相等;∠HDE,∠HED,等量代换.DG⊥EF.10.解:(1)∵OE⊥AB,∴∠AOE=90°,∵∠AOC=25°,∴∠BOD=∠AOC=25°,∠COE=90°﹣∠AOC=65°;(2)∵∠AOC=α,∴∠BOD=α,∵OE⊥AB,OF⊥CD,∴∠BOE=∠DOF=90°,∴∠BOF=90°﹣α,∵OM是∠BOF的角平分线,∴∠BOM=∠BOF=45°﹣α,∴∠EOM=90°﹣∠BOM=45°+α.。
人教版七年级下册相交线与平行线培优50题一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()A.1个B.2个C.3个D.4个3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°4.将一副三角尺按如图的方式摆放,则∠α的度数是()第1页(共53页)105°°D.B.60°C.75A.45°,=4G,BG于点AC的方向平移到△DEF的位置,E交BC5.如图,将直角△ABC沿斜边;平移的距离是4②△ABC,下列结论:①∠A=∠BED;EF=10,△BEG的面积为4),正确的有(④CF;四边形GCFE的面积为16③BE=①②③④D.①②③C.①③④BA.②③.)b,c应满足的条件是(c为同一平面内不同的三条直线,要使a∥b,则a,,6.若ab,∥cc,b∥c D.a∥bc B c.a∥c,b⊥C.a ⊥c,ba A.⊥b,⊥)=(55°,则∠B+∠CAB7.如图,∥DE,∠E=45°°35D.B125°.55°C..A B、,按如图所示方式放置,其中°角的直角三角板ABCA.已知直线8m∥n,将一块含30)=35°,则∠2的度数是(上,若∠两点分别落在直线m、n1°55.D25C°.B°.A3530.°页)53页(共2第9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°10.将一副三角板按如图的所示放置,下列结论中不正确的是()A.若∠2=30°,则有AC∥DEB.∠BAE+∠CAD=180°C.若BC∥AD,则有∠2=30°D.如果∠CAD=150°,必有∠4=∠C11.如图,若直线MN∥PQ,∠ACB的顶点C在直线MN与PQ之间,若∠ACB=60°,∠CFQ=35°,则∠CEN的度数为()A.35°B.25°C.30°D.45°12.若∠A的两边与∠B的两边分别平行,且3∠A﹣∠B=80°,那么∠B的度数为()°140°或.°°或.B65115°°或.A80100C40D.°115°或4013.下列条件不能判定AB∥CD的是()第3页(共53页)A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠514.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()A.13B.8C.5D.315.如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A﹣∠C+∠D+∠E=180°D.∠A+∠°C C.∠E﹣∠+∠D﹣∠A=90D=∠C+∠E16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D.A30°.60°18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()第4页(共53页)30°°D.°A.80°B.65C.45)D的关系是(CDAB∥,BF平分∠ABE,且BF∥DE,则∠ABE与∠19.如图,90°B ABE=3∠D.∠ABE+∠D=A.∠D D.∠∠C.∠ABE+3D=180°ABE=2∠)°,∠AED=70°,则∠A的大小是(=20.如图,BC∥DE,∠111040°D.60°.A25°B.35°C.13小题)二.填空题(共的、分别在MN的交点为.把一张长方形纸片21ABCD沿EF折叠后ED与BCG,D、C.2=49°,则∠﹣∠1=EFG位置上,若∠.、∠C、∠P的关系为,则∠.如图,已知22AB∥CDA.ADC,⊥且112A,平分∠BDBCAD如图,23.已知∥,ABC∠=°,BDCD则∠=535第页(共页)°,则∠2 =度.,若∠24.如图,直线a∥b1=60.∠则∠1、2、∠3、∠4间的数量关系是P25.如图,若过点P,作直线m的平行线,21.相交,如果∠1=60°,那么∠2的度数26.如图,CD直线AB∥,EF分别与AB、CD作O,过点和∠ACB的平分线,且交于点.如图,OB,OOC分别是△ABC的∠ABC27.BC =2008,则△OEF的周长是BCBCOE∥AB交于点O,OF∥AC交于点F,的位置关系.与AB1,∠=∠2,试判断CDBC28.如图,已知DG⊥BC,⊥AC,EF⊥AB AC⊥(已知)⊥BC,BC解:∵DG90°(垂直的定义)=∴∠DGB=∠DG∴∥∴∠2=∠)已知∵∠1=(=∠∴∠1536第页(共页)∴EF∥)(∴∠AEF=∠∵EF⊥AB=90°∴∠AEF)°(∴∠ADC=90AB.即:CD⊥,,,若ABCBC=29.如图,将等腰直角△ABC沿BC方向平移得到△111.则BB=1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯..某宾馆在重新装修后,30 米,其侧面如图所示,则购买地毯至少需要元.为每平方米32元,主楼道宽231.已知∠AOB=22.5°,分别以射线OA,OB为始边,在∠AOB的外部作∠AOC=∠AOB,∠BOD=2∠AOB,则OC与OD的位置关系是.32.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为cm;(2)如图2,若∠=∠,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=度;第7页(共53页)度.=150°,∠D=145°,则∠C,∠33.如图,已知AB∥DEB=17小题)三.解答题(共90°.∠1=AFBC⊥于点C,∠A+34.如图1,;∥)求证:ABDE (1,ABPPE.则∠停止,连接AF运动到点FPB,,点(2)如图2P从点A出发,沿线段?C重合的情况)A与点,D,DEP∠,∠BPE三个角之间具有怎样的数量关系(不考虑点P并说明理由.有怎样的数量关系,并FA与∠D=110°,∠C=∠,试探索∠°,∠.如图,∠351=702说明理由.图中′,′CBABC在边长为如图,1个单位的正方形网格中,△经过平移后得到△A′.36′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的对应点B标出了点B:的问题(保留画图痕迹)538第页(共页)′(1)画出△A′BC′;(2)画出△ABC的高BD;,线段AC AA′与CC扫过的图形的面′的关系是′、(3)连接AACC′,那么积为.37.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是°;②当∠BAD=∠ABD时,x=°;③当∠BAD=∠BDA时,x=°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.38.如图,直线AB、CD相交于点O,OE⊥OD,OE平分∠AOF.(1)∠BOD与∠DOF相等吗?请说明理由.(2)若∠DOF=∠BOE,求∠AOD的度数.第9页(共53页)的延长线在DE∥AC,点F上的点,E分别是三角形ABC的边AB,BCDE,39.如图,D A.上,且∠DFC=∠CF;)求证:AB∥1(的度数.BDE大40°,求∠(2)若∠ACF比∠BDE上一点,且ODF是,OE是CD上一点,∥40.已知:如图,FEOC,AC和BD相交于点.=∠A∠1DC;1()求证:AB∥的度数.65=°,求∠OFE2()若∠B=30°,∠1个单位长度.所在的网格图中,每个小正方形的边长均为1.如图,四边形41ABCD ABCD的面积;)求出四边形(1个单位长度后所得的25个单位长度,再向左平移ABCD(2)请画出将四边形向上平移′.C′′DBA四边形′5310第页(共页),D,∠=∠2C=∠DF上,BD,CE均与AF相交,∠1,42.如图所示,点BE分别在AC,.求证:∠A=∠F2,∠1=∠⊥.已知:如图,AEBC,FG⊥BC43CD)求证:AB∥(1°,求∠C的度数.=∠3+50°,∠CBD=70(2)若∠D经过一,在方格纸中将△ABC44.画图并填空:如图,方格纸中每个小正方形的边长都为1′.′、点C和它的对应点C,点次平移后得到△A′B′C′,图中标出来点AB′BC′;(1)请画出平移前后的△ABC和△A′AD;中2)利用网格画出△ABCBC边上的中线(;中AB边上的高CE)利用网格画出△(3ABC.′的面积为′′)△(4ABC5311第页(共页)分别平分、NO2,MO相交于点M、N,且∠1=∠AB45.如图,直线EF分别与直线、CD的形状,并说明理由.END,试判断△MON∠BMF和∠°,114AOC=,OF⊥OE,且∠O46.如图所示,直线AB,CD相交于点,OE平分∠BOC的度数.求∠BOF90°.,∠COE=CD47.已知如图,直线AB、相交于点O的度数;36°,求∠BOE(1)若∠AOC=AOE的度数;1:5,求∠BOC2()若∠BOD:∠=的度数.EOFOF作⊥AB,请直接写出∠O23()在()的条件下,过点5312第页(共页)48.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.49.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.50.如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的余角.第13页(共53页)人教版七年级下册相交线与平行线培优50题参考答案与试题解析一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°【分析】利用平行线的性质求出∠DHF即可.【解答】解:∵AB∥CD,∴∠1=∠DHF,∵∠1=105°,∴∠DHF=105°,∴∠2=180°﹣∠DHF=75°,故选:D.【点评】本题考查平行线的性质,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()第14页(共53页)A.1个B.2个C.3个D.4个=∠AEF=∠GEF,根据余角的性质得到∠【分析】根据角平分线的定义得到∠AEGBEH=∠FEH,于是得到EH平分∠BEF;故①正确,根据平移的性质得到四边形EGFH是平行四边形,根据平行四边形的性质得到EG∥FH,EG=HF;故②正确;根据平行线的性质得到∠AEF=∠DFE,于是得到FH平分∠EFD;故③正确;根据矩形的性质得到∠GFH=90°,故④正确.【解答】解:∵EG平分∠AEF,=∠AEF,∴∠AEG=∠GEF∵HE⊥GE于E,∴∠GEH=90°,∴∠GEF+∠HEF=90°,∴∠AEG+∠BEH=90°,∴∠BEH=∠FEH,∴EH平分∠BEF;故①正确,∵平移EH恰好到GF,∴四边形EGFH是平行四边形,∴EG∥FH,EG=HF;故②正确;∴∠GEF=∠EFH,∵AB∥CD,∴∠AEF=∠DFE,=∠AEF∵∠GEF,=∠EFDEFH,∴∠∴FH平分∠EFD;故③正确;∵四边形EGFH是平行四边形,∠GEH=90°,∴四边形EGFH是矩形,∴∠GFH=90°,故④正确,∴正确的结论有4个,故选:D.第15页(共53页)【点评】本题考查了平移的性质,平行线的性质,角平分线的定义,平行四边形的判定和性质,矩形的判定和性质,熟练掌握平移的性质是解题的关键.3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【解答】解:∵∠1+∠2=180°(已知),∠1+∠EFD=180°(邻补角定义),∴∠2=∠EFD(同角的补角相等)∴AB∥EF(内错角相等,两直线平行)∴∠ADE=∠3=72°(两直线平行内错角相等)∵∠3=∠B(已知),∴∠ADE=∠3=72°(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C=58°(两直线平行同位角相等).故选:B.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.4.将一副三角尺按如图的方式摆放,则∠α的度数是()第16页(共53页)A.45°B.60°C.75°D.105°【分析】根据平行线的性质和根据三角形的内角和计算即可.解:如图:【解答】90°,=∠ABE=∵∠DEC DE,∴AB∥30°,=∠D=∴∠AGD∴∠α=∠AHG=180°﹣∠A ﹣∠AGD=180°﹣45°﹣30°=105°,故选:D.【点评】本题考查的是平行线的判定和性质以及三角形的内角和的性质,掌握三角形的内角和是180°是解题的关键.5.如图,将直角△ABC沿斜边AC的方向平移到△DEF的位置,E交BC于点G,BG=4,EF=10,△BEG的面积为4,下列结论:①∠A=∠BED;②△ABC平移的距离是4;③BE=CF;④四边形GCFE的面积为16,正确的有()A.②③B.①②③C.①③④D.①②③④【分析】由平移的性质得到BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;根据平行四边形的性质得到∠A=∠BED,故①正确;根据直角三角形斜边大于直角边得到△ABC平移的距离>4,故②错误;根据三角形的面积公式得到GE=2,根据梯形的面积的面积=(6+10)×2=GCFE公式得到四边形16,故④正确.【解答】解:∵△DEF的是直角三角形ABC沿着斜边AC的方向平移后得到的,且A、D、C、F 四点在同一条直线上,∴BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;第17页(共53页)∴四边形ABED是平行四边形,∴∠A=∠BED,故①正确;∵BG=4,∴AD=BE>BG,∴△ABC平移的距离>4,故②正确;∵EF=10,∴CG=BC﹣BG=EF﹣BG=10﹣4=6,∵△BEG的面积等于4,∴BG?GE=4,∴GE=2,的面积=(6+10)×2=16,故④正确;∴四边形GCFE故选:C.【点评】本题考查了平移的性质,面积的计算,平行四边形的判定和性质,正确的识别图形是解题的关键.6.若a,b,c为同一平面内不同的三条直线,要使a∥b,则a,b,c应满足的条件是()A.a⊥b,b⊥c B.a∥c,b⊥c C.a⊥c,b∥c D.a∥c,b∥c【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行进行分析即可.【解答】解:A、a⊥b,a⊥c可判定b∥c,故此选项错误;B、a∥b,b⊥c可判定a⊥c,故此选项错误;C、a⊥c,b∥c可判定a⊥b,故此选项错误;D、根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得a∥b,故此选项正确;故选:D.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.如图,AB∥DE,∠E=55°,则∠B+∠C=()第18页(共53页)45°°D.B.55°C.35.A125°【分析】利用平行线的性质结合三角形的外角的性质解决问题即可.DE,【解答】解:∵AB∥55°,=∠BFE=∴∠E,+∠CB∵∠BFE=∠°,C =55∴∠B+∠.故选:B本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知【点评】识,属于中考常考题型.BA、,按如图所示方式放置,其中,将一块含30°角的直角三角板ABC.已知直线8m∥n)2的度数是(上,若∠m、n1=35°,则∠两点分别落在直线55°°D..30°A.35B.°C25即可解决问题.【分析】利用平行线的性质求出∠3解:如图,【解答】,m∵∥n5319第页(共页)∴∠1=∠3=35°,∵∠ABC=60°,∴∠2+∠3=60°,∴∠2=25°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°【分析】利用平行线的性质求出∠5即可解决问题.【解答】解:∵直线l∥l,21∴∠1+∠4=180°,∵∠4=149°,∴∠1=31°,∵∠1+∠2=90°,∴∠2=59°,∵直线l∥l,21∴∠5=∠2=59°,∴∠3=180°﹣∠5=121°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.10.将一副三角板按如图的所示放置,下列结论中不正确的是()第20页(共53页)DE30°,则有AC∥A.若∠2=°CAD=180B.∠BAE+∠°2=30C.若BC∥AD,则有∠C°,必有∠1504=∠D.如果∠CAD=1根据已知可求出∠首先要知道一幅三角板中各角的度数;对于①【分析】要解答此题,的位置关系,即可判断;根据角的关系判断E°,结合∠1与∠的度数,再根据∠E=60;①的结论和平行线的性质定理判断④②,根据平行线的性质定理判断③,结合°,=302【解答】解:∵∠°,=60∴∠1°,=60又∠E,=∠E∴∠1正确;,故A∴AC∥DE90°,2+∠3=1+∵∠∠2=90°,∠正确;°,故°=180B2+∠3=90°+90∠即∠BAE+CAD=∠1+∠2+∠,BC∥AD∵°.=180∠∠2+∠3+C∴∠1+°,=90,∠1+∠2=∵∠C4545°,∴∠3=不正确;,故°=45C∴∠2=90°﹣45°,=150°,∠∵∠D=30CAD 180°,+D∠CAD=∴∵∠,AC∴∥DE D正确.C∴∠4∠=∠,故.故选:C5321第页(共页)本题侧重考查对知识点的应用能力,两直线平行,同旁内角互补;两直线平行,【点评】同错角相等;内错角相等,两直线平行;同角(等角)的余角相等°,=60PQ之间,若∠ACB在直线PQ,∠ACB的顶点CMN与11.如图,若直线MN∥)CEN的度数为(∠CFQ=35°,则∠°D.45C°.30°A.35°B.25即可解决问题.+∠CFQ∥MN,证明基本结论:∠ACB=∠CEN【分析】如图作CK,CK∥MN【解答】解:如图作,∥CKMN∥PQ,MN∵,∥CK∴PQ,=∠CFQ=∠ACK,∠FCK∴∠CEN CFQ,∠ACB=∠CEN+∴∠+35°,∴60°=∠CEN25°,∴∠CEN=B.故选:本题考查平行线的性质和判定等知识,解题的关键是学会添加常用辅助线,构【点评】造平行线解决问题.)(=80°,那么∠B 的度数为且12.若∠A的两边与∠B的两边分别平行,3∠A﹣∠B°140°或40.C°115°或°°或.A8010065.B.D115°或°40°,和已知组成方程组,求出方程组+或∠B=∠根据已知得出∠【分析】AAB∠=180第页(共2253页)的解即可.【解答】解:∵∠A的两边与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵3∠A﹣∠B=80°,∴∠A=40°,∠B=40°或∠A=65°,∠B=115°故选:D.【点评】本题考查了平行线的性质的应用,注意:如果两个角的两边互相平行,那么这两个角相等或互补,题目比较好,难度适中.13.下列条件不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠5【分析】分别利用平行线的判定方法,定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行,分别判断得出即可.【解答】解:∵∠3=∠4,∴AB∥CD,∵∠1=∠5,∴AB∥CD,∵∠+∠2=180°,又∵∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∵∠3+∠5=180°,∴AB∥CD,故选:D.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()第23页(共53页).3.5D.13B.8CA对应,根据平移的性质,易得平、FE对应,CB【分析】观察图形,发现平移前后,、3,进而可得答案.﹣5=移的距离=BE=8【解答】解:根据平移的性质,3,﹣5=易得平移的距离=BE=8.D故选:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平【点评】行且相等,对应角相等,本题关键要找到平移的对应点.)满足的数量关系是(、∠C、∠D、∠E15.如图,AB∥EF,则∠A°∠E=180D B°.∠A﹣∠C+∠+360C A.∠A+∠+∠D+∠E=D﹣∠A=90°∠ED=∠C+D.∠A+∠+.∠C E﹣∠C∠AB,利用平行线的性质即可解问题.,DN∥【分析】作CM∥AB,DN∥AB【解答】解:作CM∥AB,,AB∥EF∵,∥EFAB∥CM∥DN∴180°,+∠EDN=ACMA=∠,∠MCD=∠CDN,∠E∴∠CDE)=∠﹣∠ACM=∠﹣∠DCMCDE﹣(∠ACD=∠=∠∵∠EDNCDE﹣∠CDNCDE),﹣(∠ACD﹣∠A180°,A﹣∠CDEACD+∠=∠E∴∠+.故选:B5324第页(共页)【点评】本题考查平行线的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个【分析】根据平行线的判定定理,对各小题进行逐一判断即可.【解答】解:①∵∠1=∠2不能得到l∥l,故本条件不合题意;21②∵∠4=∠5,∴l∥l,故本条件符合题意;21③∵∠2+∠5=180°不能得到l∥l,故本条件不合题意;21④∵∠1=∠3,∴l∥l,故本条件符合题意;21⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l∥l,故本条件符合题意.21故选:C.【点评】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D°A.30.60°【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【解答】解:∵b∥c,a⊥b,第25页(共53页)∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选:B.【点评】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()A.80°B.65°C.45°D.30°【分析】利用三角形的内角和定理求出∠1,再利用平行线的性质求出∠EFD即可.【解答】解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°,故选:B.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.第26页(共53页)19.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°D=180°D=2∠D.∠ABE C.∠ABE+3∠【分析】延长DE交AB的延长线于G,根据两直线平行,内错角相等可得∠D=∠G,再根据两直线平行,同位角相等可得∠G=∠ABF,然后根据角平分线的定义解答.【解答】证明:如图,延长DE交AB的延长线于G,∵AB∥CD,∴∠D=∠G,∵BF∥DE,∴∠G=∠ABF,∴∠D=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF=2∠D,即∠ABE=2∠D.故选:D.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.20.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°【分析】由DE∥BC,推出∠EDB=∠1=110°,根据∠EDB=∠A+∠AED,求出∠A即可.第27页(共53页)DE∥BC,【解答】解:∵=110°,∴∠EDB=∠1∠AED,∵∠EDB=∠A+A+70°,∴110°=∠=40°,∴∠A故选:C.本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握【点评】基本知识,属于中考常考题型.13小题)二.填空题(共的、ND、C分别在MED21.把一张长方形纸片ABCD沿EF折叠后与BC的交点为G,.°=16=位置上,若∠EFG49°,则∠2﹣∠1°,再根据折叠的性49DEG=DEG,∠EFG=∠【分析】先利用平行线的性质得∠2=∠﹣,然后计算∠2=98°,接着利用互补计算出∠1GEF质得∠DEF=∠=49°,所以∠21.∠BC,解:∵AD∥【解答】°,49=∠DEG=∴∠2=∠DEG,∠EFG,BC的交点为GABCD沿EF折叠后ED与∵长方形纸片°,=49DEF∴∠=∠GEF°,°=98=2×492∴∠82°,180°﹣98°=∴∠1=°.82°=1698∴∠2﹣∠1=°﹣°.故答案为16本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角【点评】互补;两直线平行,内错角相等.也考查了折叠的性质.﹣∠P=180°.C+∠的关系为、∠、∠,则∠∥.如图,已知22ABCDACP A ∠第28页(共53页)AB=180°,而CD,根据两直线平行同旁内角互补可知∠C+∠CPE【分析】先作PE∥,再根据两直线平行内错角相∥AB∥CD,利用平行于同一直线的两条直线平行可得PE180°.∠C﹣∠P =+=∠APD,于是有∠A=∠APC∠CPE,即可求∠A+等可知∠A,PE【解答】解:如右图所示,作∥CD,∵PE∥CD°,+∠CPE=180∴∠C,又∵AB∥CD,∴PE∥AB A=∠APD,∴∠P=180°,∴∠A+∠C﹣∠=180°.故答案为:∠A+∠C﹣∠P【点评】本题考查了平行线的判定和性质.平行于同一直线的两条直线平行..°=则∠=A112°,且BD⊥CD,ADC124ABC,已知23.如图,AD∥BCBD平分∠,∠ABC112°,根据两直线平行,同旁内角互补,即可求得∠,∠A=∥【分析】由ADBC的度数,继而求得答案.,求得∠CCD平分∠ABC,BD⊥的度数,又由BD112°,BC,∠A=∥【解答】解:∵AD°,=68°﹣∠∴∠ABC=180A,BD平分∠ABC∵5329第页(共页)=∠ABCCBD=34°,∴∠∵BD⊥CD,=9056°,°﹣∠CBD=∴∠C124°.180°﹣∠C=∴∠ADC=124°.故答案为:此题考查了平行线的性质以及三角形内角和定理.注意掌握两直线平行,同旁【点评】内角互补定理的应用是解此题的关键.60度.=6024.如图,直线a ∥b,若∠1=°,则∠2【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故答案为60.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.25.如图,若过点P,P作直线m的平行线,则∠1、∠2、∠3、∠4间的数量关系是∠212+∠4=∠1+∠3.【分析】分别过点P1、P2作PC∥m,PD∥m,由平行线的性质可知,∠1=∠APC,121CPP=∠PPD,∠DPB=∠4,22112所以∠1+∠PPD+∠DPB=∠APC+∠CPP+∠4,即∠2+∠4=∠1+∠3.221112【解答】解:分别过点P、P作PC∥m,PD∥m,2121第30页(共53页)n,∵m∥,∥C∥PDm∥n∴P21,D,∠DPB=∠4=∠∴∠1=∠APC,CPPPP221112=∠1+∠.3+C∠CPP+∠4,即∠2+∠4∠1+∴∠∠PPD+DPB=∠AP212211.1+∠3故答案为:∠2+∠4=∠本题考查的是平行线的性质,即两直线平行,内错角相等.【点评】120°60°,那么∠2的度数.如果∠CD26.如图,直线AB∥,EF分别与AB、CD相交,1=【分析】先根据对顶角相等求出∠3的度数,再根据平行线的性质即可得出∠2的度数.【解答】解:∵∠1=60°,∠1与∠3是对顶角,∴∠3=∠1=60°,∵AB∥CD,∴∠2=180°﹣∠3=180°﹣60°=120°.故答案为:120°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.27.如图,OB,OC分别是△ABC的∠ABC和∠ACB的平分线,且交于点O,过点O作OE∥AB 交于BC点O,OF∥AC交BC于点F,BC=2008,则△OEF的周长是2008.第31页(共53页)可ACAB和∠ACB的平分线和OE∥、OF∥ABC【分析】由OB,OC分别是△的∠ABC OF=CF,显然△OEF的长度.的周长即为BC=推出BEOE,ACB的平分线,ABC的∠ABC和∠OC【解答】解:OB,分别是△OCF,∠ACO=∠.∴∠ABO=∠OBF,ACOF∥∵OE∥AB=∠COF,∠∴∠ABO=∠BOEACO为等腰三角形OCF∴△BOE和△OF∴BE=EO,=CF∴△OEF的周长=BE.BC=2008+EF+CF=此题运用了平行线性质,和角平分线性质以及等腰三角形的性质,较为灵活,【点评】难度中等.,试判断的位置关系.CD与ABEFBC,⊥AC,⊥AB,∠1=∠2DG28.如图,已知⊥BC AC(已知)BC解:∵DG⊥,BC⊥=DGB∴∠BCA°(垂直的定义)=∠90DG∥AC∴∴∠2=∠DCA∵∠1=∠2(已知)∴∠1=∠DCA∴EF∥DC∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)即:CD⊥AB.第32页(共53页),求出∠DCA,根据平行线的性质得出∠2=∠【分析】根据平行线的判定推出DG∥AC即ADC,根据平行线的性质得出∠AEF=∠1=∠DCA,根据平行线的判定得出EF∥DC可.⊥AC(已知)BC【解答】解:∵DG⊥,BC=90°(垂直的定义)∴∠DGB=∠BCA∥AC,∴DG=∠DCA,∴∠2),=∠2(已知∵∠1DCA,∴∠1=∠DC,∴EF∥(两直线平行,同位角相等),∴∠AEF=∠ADC(已知),∵EF⊥AB,AEF=90°(垂直定义)∴∠,ADC=90°(等量代换)∴∠,即:CD⊥AB,两直线平行,同位角相等,(已知)DC,DCA,,ADC,,故答案为:BCA,ACDCA,∠2(垂直定义),等量代换.本题考查了平行线的性质和判定,垂直定义的应用,能灵活运用平行线的性质【点评】和判定定理进行推理是解此题的关键.,,若BC,=C.如图,将等腰直角△29ABC沿BC方向平移得到△AB111.=则BB1【分析】先判断出△PBC是等腰直角三角形,再根据等腰直角三角形的性质利用面积列1式求出BC,然后根据BB=BC﹣BC代入数据计算即可得解.111【解答】解:∵△ABC是等腰直角三角形,∴平移后∠PBC=∠CB=45°,1∴△PBC是等腰直角三角形,1第33页(共53页))=2C?,(BC∴SB=11C1PB△2C解得B=,13=BB=BC﹣﹣B2C=.∴11故答案为:.本题考查了平移的性质,等腰直角三角形的判定与性质,利用等腰直角三角形【点评】的长度是解题的关键.B求出C1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯.30.某宾馆在重新装修后,元.2512米,其侧面如图所示,则购买地毯至少需要为每平方米32元,主楼道宽根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得【分析】其面积,则购买地毯的钱数可求.解:利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为【解答】2.5米,米,5.516平方米,8×2=∴地毯的长度为2.5+5.5=8米,地毯的面积为512元.×32=16∴买地毯至少需要512.故答案为:本题考查平移性质的实际运用,难度不大.解决此题的关键是要利用平移的知【点评】识,把要求的所有线段平移到一条直线上进行计算.,AOB的外部作∠AOC=∠OA,OB为始边,在∠AOB.31已知∠AOB=22.5°,分别以射线OD的位置关系是垂直与.,则∠BOD=2∠AOBOC【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】解:∵∠AOB=22.5°,∠AOC=∠AOB=22.5°,∠BOD=2∠AOB=45°,∴∠COD=∠AOC+∠AOB+∠BOD=22.5°+22.5°+45°=90°,∴OC与OD的位置关系是垂直.故填垂直.第34页(共53页)先利用角的和差关系求得这个角是90°,再由垂线的定义可得,两直线垂直.【点评】之间的距离为3cm,BC=2cm,则AB与CD2AB.32(1)如图1,在长方形ABCD中,=;cm;∥BC2,则AD2(2)如图,若∠1=∠度;EDC°,则∠=25BC,CD是∠ACB的平分线,∠ACB=503()如图3,DE∥1)夹在两条平行线间的垂线段的长度即为两平行线的距离.【分析】(2)运用的是平行线判定定理.(3)运用的是角平分线的定义和平行线的性质.(°.B=90C∥CD,∠=90°,∠1【解答】解:()已知四边形ABCD为长方形,则AB.2cm与cm,故ABCD之间的距离为又BC=2.故填22.BC,根据平行线的判定定理可得∠1=∠∥(2)要使AD2.故填∠1;∠,DE∥BC3()已知,=∠DCBEDC根据平行线判定定理可得∠ACB是∠的平分线,又CD DCB,∴∠ECD=∠°,ACB=50∵∠25°.EDC∴∠=.故填255335第页(共页)此类题考查的是平行线的性质以及平行线的判定定理,考生一定要熟记.【点评】=65=145°,则∠C度.D33.如图,已知AB∥DE,∠B=150°,∠【分析】过点C作CF平行于AB,再根据平行线的性质解答即可.【解答】解:过点C作CF平行于AB,如图:∵AB∥DE,∴AB∥CF∥ED.AB∥CF?∠1=180°﹣∠B=30°,CF∥ED?∠2=180°﹣∠D=35°,∴∠BCD=∠1+∠2=65°.故填65°.【点评】结合题意和图形作出正确的辅助线是解决本题的关键.三.解答题(共17小题)34.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.【分析】(1)根据∠A+∠B=90°,∠A+∠1=90°,即可得到∠B=∠1,进而得出AB第36页(共53页)∥DE.(2)分三种情况讨论:点P在A,D之间;点P在C,D之间;点P在C,F之间;分别过P 作PG∥AB,利用平行线的性质,即可得到∠ABP,∠DEP,∠BPE三个角之间的数量关系.【解答】解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,第37页(共53页)∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.【点评】本题主要考查了平行线的性质与判断的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.35.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.【分析】要找∠A与∠F的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE ∥BD;根据平行线的性质,可得∠C=∠ABD,结合已知条件,得∠ABD=∠D,根据平行线的判定,得AC∥DF,从而求得结论.【解答】解:∠A=∠F.理由:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE∥DB,∴∠C=∠ABD,∵∠C=∠D,第38页(共53页)ABD,=∠D∴∠,∥DF∴AC.=∠F∴∠A本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错【点评】角、同旁内角是正确答题的关键.图中′,′ABC经过平移后得到△A′BC136.如图,在边长为个单位的正方形网格中,△′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关B标出了点B的对应点:的问题(保留画图痕迹)′AB′C′;(1)画出△ABC的高BD;)画出△(2平行且相等,线段CC′,那么AA′与CCAC扫过的′的关系是)连接(3AA′、图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;第39页(共53页)BD即为所求;(2)如图所示,′的关系是平行且相等,)如图所示,(3AA′与CC,××6×1=线段AC扫过的图形的面积为10×2﹣2××4×1﹣210故答案为:平行且相等、10.此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握【点评】平移的性质是解题关键.上的分别是射线OM、OE、ONMON.已知:∠MON=48°,OE平分∠,点A、B、C37°x.设∠OAC=B、C不与点O重合),连接AC交射线OE于点D、动点(A24°;的度数是)如图1,若AB∥ON,则:①∠ABO(1②当∠BAD=∠ABD时,x=108°;③当∠BAD=∠BDA时,x=54°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【分析】(1)①运用平行线的性质以及角平分线的定义,可得①∠ABO的度数;②根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;。
1、下列说法正确的有 。
①平面内,过直线上一点有且只有一条直线垂直于已知直线; ②平面内,过直线外一点有且只有一条直线垂直于已知直线;③不相交的两条直线是平行线; ④在平面内,有且只有一条直线垂直于已知直线. ⑤若线段AB 与CD 没有交点,则AB ∥CD; ⑥若a ∥b,b ∥c,则a 与c 不相交.2、如果两个角的两边分别垂直,而其中一个角比另一个角的4倍少30°,那么这两个角分别为 。
3、一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A.第一次右拐50 ,第二次左拐130B.第一次左拐50 ,第二次右拐50 C .第一次左拐50 ,第二次左拐130 D .第一次右拐50 ,第二次右拐50 4、下面说法中正确的是____________________(填序号) (1)过已知直线外一点,有且只有一条直线与已知直线平行.(2) 平行于同一直线的两条直线互相平行.(3)垂直于同一直线的两条直线互相平行.(4)不相交的两条直线必平行.(5)两条直线被第三条直线所截,同位角相等.(6)两条平行线被第三条直线所截,一对内错角的平分线互相平行.5、如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=30°,则∠α的度数为 。
6、如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF 。
如果20ABE ∠=︒,那么EFB ∠= 度7、如图,将矩形纸片ABCD 折叠,使点A 与C 重合,折痕为EF ;且∠EFC=65°,则∠BEC=8、如图,已知: AC DE ⊥于E ,AC BC ⊥,AB FG ⊥于G ,21∠=∠。
求证:AB CD ⊥9、如下图所示,AB ∥DE ,若∠ABC=80°,∠CDE=140°,则BCD=_______度.10、如下图,AB ∥CD,由B 点出发作n 条直线1BB ,21B B ,32B B ,…,D B n 1-, 则∠1ABB -∠B 21B B +∠321B B B -…+∠D B n 1-C = .11、如图,已知∠1=∠2,∠3=∠4,CE//AB ,试说明:AD//BC.(8分)12、如图:已知∠BEF=∠CFE ,∠1=∠2,请指出AB 和CD 的位置关系并说明理由。
第五章相交线与平行线培优专题训练1.已知:如,AB∥ EF∥ CD, EG平分∠ BEF,∠ B+∠ BED+∠ D =192°,∠B-∠ D=24°,求∠ GEF的度数。
A BGE FC D2.如,已知AB∥ CD,且∠ B=40°,∠ D=70°,求∠ DEB 的度数。
解: E 作 EF∥ ABC DA BEF3.如,直 AB 与 CD 相交于 O, EFAB于 F, GHCD于 H,求 EF与 GH 必相交。
分析:欲EF 与 GH 相交,直接很困,可考用反法。
明:假EF 与 GH 不相交。
∵EF、 GH 是两条不同的直∴ EF∥ GH∵EFAB∴GHABE GAD FHOCB又因 GHCD 故 AB∥ CD (垂直于同一直的两直平行 )( 4)与已知AB 和 CD 相交矛盾。
所以 EF与 GH 不平行,即EF与 GH 必相交注:本用:(1)垂直于同一条直的两直平行。
(2)两条平行中的一条直垂直于第三条直,那么另一条直也平行于第三条直;4.平面上n 条直两两相交且无 3 条或 3 条以上直共点,有多少个不同交点解: 2 条直生个交点,第 3 条直与前面 2 条均相交,增加个交点,平面上 3 条直共有个交点;第 4 条直与前面 3 条均相交,增加个交点,平面上 4 条直共有个交点;⋯n 条直共有交点个数:。
5. 6 个不同的点,其中只有 3 点在同一条直 上, 2 点确定一条直 , 能确定多少条直 解: 6 条不同的直 最多确定:条直 ,除去共 的3 点中重合多算的 2 条直 ,即能确定的直15-2=13 条。
另法: 3 点所在的直 外的3 点 最多能确定 3 条直 ,3 点与直 上的3 点最多有 3×3=9 条直 ,加上3 点所在的直 共有:3+9+1=13 条注:一般地,平面上n 个点最多可确定直 的条数 :1+2+3+⋯ +(n-1)= 1n(n-1)26. 10 条直 两两相交,最多将平面分成多少 不同的区域解: 2 条直 最多将平面分成 2+2=4 个不同区域;3 条直 中的第3 条直 与另两条直 相交,最多有两个交点,此直 被 两点分成3 段,每一段将它所在的区域一分 二, 区域增加 3 个,即最多分成2+2+3=7 个不同区域;同理: 4 条直 最多分成2+2+3+4=11 个不同区域;⋯∴10 条直 最多分成推广: n 条直 两两相交,最多将平面分成1 1 2+2+3+4+⋯+n=1+n(n+1)=22区域个不同区域。
一、选择题1.下列说法不正确的是( )A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行D解析:D【分析】根据平行线的概念对选项A 进行判断;根据平行线的性质对选项B 进行判断; 根据平行线的公理和判定定理对选项C 和D 进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A 正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B 选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C 正确;D. 同旁内角互补,两直线平行,所以选项D 错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.2.下列语句不是命题的是( ).A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等B 解析:B【分析】根据“判断一件事情的语句叫做命题”进行判断即可得到答案.【详解】解:A 、两直线平行,同位角相等,是命题,不符合题意;B 、作直线AB 垂直于直线CD 是描述了一种作图的过程,故不是命题,符合题意;C 、正确,是判断语句,不符合题意;D 、正确,是判断语句,不符合题意.故选:B .【点睛】主要考查了命题的概念.判断一件事情的语句叫做命题.3.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.4.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C 解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.5.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 6.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°C解析:C【解析】分析:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC ﹣∠1=25°.∵GH ∥EF ,∴∠2=∠AEC=25°.故选C.7.如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质8.如图所示,已知 AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.如图,将△ABE向右平移50px得到△DCF,如果△ABE的周长是400px(1px=0.04cm),那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm C解析:C【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm,∴50px=2cm,400px=16cm,∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF.∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.下列各命题中,原命题成立,而它逆命题不成立的是()A.平行四边形的两组对边分别平行B.矩形的对角线相等C.四边相等的四边形是菱形D.直角三角形中,斜边的平方等于两直角边的平方和B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.二、填空题11.如图,已知点O是直线AB上一点,过点O作射线OC,使∠AOC=110°.现将射线OA 绕点O以每秒10°的速度顺时针旋转一周.设运动时间为t秒.当射线OA、射线OB、射线OC中有两条互相垂直时,此时t的值为__________.920或27【分析】分4种情况确定垂直关系可得OA的旋转角度从而可求出t的值【详解】解:①当射线OA绕点O顺时针旋转20°时如图1则∠COA=110°-20°=90°故OA⊥OC此时t=20°÷10解析:9、20或27【分析】分4种情况确定垂直关系,可得OA的旋转角度,从而可求出t的值.【详解】解:①当射线OA绕点O顺时针旋转20°时,如图1,则∠COA=110°-20°=90°,故OA⊥OC,此时,t=20°÷10°=2;②当射线OA绕点O顺时针旋转90°时,如图2,则∠AOB=180°-90°=90°,故OA⊥OB,此时,t=90°÷10°=9;③当射线OA绕点O顺时针旋转200°时,如图3,则∠COA=200°-110°=90°,故OA ⊥OC ,此时,t=200°÷10°=20;④当射线OA 绕点O 顺时针旋转270°时,如图4,则∠BOA=270°-180°=90°,故OA ⊥OB ,此时,t=270°÷10°=27,故答案为:2,9,20或27.【点睛】本题主要考查了角的有关计算,注意在分类讨论时要做到不重不漏.12.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.13.在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________;45°或135°【分析】根据垂直关系可得∠AOC=90°再由∠AOC :∠AOB=2:3可得∠AOB 然后再分两种情况进行计算即可【详解】解:如图∠AOC 的位置有两种:一种是∠AOC 在∠AOB 内一种是在解析:45°或135°【分析】根据垂直关系可得∠AOC=90°,再由∠AOC:∠AOB=2:3,可得∠AOB,然后再分两种情况进行计算即可.【详解】解:如图,∠AOC的位置有两种:一种是∠AOC在∠AOB内,一种是在∠AOB外.∵OA⊥OC,∴∠AOC=90°,①当∠AOC在∠AOB内,如图1,∵∠AOC:∠AOB=2:3,∠AOC=45°,∴∠BOC=12②当∠AOC在∠AOB外,如图2,∵∠AOC:∠AOB=2:3,∠AOC=135°,∴∠AOB=32∴∠BOC=360°-∠AOB-∠AOC=135°.故答案为:45°或135°.【点睛】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.14.过直线AB上一点O作射线OC、OD,使OC⊥OD,当∠AOC=50°时,则∠BOD的度数__.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.【详解】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=50°时,∠BOD=180°-50°-90°=40°;如图2,当∠AOC =50°时,∠AOD=90°-50°=40°,此时,∠BOD =180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.15.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC ;图中当时CE//AB 图中当时DE//BC 故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题 解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.16.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .(1)3555;(2)与【分析】(1)由可得所以所以已知的度数即可得出与的度数;(2)由(1)可得的余角是与要求的补角即要求的补角的补角是【详解】(1);(2)由(1)可得的余角是与的补角是的补角是解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 17.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°再结合∠BAC 是直角即可得出结果【详解】解:如图所示∵a ∥b ∴∠1+∠3=180°则∠3=180°-∠1∵b ∥c ∴∠2+∠4=180°解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a ∥b ,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.18.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是________平方米.79【分析】可以根据平移的性质此小路相当于一条横向长为50米与一条纵向长为30米的小路道路的面积=横纵小路的面积-小路交叉处的面积计算即可【详解】由题意可得道路的面积为:(30+50)×1−1=79解析:79【分析】可以根据平移的性质,此小路相当于一条横向长为50米与一条纵向长为30米的小路,道路的面积=横纵小路的面积-小路交叉处的面积,计算即可.【详解】由题意可得,道路的面积为:(30+50)×1−1=79(m2).故答案为79.【点睛】此题考查生活中的平移现象,解题关键在于掌握运算公式.19.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.60或120【分析】根据题意分两种情况如图所示(见解析)再分别根据平行线的性质即可得【详解】由题意分以下两种情况:(1)如图1(两直线平行同位角相等)(两直线平行内错角相等);(2)如图2(两直线平解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//∴=∠=PDB∠︒(两直线平行,同位角相等),AOB60∴=∠=∠︒(两直线平行,内错角相等);PDB60CPD(2)如图2,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),180120C P B P D D ∠=︒-∴∠=︒(两直线平行,同旁内角互补);综上,CPD ∠的度数为60︒或120︒,故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.解析:(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒,∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠,∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】 本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.22.在一张地图上有、、A B C 三地,但地图被墨迹污染,C 地具体位置看不清楚,但知道C 地在A 地的北偏东30°方向,在B 地南偏东45°方向.(1)根据以上条件,在地图上画出C 地的位置;(2)直接写出ACB ∠的度数.解析:(1)见详解;(2)105°.【分析】 (1)过点A 、B 作正北方向,再据方位角的含义画射线BX 和AY ,两射线之交点即是C 地;(2)记过点A 的正北方向线与射线BX 之交点为D ,先求得∠CDA 的度数,最后由三角形内角和为180°计算得∠ACB 的度数.【详解】(1)如下图,第一步过B 作m 的平行线BS ,以B 为顶点作射线BX ,使∠SBX=45°; 第二步过A 作m 的平行线AN 交BX 于点D ,以A 为顶点作射线AY ,使∠NAY=30°; 则射线BX 与射线AY 的交点就是C 地.(2)如上图,由C地在B地南偏东45°方向得∠SBX=45°∵SB∥m,AN∥m∴SB∥AN∴∠ADC=∠SBX=45°由C地在A地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.23.请将下列题目的证明过程补充完整:⊥于点如图,F是BC上一点,FG AC于点,G H是AB上一点,HE ACE∠=∠,,12DE BC.求证://证明:连接EF.∴⊥⊥,FG AC HE AC,∴∠=∠=.FGC HEC︒90FG∴_______().//∴∠=∠_______().3∠=∠,又12=∠+∠,∴______24=∠.即∠_________EFC∴(___________).//DE BC解析:HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行【分析】∠=∠,再证明∠DEF=∠EFC,再连接EF,根据垂线定义和平行线的判定与性质可证得34根据平行线的性质即可证得结论.【详解】证明:连接EF,⊥⊥,FG AC HE AC∴∠=∠=.90FGC HEC︒FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 24.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.解析:(1) 155︒;(2)平分,见解析【分析】(1)由角平分线求出∠AOD=12∠AOC=25︒,利用邻补角的性质求出BOD ∠的度数; (2)根据角度的和差计算求出∠BOE 和∠COE 的度数,即可得到结论.【详解】 (1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.【点睛】此题考查几何图形中角度的计算,角平分线的性质,平角的性质,邻补角的性质,掌握图形中各角之间的数量关系是解题的关键.25.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B的度数.解析:(1)CD与EF平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴EF∥CD;(2)∵EF∥CD,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.26.如图,∠1=∠2,∠3=∠D,∠4=∠5,运用平行线性质和判定证明:AE∥BF,要求写出具体的性质或判定定理.解析:证明见解析【分析】由∠1=∠2,根据平行线的判定得出AB∥DF,再根据平行线的性质得出∠3=∠BCE,结合已知条件∠3=∠D,得出∠D=∠BCE,进而根据平行线的判定得出AD∥BC,再根据平行线的性质得出∠6=∠5,然后根据等量代换得出∠4=∠6,最后根据平行线的判定得出结论.【详解】证明:∵∠1=∠2,∴AB∥DF(内错角相等,两直线平行),∴∠3=∠BCE,(两直线平行,内错角相等),又∵∠3=∠D,∴∠D=∠BCE,∴AD∥BC,(同位角相等,两直线平行),∴∠6=∠5,(两直线平行,内错角相等),又∵∠4=∠5,∴∠4=∠6,∴AE∥BF(内错角相等,两直线平行).【点睛】本题考查了平行线的判定,关键是根据平行线的判定和性质解答.27.如图,直线AB,CD相交于O,OE⊥CD于O,OF是∠BOE的平分线,∠DOF=25°.求∠AOC的度数.解析:∠AOC =40°.【分析】利用垂直定义结合条件可得∠EOF =65°,然后再利用角平分线定义可得∠BOF =∠EOF =65°,然后再计算∠BOD 的度数,进而可得∠AOC 的度数.【详解】解:∵OE ⊥CD 于O ,∴∠EOD =90°,∵∠DOF =25°,∴∠EOF =65°,∵OF 是∠BOE 的平分线,∴∠BOF =∠EOF =65°,∴∠BOD =65°﹣25°=40°,∴∠AOC =40°.【点睛】此题主要考查了垂线,关键是理清图中角之间和差的关系.28.如图,已知BE 平分ABC ∠,点D 在射线BA 上,且ABE BED ∠=∠.判断BC 与DE 的位置关系,并说明理由.解析:BC ∥DE ;理由见解析【分析】根据角平分线的定义和已知条件可得∠CBE =∠BED ,再根据平行线的判定即得结论.【详解】解:BC ∥DE ;理由如下:因为BE 平分ABC ∠,所以∠ABE =∠CBE ,因为ABE BED ∠=∠,所以∠CBE=∠BED,所以BC∥DE.【点睛】本题考查了角平分线的定义和平行线的判定,属于基础题目,熟练掌握基本知识是解题的关键.。
D
B
C A F
E 平行线与相交线培优训练(已经修改,很好)
平行线的判定:⑴ ___________________(2) (3) 平行线的性质:⑴ ___________________(2) (3) 例题精讲
例1 :如图 1-18,直线a ∥b ,直线 AB 交 a 与 b 于 A ,B ,CA 平分∠1,CB 平分∠ 2,求证:∠C=90°
练习1.思考:两直线a ,b 被直线AB 所截(如图1-18所示),CA ,CB 分别是∠BAE 与∠ABF 的平分线,若 ∠C=90°,问直线a 与直线b 是否一定平行?”
练习2.如图所示,AA 1∥BA 2 时,则
图1-24
规律:同一方向的所有角的和等于另
规律:所有角的和=(角的个数—1)×
练习3.如图已知,AB ∥CD .,AF CF 分别是EAB ∠、ECD ∠的角平分线,F 是两条角平分线的
交点;求证:1
2
F AEC ∠=∠.
例2: 求证:三角形内角之和等于180°
A
B
C
D
E G
A
B
C
D
E
F
A
B
C D
E
练习1. 求证:四边形内角和等于360°
2.证明:五边形内角和等于540°
例3: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .
练习1.如图,已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。
练习2.已知:如图,DE ∥CB ,求证:∠AED=∠A+∠B
练习3.已知AB //DE ,∠ABC =80°,∠CDE =140°,求∠BCD .
例4.如图,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,在图中,∠1=43°,∠2=27°,试问光的传播方向改变了多少度?
练习1.甲驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A. 第一次向左拐30°第二次向右拐30°
B. 第一次向右拐50°第二次向左拐130
C. 第一次向右拐50°第二次向右拐130°
D. 第一次向左拐50°第二次向左拐130°
E
D
C
B
A
3
2
1
n
m
b a P
Q 图4
M N F
E D C B A
练习2.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所
夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被
b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °. (2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °. (3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以 使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光 线m 与反射光线n 平行.你能说明理由吗?
综合练习:
1、(1).如图,直线AB//CD.(1)在图1中,∠BME 、∠E ,∠END 的数量关系为: ;在图2中,∠BMF 、∠F ,∠FND 的数量关系为: ;
(3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,EQ//NP ,则∠FEQ 的大小是否发生变化,若变化,说明理由,若不变化,求∠FEQ 的度数。
2、在平面直角坐标系中,A (-1,0),B(0,2)点C 在x 轴上。
(1)如图(1)若△ABC 的面积为3,则点C 的坐标为 。
(2)如图(2),过点B 点作y 轴的垂线BM ,点E 是射线BM 上的一动点,∠AOE 的平分线交直线BM 于F ,交直线BM 于G ,当点E 在射线BM 上滑动时,BOF
BEO
∠∠的值是否变化?若
不变,请求出其值,若变化,请说明理由。
图2
N
M
D
C
B
A
F
图1
M
N
E
D C
B
A
图2
图1x
y
O
A
C
B
图1
图2
3、如图1,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,2),且2
21(24)0a b a b ++++-=.
(1)求a ,b 的值;(2)①在y 轴的正半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使△COM 的面积=1
2△ABC 的面积仍然成立,若存在,请直接写出符合条件的点M 的坐标; (3)如图2,过点C 作CD ⊥y 轴交y 轴于点D ,点P 为线段CD 延长线上一动点,连接OP ,OE 平分∠AOP ,
OF ⊥OE .当点P 运动时,OPD
DOE ∠∠的值是否会改变?若不变,求其值;若改变,说明理由.
4、长方形OABC ,O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限.(1)求点B 的坐标;(2)如图1,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标;(3)如图2,M 为x 轴负半轴上一点,且∠CBM =∠CMB ,N 是x 轴正半轴上一动点,∠MCN 的平分线CD 交BM 的延长线于点D ,在点N 运动的过程中,D
CNM
∠∠的值是否变化?若不变,求出其值;若
变化,请说明理由.。