运筹学第三章课后习题答案知识讲解
- 格式:ppt
- 大小:1.49 MB
- 文档页数:23
《运筹学教程》第三章习题答案1.影子价格是根据资源在生产中作出的贡献而做的估价。
它是一种边际价格,其值相当于在资源得到最有效利用的生产条件下,资源每变化一个单位时目标函数的增量变化。
又称效率价格。
影子价格是指社会处于某种最优状态下,能够反映社会劳动消耗、资源稀缺程度和最终产品需求状况的价格,是社会对货物真实价值的度量。
只有在完善的市场条件下才会出现,然而这种完善的市场条件是不存在的,因此现成的影子价格也是不存在的。
市场价格是物品和服务在市场上销售的实际价格,是由供求关系决定的。
2.证明:当原问题约束条件右端变为b i′时,原问题变为: maxz=∑C i X js.t. ∑a ij X i≤b i′(i=1,2,3,……,m)X j≥0 (j=1,2,3,……,n)对偶问题为: minp=∑b i′y is.t. ∑a ij y i≥C iy i≥0(i=1,2,3,……,m) (j=1,2,3,……,n) 设,当b i变为b i′原问题有最优解(X1′X2′X3′……X n-1′X n′)时,对偶问题的最优解为(y1′y2′y3′……y n-1′y n′),则有:又因为当原问题有最优解时,对偶问题也有最优解,且相等,则有:所以3(1).minp=6y1 + 2y2s.t. -y1+2y2≥-33y1+3y2≥4y1,y2≥0(2)解:令X2=X2′-X2〞,X4= X4′-X4〞,X2′,X2〞,X4′,X4〞≥0 ,原式化为:maxz=2X1 +2X2′-2X2〞-5X3 +2X4′-2X4〞s.t. 2X1 -X2′+X2〞+3X3 +3X4′-3X4〞≤-5-2X1 +X2′-X2〞-3X3 -3X4′+3X4〞≤5-6X1 -5X2′+5X2〞+X3 -5X4′+5X4〞≤-610X1 -9X2′+9X2〞+6X3 +4X4′-4X4〞≤12X1, X2′,X2〞,X3, X4′,X4〞≥0则对偶规划为:.minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3≥2y1′-y1〞+5y2 + 9y3≥-23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞-5y2 + 4y3≥2-3y1′+3y1〞+5y2 -4y3≥-2即:minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3=23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞+5y2 + 4y3=2令 y1〞- y1′= y1,得:minp= 5y1 -6y2 + 12y3s.t. -2y1-6y2 + 10y3≥2y1-5y2 -9y3=2-3y1+y2 + 6y3≥-5-3y1-5y2 + 4y3=24、试用对偶理论讨论下列原问题与他们的对偶问题是否有最优解。
一、选择题1. 2. 3. 4. 5. 6. 7.二、判断题1. 2. 3. 4. 5. 6. 7. 8. 9.三、表上作业法 3. 解:可知,有初始基本可行解1112132122230,10,20,10,35,0x x x x x x ======用闭回路法计算非基变量的检验数:1123(56)(84)10(98)(67)40σσ=+-+=-<=+-+=>因为110σ<,该解并不是最优解。
进行换基迭代,让11x 进基,考虑上述闭回路,调整量min(10,10)10θ==,调整后得到新的调运方案:A2 4 0645945销量10 45 20计算非基变量的检验数得:1223(84)(56)10(95)(47)30σσ=+-+=>=+-+=>故此方案为最优方案,最优解为:11121321222310,0,20,0,45,0x x x x x x ======最优值min 105207456460Z =⨯+⨯+⨯=用电子表格模型求解进行验算:4. 解:用西北角法求得初始基本可行解:1112131421222324313233344,0,0,0;1,2,4,2;0,0,0,4;x x x x x x x x x x x x ============ 用位势法计算检验数:1111212121131322214142233131324323243433333106()210167()861012()9455()12194()731010()47u u v u v v u v u v u u v u v v u v u v v u v u v v u v u v u σσσσσσ=⎧+==-+=⎧⎧⎪=⎪⎪⎪+==-+=⎪⎪⎪=⎪⎪++=-+=⎪⎪⇒=⇒⎨⎨⎨+==-+=-⎪⎪=-⎪⎪+==-+=-=⎪⎪+==-+=⎪⎪⎩=⎩⎪⎪⎪⎪⎪⎩因为3132,σσ小于0,该解不是最优解。
P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?表解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。
其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ijij x c Z2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。
或者说:优先供应罚数最大行(或列)中最小运费的方格,以避免将运量分配到该行(或该列)次小运距的方格中。
第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。
第三章作业的参考答案
99P 3、用Gomory 割平面法求解下面的ILP 问题.
⎪⎪⎩⎪⎪⎨⎧=≥≥-≤+-=.2,1,0482..5min 212121i x x x x x t s x x z i 整数, 解:将原问题标准化
⎪⎪⎩⎪⎪⎨⎧=≥=--=++-=.
4,3,2,1,0482..5min 42132121i x x x x x x x t s x x z i 整数, 将第二个等式乘以)1(-加到第一个等式,可得线性方程组的典式
⎪⎪⎩⎪⎪⎨⎧=≥=--=++-=.4,3,2,1,0443..5min 42143221i x x x x x x x t s x x z i 整数,
所以,其松驰问题(P0)的第一张单纯形表为
把零行化成检验行,得
1x 2x 3x 4x RHS z
3x 1x
以2x 为进基变量,3x 为离基变量,旋转得
所以,松驰问题(P0)的最优解为T x )0,0,3
4,316(
0=, 它不是整数向量。
所以由第一行生成的割平面条件为 31313143≥+x x .
对应的割平面为
313131143-=+--s x x .
把它加入到松驰问题(P0)的最优单纯形表中,得到改进的松弛问题(P1)的
1x 2x 3x 4x RHS z 2x 1x
利用对偶单纯形方法求解. 以1s 为离基变量,3x 为进基变量,旋转得
所以,松弛问题(P 1)的最优解为T x )0,0,1,1,5(1=。
因此,原问题的最优解为T x )1,5(*=,最优值为0. 1x 2x 3x 4x 1s RHS z
2x 1x 3x。
《管理运筹学》第四版第3章线性规划问题的计算机求解课后习题解析第一篇:《管理运筹学》第四版第3章线性规划问题的计算机求解课后习题解析《管理运筹学》第四版课后习题解析第3章线性规划问题的计算机求解1.解:⑴甲、乙两种柜的日产量是分别是4和8,这时最大利润是2720⑵每多生产一件乙柜,可以使总利润提高13.333元⑶常数项的上下限是指常数项在指定的范围内变化时,与其对应的约束条件的对偶价格不变。
比如油漆时间变为100,因为100在40和160之间,所以其对偶价格不变仍为13.333 ⑷不变,因为还在120和480之间。
2.解:⑴不是,因为上面得到的最优解不为整数解,而本题需要的是整数解⑵最优解为(4,8).解:⑴农用车有12辆剩余⑵大于300 ⑶每增加一辆大卡车,总运费降低192元4.解:计算机得出的解不为整数解,平移取点得整数最优解为(10,8)5.解:圆桌和衣柜的生产件数分别是350和100件,这时最大利润是3100元相差值为0代表,不需要对相应的目标系数进行改进就可以生产该产品。
最优解不变,因为C1允许增加量20-6=14;C2允许减少量为10-3=7,所有允许增加百分比和允许减少百分比之和(7.5-6)/14+(10-9)/7〈100%,所以最优解不变。
6.解:(1)x1=150,x2=70;目标函数最优值103 000。
(2)1、3车间的加工工时数已使用完;2、4车间的加工工时数没用完;没用完的加工工时数为2车间330小时,4车间15小时。
(3)50,0,200,0。
含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。
(4)3车间,因为增加的利润最大。
(5)在400到正无穷的范围内变化,最优产品的组合不变。
(6)不变,因为在[0,500]的范围内。
(7)所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条件1的右边值在[200,440]变化,对偶价格仍为50(同理解释其他约束条件)。
(1)解:min 15y1 7 y2s.t. 2 y1 4 y2 105 y1 3y1 3 y2 5y1, y2 0(2)解:max 6 y1 8y2s.t. 3y1 2 y3 35y1 y2 3 y3 24 y2 7 y3 4y1 y3 02y1 y2 5 y3 2y1 0, y 2 0, y3 无限制解:例3 原问题min z x1 x 2 x3 x4 x5 x6s.t. x1 x2 70x2 x3 60x3 x4 50x4 x5 20x5 x6 30x6 x1 60x j 0, j 1, ,6对偶问题:max 70 y1 60y2 50y3 20y4 30y560y6 s.t. y1 y6 1y1 y2 1y2 y3 1y3 y4 1y4 x5 1y5 y6 1y j 0, j 1, ,6(1)由最优单纯形表可以知道原问题求max 其初始基变量为 x 4, x 5,最优基的逆阵为- - ca -3 a 23 06 3解:由P32式()()()可知bB -b,PB 4,jcjC BP j, j -,,5,其中b和 P j都是初始数据。
设bb - ,P j aj-,jI,5,C c -, C 2, C 3,贝Ub 2aj231 21 6 bb 2b 21 - 31-5-25-P23aa2aaaa 1'bB1a1222322a1 - 32 2a1- 2 1- 231 1C2 C3 2C1厶1 1C3 G 42 61C 23j C j C B P j所以原问题为:4, 4, 2 C2,0,04c2 2,解得c310G 6C3, C11,即max z 6x1 2x210x3st .X2 2x33x1 X2 X3510 X1, X2,X3min 5y1 10y2st. 3y2 6y y2 22y1 y2 10y1, y2 0对偶问题为:(2)由于对偶问题的最优解为Y* C IBIB C4,C54,2解:b 1 901 00,即 b 04 1 904b 1 90 解得0 045,所以b 1的可变范围2b 1。
(1)解:min 15y1 7 y2s.t. 2 y1 4 y2 105 y1 3y1 3 y2 5y1, y2 0(2)解:max 6 y1 8y2s.t. 3y1 2 y3 35y1 y2 3 y3 24 y2 7 y3 4y1 y3 02y1 y2 5 y3 2y1 0, y 2 0, y3 无限制解:例3 原问题min z x1 x 2 x3 x4 x5 x6s.t. x1 x2 70x2 x3 60x3 x4 50x4 x5 20x5 x6 30x6 x1 60x j 0, j 1, ,6对偶问题:max 70 y1 60y2 50y3 20y4 30y560y6 s.t. y1 y6 1y1 y2 1y2 y3 1y3 y4 1y4 x5 1y5 y6 1y j 0, j 1, ,6(1)由最优单纯形表可以知道原问题求max 其初始基变量为 x 4, x 5,最优基的逆阵为- - ca -3 a 23 06 3解:由P32式()()()可知bB -b,PB 4,jcjC BP j, j -,,5,其中b和 P j都是初始数据。
设bb - ,P j aj-,jI,5,C c -, C 2, C 3,贝Ub 2aj231 21 6 bb 2b 21 - 31-5-25-P23aa2aaaa 1'bB1a1222322a1 - 32 2a1- 2 1- 231 1C2 C3 2C1厶1 1C3 G 42 61C 23j C j C B P j所以原问题为:4, 4, 2 C2,0,04c2 2,解得c310G 6C3, C11,即max z 6x1 2x210x3st .X2 2x33x1 X2 X3510 X1, X2,X3min 5y1 10y2st. 3y2 6y y2 22y1 y2 10y1, y2 0对偶问题为:(2)由于对偶问题的最优解为Y* C IBIB C4,C54,2解:b 1 901 00,即 b 04 1 904b 1 90 解得0 045,所以b 1的可变范围2b 1。