磁致伸缩材料应用共24页
- 格式:ppt
- 大小:2.22 MB
- 文档页数:24
稀土超磁致伸缩材料在居里点温度以下时,铁磁材料和亚铁磁材料由于磁化状态的改变,其长度和体积会发生微小的变化,这种现象称之为磁致伸缩效应,长度的变化是1842年由焦耳发现致伸缩材料是近期发展起来的一种新型稀土功能材料。
它具有电磁能与机械能或声能相互转换功能。
“稀土超磁致伸缩材料”是当今世界最新型的磁致缩功能材料,是一种高效的Tb-Dy-Fe 合金。
它在低磁场驱动下产生的应变值高达1500—2000ppm,是传统的磁致伸缩材料如压电陶瓷的5—8 倍、镍基材料的40—50 倍,因此被称之为“超磁致伸缩材料”。
“稀土超磁致伸缩材料”产生的应力大、能量密度高,可瞬间响应,并且具有可靠性高、居里温度高等优点,而且还是一种环保型材料;其所具有的卓越的电磁能与机械能或声能转换性能,是传统的磁致伸缩材料所无法比拟的。
“稀土超磁致伸缩材料”可广泛应用于众多行业的科学研究与生产制造领域,从军工、航空、海洋船舶、石油地质,到汽车、电子、光学仪器、机械制造,再到办公设备、家用电器、医疗器械与食品工业,无处没有它大显身手的机会。
在国防、航空航天和高技术领域:如声纳与水声对抗换能器、线性马达、微位移驱动(如飞机机翼和机器人的自动调控系统)、噪声与振动控制系统、海洋勘探与水下通讯、超声技术(医疗、化工、制药、焊接等)、燃油喷射系统等领域,有广阔的应用前景。
“稀土超磁致伸缩材料”对生产技术与生产工艺的要求极高,目前只有少数几个国家的个别企业能够生产。
由三个组元组成(Tbl -xDyx)Fey(X=0.27~0.40,Y=1.90~2.0)在较低磁场下具有很高磁致伸缩应变λ的合金,如Tbo0.3Dy0.7Fe1.95 首先于20 世纪70 年代初由美国海军表面武器实验室的A.C.Clark 博士等人发明,当即他们申请了美国专利。
美国海军表面武器实验室于1987 年将该专利技术转让给美国阿依华州 A mes 市的前沿技术公司创建了专门生产稀土超磁致伸缩材料的E trema INC 分公司。
二谈电致、磁致伸缩材料功能及应用一、电致伸缩材料在外电场作用下电介质所产生的与场强二次方成正比的应变,称为电致伸缩。
这种效应是由电场中电介质的极化所引起,并可以发生在所有的电介质中。
其特征是应变的正负与外电场方向无关。
在压电体中(见压电性),外电场还可以引起另一种类型的应变;其大小与场强成比例,当外场反向时应变正负亦反号。
后者是压电效应的逆效应,不是电致伸缩。
外电场所引起的压电体的总应变为逆压电效应与电致伸缩效应之和。
对于非压电体,外电场只引起电致伸缩应变。
电介质在电场作用下发生弹性形变的现象。
是压电效应的逆效应。
因电介质分子在电场中发生极化,沿电场方向排列的分子相互吸引而引起。
当场强大小发生周期性变化时,能引起材料沿电场方向发生振动。
若在电介质材料(如钛酸钡等)两端所加交变电压的频率与材料的固有频率相同时,材料将发生共振。
(1)电致伸缩效应与压电效应电致伸缩效应也是一种基本的机—电耦合效应,但是对它的实研究开展得较迟,因为电致伸缩是个二次效应,通常由其产生的形变非常小,给实验带来了困难,因此人们对它不太熟悉。
众所周知,电介质晶体在外电场作用下应变与电场的一般关系式=⋅+⋅⋅式中,第一项表示逆压电效应;d为压电系为: S d E M E E数,第二项表示电致伸缩效应;M为电极伸缩系数,它是由电场诱导极化而引起的形变与电场平方成正比。
逆压电效应仅在无对称中心晶体中才有;而电致伸缩效应则为所有电介质晶体都有,不过一般说来它是很微弱的。
压电单晶如石英、罗息盐等它们的压电系数比电致伸缩系数大几个数量级,结果在低于IMV/m的电场作用下只看到第一项的作用,即表现为压电效应。
在一般铁电陶瓷中,电致伸缩系数比压电系数大,在没有极化前虽然单个晶粒具有自发极化但它们总体不表现净的压电性。
在极化过程中净的极化强度被冻结(即剩余极化)并产生一个很强的内电场,如BaTIO。
陶瓷净的剩余极化产生一个27MV/m的内电场,这样高的内电场起了电致伸缩效应的偏压作用,因此极化后陶瓷在弱外电场作用下产生宏观线性压电效应。
磁致伸缩材料的详细说明随着现代科技的飞速发展,产品性能的不断提高,对于零加工精度的要求也越来越高。
因此,作为先进制造技术的重要组成——精密加工和超精密加工技术,已成为当前制造技术的研究热点和重要发展方向之一。
微位移驱动器作为精密、超精密加工中微定位、微进给系统的核心,其性能指标的好坏,将直接影响加工产品的质量。
近年来,超磁致伸缩材料(giant magnetostrictive material,简写为GMM)作为一种新型高效的电(磁)能—机械能转换材料在微位移驱动领域的应用正越来越得到关注。
GMM是指三元稀土铁系化合物(一般地,x=0.3,y=1.95),国外产品牌号为Terfenol-D。
它在室温和低磁场下能产生很大的磁致伸缩应变,其磁致伸缩系数λ最大可达,磁机耦合系数大于0.6。
同时,该材料还具有快的响应速度(达到μs级)、很强的带载能力及低的磁致伸缩各向异性等优点。
在利用超过磁致伸缩材料的磁致伸缩效应开发的超磁致伸缩驱动器(giant magnetostrictive actuator,GMA)具有输出力大、输出位移大、响应速度快、控制电压低、结构简单、体积小等优点,在精密、超精密加工领域有着广阔的应用前景。
1 超磁致伸缩材料厂驱动器的结构与工作原理1.1超磁致伸缩材料的磁一机本构方程对于超磁致伸缩材料,选择磁场强度H、温度T、应力σ作为独立变量,磁感应强度B、应变ε作为因变量,可得相应的磁一体本构方程:(1)式中:S是恒磁场、恒温下的弹性柔顺系数矩阵;D是恒应力、恒温下磁致伸缩应变系数矩阵,下标t表示矩阵的转秩;α是恒磁场、恒应力下的热膨胀系数矩阵;p是恒磁场、恒应力下的热转换系数矩阵;μ是恒应力、恒温下的磁导率系数矩阵。
对中、小功率超磁致伸缩微位移驱动器而言,一般采用其轴向磁致伸缩方程,若忽略各类能量损失且控制GMM棒工作于恒温状态(即)时,式(1)矢量式就变成标量形式:(2)式中,和分别为GMM棒轴向的应变、柔顺系数、应力、动态磁致伸缩系数、磁场强度、磁感应强度和磁导率。
超磁致伸缩材料及其应用磁致伸缩材料所谓磁致伸缩是铁磁物质(磁性材料)由于磁化状态的改变,其尺寸在各方向发生变化。
大家知道物质有热胀冷缩的现象。
除了加热外,磁场和电场也会导致物体尺寸的伸长或缩短。
铁磁性物质在外磁场作用下,其尺寸伸长(或缩短),去掉外磁场后,其又恢复原来的长度,这种现象称为磁致伸缩现象(或效应)。
超磁致伸缩超磁致伸缩材料(GMM)是一种在室温和低磁场条件下,就能产生很大磁致伸缩应变的新型功能材料,超磁致伸缩材料(giant magnetostrietive material,简写为GMM)是A.E.Clark等人于70年代发现的,是一种新型的功能材料,它能有效地实现电能与机械能的相互转换。
具有应变值大、电能一机械能转换效率高、能量传输密度大、高响应速度等特点,可应用于声纳、超声器件、微位移控制、机器人、流体器件中。
磁致伸缩器件由于其独特的功能优势在许多危险工作条件和高温环境下性能出众,并且能够在低频磁场下调节应力和位移。
相对于电致伸缩材料和压电陶瓷,磁致伸缩材料的优势在于其优越的力学性能和热鲁棒性,而相对于形状记忆合金,更具有应变大,带宽广和磁滞损耗低等优点。
这些性能优势有利于开发研制传感器和制动器,甚至二者的结合体,例如需要精密的自传感制动器。
应用具有输出力大、能量密度高、机电耦合系数大、响应速度快、输出应变大等优点,在智能系统中具有广泛的应用前景,其力学响应行为涉及变形场、磁场、涡流场、温度场相互耦合问题,直接关系到智能系统的性能指标和可靠运行。
目前人们已经设计并制造出各种智能结构和器件,如:主动减振装置、高精度线性马达、超磁致伸缩微泵、微阀门、微定位装置等等,使得磁致伸缩材料在众多的功能材料中备受瞩目。
由于超磁致伸缩材料, 在磁场作用下长度发生变化, 发生位移而做功; 在交变磁场作用下, 发生反复伸张与缩短, 从而产生振动或声波, 将电磁能( 或电磁信号) 转换成机械能或声能( 或机械位移信息, 或声信息), 相反也可以将机械能( 或机械位移与信息) 转换成电磁能( 或电磁信息), 这样可以制成功率电- 声换能器、电- 机换能器、驱动器、传感器和电子器件等, 广泛应用于海洋、地质、航空航天、运输、加工制造、医学、计算机、机器人、仪器、电子及民品等技术领域。
新型磁致伸缩材料的传感技术及其生物检测应用新型磁致伸缩材料的传感技术及其生物检测应用随着科技的不断发展,新型磁致伸缩材料的传感技术在生物检测领域中扮演着越来越重要的角色。
本文将从简单到深入的角度,探讨新型磁致伸缩材料的原理和应用,以及它在生物检测领域中的潜在价值。
1. 介绍新型磁致伸缩材料新型磁致伸缩材料是一种能够在外加磁场作用下产生形变的材料。
它具有高灵敏度、快速响应和可控性强的特点,被广泛应用于传感器、致动器、医疗器械等领域。
其原理是基于磁致伸缩效应,即在外加磁场的作用下,材料表现出线性的磁致伸缩变化。
2. 新型磁致伸缩材料在传感技术中的应用在传感技术领域,新型磁致伸缩材料可以被用于制造高精度的传感器。
通过测量材料在外加磁场下的形变,可以实现对力、压力、应变等物理量的高灵敏度测量。
这种传感技术在工业自动化、航空航天等领域有着重要的应用,能够提高系统的控制精度和稳定性。
3. 新型磁致伸缩材料在生物检测中的应用除了传感技术领域,新型磁致伸缩材料还具有巨大的潜在价值在生物检测中的应用。
利用其高灵敏度和快速响应特点,可以制备高灵敏的生物传感器。
这些生物传感器可以用于检测生物标志物、病原体等,具有快速、准确、无损伤的特点,对于临床诊断、食品安全等方面具有重要意义。
4. 个人观点和理解在我看来,新型磁致伸缩材料的传感技术及其生物检测应用是一个富有前景的研究领域。
随着科技的不断进步,相信它将在生物医学领域中发挥越来越重要的作用,为人类健康和生活质量的提高做出更大的贡献。
总结回顾通过本文的探讨,我们对新型磁致伸缩材料的传感技术及其生物检测应用有了更深入的了解。
这种材料的高灵敏度、快速响应和可控性强的特点,使其在传感技术和生物检测领域具有重要的应用前景。
我们对于其在未来的发展充满期待,相信它将为生物医学领域带来更多的突破和创新。
在文章中,我们多次提及了新型磁致伸缩材料的传感技术及其生物检测应用,希望能够帮助你更全面、深刻和灵活地理解这一主题。