上海2016年第一学期南模教育集团预初年级质量监控考试数学学科试卷(含答案)
- 格式:pdf
- 大小:235.75 KB
- 文档页数:13
2016年中考数学模拟试题(4)时间120分钟满分150分2015.8.24一、选择题:(每小题 4分,共24分)1.下列各式中与(﹣a2)3相等的是()A.a5 B.a6 C.﹣a5 D.﹣a62.下列方程中,有实数解的是()A.=﹣1 B.=﹣x C.=0 D.=03.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2 B.y=(x﹣3)2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣24.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例5.在四边形ABCD中,AB=AD,AC平分∠DAB,AC与BD相交于点O,要使四边形ABCD是菱形,那么还需满足下列条件中的()A.CD=CB B.OB=OD C.OA=OC D.AC⊥BD6.如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二、填空题:(每小题4分,共48分)7.计算:+40= .8.使代数式有意义的实数x的取值范围为.9.如果方程x2﹣3x+m=0有两个相等的实数根,那么m的值是.10.布袋中有两个红球和两个白球除了颜色外其他都相同,从中摸出两个球,那么摸到一红一白两球概率为.11.如果抛物线y=(a+3)x2﹣5不经过第一象限,那么a的取值范围是.12.已知二次函数的图象经过点(1,3),对称轴为直线x=﹣1,由此可知这个二次函数的图象一定经过除点(1,3)外的另一点,这点的坐标是.13.如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于.14.已知点G是面积为27cm2的△ABC的重心,那么△AGC的面积等于.15.已知在△ABC中,AD是边BC上的中线.设=,=.那么= .(用向量、的式子表示).16.在Rt△ABC中,∠C=90°,点D是AB的中点,如果BC=3,CD=2,那么cos∠DCB= .17.已知不等臂跷跷板AB长为3米,当AB的一端点A碰到地面时(如图1),AB与地面的夹角为30°;当AB的另一端点B碰到地面时(如图2),AB与地面的夹角的正弦值为,那么跷跷板AB的支撑点O到地面的距离OH= 米.18.把一个三角形绕其中一个顶点逆时针旋转并放大或缩小(这个顶点不变),我们把这样的三角形运动称为三角形的T﹣变换,这个顶点称为T﹣变换中心,旋转角称为T﹣变换角,三角形与原三角形的对应边乊比称为T﹣变换比;已知△ABC在直角坐标平面内,点A(0,﹣1),B(﹣,2),C(0,2),将△ABC迚行T﹣变换,T﹣变换中心为点A,T﹣变换角为60°,T﹣变换比为,那么经过T﹣变换后点C所对应的点的坐标为.三、解答题:(本大题共78分)19.化简:+,并求当x=时的值.20.解方程组:.21.已知直线x=m(m>0)与双曲线y=和直线y=﹣x﹣2分别相交于点A、B,且AB=7,求m的值.22.如图,某幢大楼的外墙边上竖直安装着一根旗杆CD,小明在离旗杆下方大楼底部E点24米的点A处放置一台测角仪,测角仪的高度AB为1.5米,并在点B处测得旗杆下端C的仰角为40°,上端D的仰角为45°,求旗杆CD的长度;(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)23.已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.24.已知在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点(1,﹣3)和点(﹣1,5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交y轴于点C,其纵坐标为m,请用m的代数式表示平移后函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点P的坐标为(2,3),CM平分∠PCO,求m的值.25.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.参考答案一、选择题:1.故选D.2.故选C.3.故选A.4.故选:B.5.故选:C.6.故选B.二、填空题:7。
虹口区2016学年度第一学期初三年级数学学科期终教学质量监控测试题(满分150分,考试时间100分钟) 2017.1考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) [下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.] 1.下列二次函数解析式中,其图像与y 轴的交点在x 轴下方的是A .23y x =+ ; B .23y x =- ; C .23y x =-+; D .2y x =. 2.关于二次函数221y x =-+的图像,下列说法中,正确的是A .开口向上;B .对称轴是直线1x =;C .有最高点(0,1);D .是中心对称图形. 3.在Rt ABC ∆中,90A ∠=︒,5AC =,12AB =,那么sin B 的值是A .125 ; B .512; C .1312; D .135. 4.若a 、b 均为非零向量,且a ∥b,则在下列结论中,一定正确的是A .(0)a mb m =≠; B .a b =± ; C .a b = ; D .a b =- .5.如图,分别以下列选项作为一个已知条件,其中不一定...能得到△AOB ∽△COD 的是 A .∠BAC =∠BDC ; B .∠ABD =∠ACD ; C .AO DO COBO=; D .AO OD OBCO=.6.如图,已知EF ∥CD ,DE ∥BC ,下列结论中,不一定...正确是 A .AF AD ADAB=; B .AE AF ADAC=; C .DE EF BCCD=; D .AB AC ADAE=.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.实数2与0.5的比例中项是 ▲ .8.抛物线22(1)3y x =-+的顶点坐标为 ▲ .9.将抛物线22y x =-向右平移4个单位,再向上平移3个单位得到的抛物线表达式是 ▲ .10.已知向量a r 、b r 、x r 满足关系式3()20a x b --=r r rr ,那么用向量a r 、b r 表示向量x r = ▲ .11.已知:2sin(15)α+= α= ▲ .A 第6题图BC DEFA B C O D 第5题图CO第12题图DBA12.如图,若3AD AO =,则当:CO BO 的值为 ▲ 时,有AB ∥CD 成立.13.如果△ABC 的三边长分别为3、4、5,与其相似的△A ’B ’C ’的最长边为15,那么△A ’B ’C ’的周长▲ .14.如图,在△ABC 中, BC=3,点G 是△ABC 的重心,如果DG ∥BC ,那么DG= ▲ . 15.如图,某商场开业,要为一段楼梯铺上红地毯,已知楼梯高AB =6m ,坡面AC 的坡度41:3i =,则至少需要红地毯 ▲ m .16.已知点()11A y -,、()2B y 2,与()3C y 4,是抛物线上223y x x =-++的三点,则1y 、2y 、3y 的大小是 ▲ .(用“﹤”连接)17.如图,在Rt △ABC 中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为 ▲ .18.已知△ABC 中,AB AC m ==,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC 交AB于2B ,作23B B 平分21AB B ∠交AC 于3B ,过3B 作34//B B BC 交AB 于4B ,则线段34B B 的长度为 ▲ .(用含有m 的代数式表示)三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:2cos 45tan 60tan 30cos60︒+︒︒⋅︒. 20.(本题满分10分,第(1)小题满分6分,第(2已知二次函数215322y x x =-+-.(1(2)在平面直角坐标系中画出该函数的大致图像.AB C第15题图CG第14题图DBAC 第18题图 B 1 B AB 2 B 3 B 4 第17题图第23题图21.(本题满分10分)已知:如图,AB =AC ,∠DAE =∠B .求证:△ABE ∽△DCA .22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)如图是某货站传送货物的平面示意图, AD 与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°, 因此传送带的落地点由点B 到点C 向前移动了2米.(1)求点A 与地面的高度;(2)如果需要在货物着地点C 的左侧留出2米,那么请判断距离D 点14米的货物Ⅱ是否需要挪走,并说明理由.(参考数据:sin37°取0.6,cos37°取0.8,tan37°取0.75 1.73)23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在Rt ACB △中,90ACB ∠=°,点D 在边AB 上,DE 平分CDB ∠交边BC 于点E ,EM 是线段BD 的垂直平分线.(1)求证:CD BEBC BD =; (2)若410cos 5AB B ==,,求CD 的长.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(1)小题满分5分)如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过(0,3)A ,(1,0)B 两点,顶点为M . (1)求b 、c 的值;(2)将OAB △绕点B 顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿y 轴上下平移后经过点C ,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与y 轴的交点为1A ,顶点为1M ,若点P 在平移后的抛物线上,且满足△1PMM 的面积是△1PAA 面积的3倍,求点P 的坐标.A B D E C 第21题图第22题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,已知梯形ABCD ,AD ∥BC ,AB =AD =5,3tan 4DBC ∠=.E 为射线BD 上一动点,过点E 作EF ∥DC 交射线BC 于点F .联结EC ,设BE = x ,ECF BDC Sy S ∆∆=.(1)求BD 的长;(2)当点E 在线段BD 上时,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)联结DF ,若△BDF 与△BDA 相似,试求BF 的长.虹口区2011学年第一学期初三年级数学学科期终教学质量监控测试卷参考答案及评分建议2012.1说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;5.评分时,给分或扣分均以1分为基本单位.BC E 第25题图 A DB C A D 备用图一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.C ; 3.D ; 4.A ; 5.C ; 6.B .二、填空题:(本大题共12题,每题4分,满分48分)7. 1± ; 8. (1,3) ; 9. 2(4)1y x =-+ ;10.23a b -; 11.45° ; 12.2 ;13.36 ; 14.1 ; 15.14 ;16.312y y y <<; 17.76; 18. 312m ⎛⎫- ⎪⎝⎭2m -)三、解答题(本大题共7题,满分78分)19.(本题满分10分)24分)=4分)=2分) 20.(本题满分10分)解:(1)经配方得:2322y x =--+1()…………………………………………………(2分) ∴顶点坐标为(3,2),对称轴为直线3x =,………………………………(2分,2分) (2)画图正确.…………………………………………………………………………(4分) 21.(本题满分10分) 证明:∵AB =AC ,∴B C ∠=∠.……………………………………………………………………(3分) ∵BAE BAD D AE ∠=∠+∠,CDA BAD B ∠=∠+∠, 又DAE B ∠=∠,∴BAE CDA ∠=∠.……………………………………………………………(5分) 又∵B C ∠=∠,∴△ABE ∽△DCA .……………………………………………………………(2分)22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分) 解:(1)作AE ⊥BC 于点E , ……………………………………………………(1分)设AE x =,在Rt △ACE 中,4cot 3CE AE ACE x =⋅∠=,……………………………………(1分) 在Rt △ABE 中, cot BE AE ABE x =⋅∠=,……………………………………(1分)∵BC=CE-BE ,423x x -= 解得6x =.………………………………………………………(2分) 答:点A 与地面的高度为6米.……………………………………………………(1分) (2)结论:货物Ⅱ不用挪走. ………………………………………………………(1分)在Rt △ADE 中,cot 6ED AE ADE =⋅∠== ……………………(1分) c o t 8C E A E A C E =⋅∠=…………………………………………………………(1分)∴CD=CE+ED =811.46+≈1411.46 2.542-=>……………………………………………………………(1分) ∴货物Ⅱ不用挪走.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) (1)证明:∵EM 是线段BD 的垂直平分线, ∴ED =EB ,∴∠EDB =∠B .∵DE 平分CDB ∠, ∴∠CDE =∠EDB .∴∠CDE =∠B .……………………………………………………………(2分) 又∵∠DCE =∠BCD , ∴△CDE ∽△CBD .………………………………(1分)∴CD DEBC BD=, 又由ED =EB , 得CD BEBC BD=……………………………………………(2分) (2)解:∵90ACB ∠=°,410cos 5AB B ==, ∴68AC BC ==,.…………………………………………………………(1分)∵EM 是线段BD 的垂直平分线, ∴DM =BM∴2CD BE BEBC BD BM ==.………………………………………………………(2分) ∴82CD BE BM =, 即4BECD BM= …………………………………………(1分) 4cos 5BM B BE == ∴5454CD =⨯=.……………………………………(2分)24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 解:(1)已知抛物线2y x bx c =++经过(0,3)(1,0)A B ,,∴3,01.c b c =⎧⎨=++⎩ …………………………………………………………………(2分)解得4,3.b c =-⎧⎨=⎩……………………………………………………………………(1分)∴b 、c 的值分别为-4,3.(2)(0,3)A ,(1,0)B ,∴31OA OB ==,,可得旋转后C 点的坐标为(41),.……………………………………………………(2分) 当4x =时,由243y x x =-+得3y =,可知抛物线243y x x =-+过点(43),. ∴将原抛物线沿y 轴向下平移2个单位后过点C .∴平移后的抛物线解析式为:241y x x =-+.…………………………………(2分)(3) 点P 在241y x x =-+上,可设P 点坐标为2000(41)x x x -+,,将241y x x =-+配方得()223y x =--,∴其对称轴为2x =.……………(1分)113PMM PAA S S = △△ 112MM AA == ∴02x <.①当002x <<时,113PMM PAA S S = △△,∴()0011223222x x ⨯⨯-=⨯⨯⨯, ∴012x = , 此时2003414x x -+=-.∴P 点的坐标为13()24-,.…………………………………………………………(2分) ②当00x <时,同理可得()00112232()22x x ⨯⨯-=⨯⨯⨯-,∴01x =- , 此时200416x x -+=.∴点P 的坐标为(16)-,.……………………………………………………………(2分) 综上述,可知:点P 的坐标为13()24-,或(16)-,. 25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 解:(1)过点A 作AH ⊥BD 于点H ,∵AD ∥BC ,AB =AD =5∴∠ABD =∠ADB=∠DBC , BH =HD ……………………………………………(1分) 在Rt △ABH 中,∵3tan tan 4ABD DBC ∠=∠=, ∴4cos 5BH ABD AB ∠==…………………………………………………………(1分) ∴BH=DH=4, ……………………………………………………………………(1分) ∴BD =8 ……………………………………………………………………………(1分)(2)∵EF ∥DC ∴8FC DE xBF BE x-==, ∵△EFC 与△EFB 同高,∴8EFC EFB S FC xS BF x∆∆-==…………………………………(2分) 由EF ∥DC 可得:△FEB ∽△CDB∴222()()864FEB CDB S BE x x S BD ∆∆===……………………………………………………(1分) ∴2281164648EFC EFC EFB BDC EFB BDC S S S x x y x x S S S x ∆∆∆∆∆∆-==⋅=⋅=-+,(08)x <<……(2分,1分)(3)∵AD ∥BC ∴∠ADB=∠DBC , ∵△BDF 与△BDA 相似 ①∠BFD=∠A ,可证四边形ABFD 是平行四边形∴BF =AD=5.…………………………………………………………………………(2分) ②∠BFD=∠ABD ,∴DB=DF.可求得:BF=645.……………………………………………………………………(2分)综上所述,当△BDF与△BDA相似时,BF的长为5或645.。
静安区2016学年第一学期期末教学质量教研九年级数学试卷 2017.01(完成时间:100分钟,满分:150分)一、选择题: 1.等于)0(21>-a a( )A.aB.a -C.a a D.aa - 2.下列多项式中,在实数范围不能分解因式的是( )A.y x y x 2222+++B.2222-++xy y xC.y x y x 4422++-D.4422-+-y y x 3.在ABC ∆中,点D 、E 分别在边AB 、AC 上,21=BD AD ,要使DE//BC,还要满足下列条件 中的( ) A.21=BC DE B.31=BC DE C.21=AC AE D.31=AC AE 4.在ABC Rt ∆中,,90=∠C 如果m AB =,,α=∠A 那么AC 的长为( )A.αsin ⋅mB.αcos ⋅mC.αtan m ⋅D.αcot ⋅m 5.如果锐角α的正弦值为33,那么下列结论中正确的是( ) A.30=α B.60=α C.30<α<45 D.6045<<α6.将抛物线12-=ax y 平移后与抛物线2)1(-=x a y 重合,抛物线12-=ax y 上的点A(2,3)同时平移到点'A ,那么点'A 的坐标为( )A.(3,4)B.(1,2)C.(3,2)D.(1,4) 二、选择题:7. 16的平方根是_________. 8. 如果代数式23+-x x 有意义,那么x 的取值范围为___________. 9. 方程112152=-+--x x x 的根为___________. 10. 如果一次函数()23-+-=m x m y 的图像经过第三、四象限,那么常数m 的取值范围为_________.11. 二次函数1082+-=x x y 的图像的顶点坐标是________.12. 如果)4,1(-A 、)4,(m B 在抛物线h x a y +-=2)1(上,那么m 的值为_________.13. 如果DEF ABC ∆∆∽,且A B C ∆与DEF ∆相似比为4:1,那么ABC ∆与DEF ∆面积比为_________.14. 在ABC ∆中,如果10==AC AB ,54cos =B ,那么ABC ∆的重心到底边的距离为________. 15. 已知在ABCD 中,点E 是边BC 的中点,DE 与AC 相交于点F ,设−→−−→−=a AB ,−→−−→−=b BC ,那么._______=−→−FD16. 在ABC ∆,点E D 、分别在AC AB 、上,ABC ADE ∆∆∽,如果3654====AD AC BC AB ,,,,那么ADE ∆的周长为_________.17. 如图,在ABC ∆,点E D 、分别在边AC AB 、上,BC DE //,CED BDC ∠=∠,如果64==CD DE ,,那么AE AD :等于__________.18.一张直角三角形纸片ABC,90=∠C ,AB=24,tanB=32(如图),将它折叠使直角顶点C 与斜边AB 的中点重合,那么折痕的长为。
DBE FD B ECA 2015-2016学年第一学期徐汇区学习能力诊断卷数学一、选择题1. 下列两个图形一定相似的是( )A.两个菱形;B.两个矩形;C.两个正方形;D.两个等腰梯形.2. 如图1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )A.;B.;C.;D..3. 将抛物线向右平移2个单位,再向上平移2个单位后所得的抛物线的表达式是() A.;B.;C.;D.4. 点G 是△ABC 的重心,如果AB=AC=5,BC=8,那么AG 的长是()A.1;B.2;C.3;D.4.5. 如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向;B.南偏西60°方向;C.南偏东30°方向;D.南偏东60°方向.6. 如图2,梯形ABCD 中,AD ∥BC ,∠DAC =90°,AB=AC ,点E 是边AB 上一点,∠ECD =45°,那么下列结论错误的是( )A.∠AED=∠ECB ;B. ∠ADE=∠ACE ;C.BE=AD ;D.BC=CE.一、 填空题7. 计算:=______________; 8. 如果,那么=__________;9. 已知二次函数,如果y 随x 的增大而增大,那么x 的取值范围是_________; 10. 如果两个相似三角形的面积比是4:9,那么它们对应高的比是_____________; 11. 如图3所示,一皮带轮的坡比是1:2.4,如果将货物从地面用皮带轮送到离地10米高的平台,那么该货物经过的路程是_______米;12. 已知点M (1,4)在抛物线上,如果点N 和点M 关于该抛物线的对称轴对称,那么点N 的坐标是__________;图1图2图3FECDABEADABA E DFE DED 13. 点D 在△ABC 的边AB 上,AC=3,AB =4,∠ACD=∠B ,那么AD 的长是__________; 14. 如图4,在平行四边形ABCD 中,AB=6,AD =4,∠BAD 的平分线AE 分别交BD 、CD 于F 、E ,那么=________;15. 如图5,在△ABC 中,AH ⊥BC 于H ,正方形DEFG 内接于△ABC ,点D 、E 分别在边AB 、AC 上,点G 、F 在边BC 上,如果BC=20,正方形DEFG 的面积为25,那么AH 的长是________;16. 如图6,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,tan ∠ACD =,AB=5,那么CD 的长是_________; 17. 如图7,在梯形ABCD 中,AD ∥BC ,BC=2AD ,点E 是CD 的中点,AC 和BE 交于点F ,那么△ABF 和△CEF的面积比是___________;18. 如图8,在Rt △ABC 中,∠BAC=90°,AB=3,cosB=,将△ABC 绕着点A 旋转得△ADE ,点B 的对应点D落在边BC 上,联结CE ,那么CE 的长是________. 二、 解答题19. 计算:4sin45°-2tan30°cos30°+ 20. 抛物线经过点(2,1). (1) 求抛物线的顶点坐标;(2) 将抛物线沿y 轴向下平移后,所得新抛物线和x 轴交于A 、B 两点,如果AB =2,求新抛物线的表达式。
2016年上海各区县一模数学第18题汇编(含分析)例2016年上海市崇明县中考一模第18题如图I.等边•二角形中,。
是8r边上的一点,E BD : DC= 1 :3.把AdBr折都使点d落在6C边上的点D处,那么_ 的佗为如图2,因为/A/Z>C=/B+/l=6(r +/1, NA/DC=/A/PN+/2=6(r +/2, 所以Nl = /2.又因为NE = NC=6(r ,所以△MBD S ADCN.由3 DM 413/向周长TB + BD所以 --- = -------------- = ----------ND △ZXW的周长JC+DC如图3,设等边三角形ABC的边长为4, "1BD :。
「=1 :3时,—=—AM ND 4 + 3 7图图例 2016年上海市奉贤区中考一模第18题如图1.已知平行四边形,45。
[)中,.48:2/,,3=6.8由='.将边绕点」旋*)转,使得点B 落在平行四边形ABCD 的边上,其对应点为F (点£不与点S 瓯合),那么 sin ZC-fB r = .如图2.在Rtzk/HE 中,由T5=2,7, covB- 1 .可得2E=3 .正=4.在RlA/fCE 中,由.dE=4. CE=BC-BE=6-2-4.可得/C= 4应.乙4CE75 .①如图3,当点用在灰:,边上时,B 任=BE=2.在等腰直角—.用形中,B fC=2.所以8H=CH=J 三. 管1△ABH R'H= JI, AH=AC-CH = 372 .所以-虫?'=26.此时向“用=型=£=巫. AB' 2V5 10②如图4.当点?在HD 边上时,ZCJ5r=45 .此时sin/CH3=^. ?图12016年上海市虹口区中考一模第18题如图1,在矩形JBCD中,.48=6,初=10,点E是SC的中点,联结HE.若将&4的沿HE翻折,点8落在点广处,联结FC.贝iJco$NECF= __________ .B E图I如图2.由EB=EC=EF.可知N3尸C=90 .又因为.在戊直平分BF.所以NRO£=90° .所以如O/JE所以NECF=N8E4.在R【ZLd%?I。
{冲刺 17 年自主招生之 2016 年南模自招数学试卷一、填空题(每题5 分)1、已知 x 2 + y 2 = 25,x + y = 7 ,则x - y = . 解析: (x + y )2= 49 ⇒ xy = 12 ⇒ ( x - y )2= 1 ⇒ x - y = ±1.2、一堆水果因长期放置,含水量从 97% 下降至 96% ,那么这堆水果的总重量下降了%.解析:设总重量原有 x ,现有 y ,则减少量为97%x - 96% y = x - y ⇒ 3x = 4 y ,所以下降了x - y= 25%. y3+ x <2 x +a 3、已知不等式组x -a <0无解,则a 的取值范围是解析:不等式组解得3 - a < x < a ,由无解得3 - a ≥ a ⇒ a ≤ 3 .24=.解析:由题意得 a < 0 ,易有化简得1-x 2 + x +1 2x 2 + x + 4 : .5、方程: x 2+ 3+ = 3 的解为x 2 + x +1x 2 + x +1 x 2 + x +1+ x 2 + 3 x 2 + x +1 x 2 + 3解析:方程变换为:+ = 3 ⇒ + = 2 , 设 x 2 + 3 x 2 + x +1 x 2 + 3 x 2 + x +1x 2 + x +1 x 2 + 3= A ,则 A + 1 = 2 ⇒ A = 1 ⇒ x 2 + x +1 = x 2 + 3 ⇒ x = 2. A2 26、如图已知等腰梯形 ABCD 中, AD ∥ BC ,AD = 2 ,BC = 8,E 为 AB 中点,且ED ⊥ C D ,则梯形的面积为解析:辅助线如右图,易得CH = 3,FH = 7 ,由射影有 DH 2 = CH + FH ,所以 DH = 21 ,面积为5 21.7、当 -1≤ x ≤ 2 时,二次函数 y = ( x - m )2- m 2 +1 有最小值-1, 则实数 m 的值为解析:分类讨论,① m < -1,y min = f (-1)= -1 ⇒ m = - 3; 2②-1≤ m ≤ 2,y min = f (m ) = -1 ⇒ m = ± ⇒ m = ;③m > 2 ,y = f (2) = -1 ⇒ m = 3 (舍)。
2016年上海市各区县中考数学一模压轴题图文解析目录第二部分第18题图文解析2016年上海市崇明县中考数学一模第18题/ 12016年上海市奉贤区中考数学一模第18题/ 22016年上海市虹口区中考数学一模第18题/ 32016年上海市黄浦区中考数学一模第18题/ 42016年上海市嘉定区中考数学一模第18题/ 52016年上海市静安区青浦区中考数学一模第18题/ 62016年上海市闵行区中考数学一模第18题/ 72016年上海市浦东新区中考数学一模第17、18题/ 82016年上海市普陀区中考数学一模第18题/ 102016年上海市松江区中考数学一模第18题/ 112016年上海市徐汇区中考数学一模第18题/ 122016年上海市杨浦区中考数学一模第18题/ 132016年上海市闸北区中考数学一模第18题/ 142016年上海市长宁区金山区中考数学一模第18题/ 152016年上海市宝山区中考数学一模第18题/ 16例 2016年上海市崇明县中考一模第18题如图1,等边三角形ABC中,D是BC边上的一点,且BD∶DC=1∶3,把△ABC折叠,使点A落在BC边上的点D处,那么AMAN的值为__________.图1动感体验请打开几何画板文件名“16崇明一模18”,拖动点D在BC边上运动,可以体验到,△MBD与△DCN保持相似.答案57.思路如下:如图2,因为∠MDC=∠B+∠1=60°+∠1,∠MDC=∠MDN+∠2=60°+∠2,所以∠1=∠2.又因为∠B=∠C=60°,所以△MBD∽△DCN.所以DM MBD AB BD ND DCN AC DC+==+△的周长△的周长.如图3,设等边三角形ABC的边长为4,当BD∶DC=1∶3时,415437 AM DMAN ND+===+.图2 图3例 2016年上海市奉贤区中考一模第18题如图1,已知平行四边形ABCD 中,AB =AD =6,cot B =12,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ′(点B ′不与点B 重合),那么sin ∠CAB ′=________________.图1动感体验请打开几何画板文件名“16奉贤一模18”,可以体验到,点B 旋转以后得到的点B ′可以落在BC 边上,也可以落在AD 边上..思路如下:如图2,在Rt △ABE 中,由AB =cot B =12,可得BE =2,AE =4.在Rt △ACE 中,由AE =4,CE =BC -BE =6-2=4,可得AC =ACE =45°. ①如图3,当点B ′在BC 边上时,B ′E =BE =2.在等腰直角三角形B ′CH 中,B ′C =2,所以B ′H =CH在Rt △A B ′H ,B ′H =AH =AC -CH =AB ′=此时sin ∠CAB ′=''B HAB ==②如图4,当点B ′在AD 边上时,∠CAB ′=45°.此时sin ∠CAB ′=2.图2 图3 图4例 2016年上海市虹口区中考一模第18题如图1,在矩形ABCD 中,AB =6,AD =10,点E 是BC 的中点,联结AE ,若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC ,则cos ∠ECF =__________.图1动感体验请打开几何画板文件名“16虹口一模18”,可以体验到,FC //AE .如图2,由EB =EC =EF ,可知∠BFC =90°. 又因为AE 垂直平分BF ,所以∠BOE =90°. 所以FC //AE .所以∠ECF =∠BEA .在Rt △ABE 中,AB =6,BE =4,所以AE =cos ∠ECF =BE AE图2例 2016年上海市黄浦区中考一模第18题如图1,在梯形ABCD中,AD//BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC =90°,若AB=2,则AD的长是___________.图1动感体验请打开几何画板文件名“16黄浦一模18”,拖动点D可以改变梯形ABCD和直角三角形CDE的形状,可以体验到,△EMD∽△DNC.当DE=DC时,△EMD≌△DNC..思路如下:在Rt△AEM中,AE=1,∠EAM=45°,所以EM=AM=..由△EMD≌△DNC,得MD=NC=2EM=AD=2图2例 2016年上海市嘉定区区中考一模第18题如图1,在梯形ABCD中,AD//BC,∠ABC=90°,AB=CB,tan∠C=43.点E在CD边上运动,联结BE.如果EC=EB,那么DECD的值是_________.图1动感体验请打开几何画板文件名“16嘉定一模18”,拖动点E在CD上运动,可以体验到,点H 是BC的四等分点,当EC=EB时,EG垂直平分BC.答案13.思路如下:如图2,由AB=CB,tan∠C=43,可得DHCH=ABCH=CBCH.所以34CD CF=.如图3,当EC=EB时,EG垂直平分BC,所以E是CF的中点.所以14DE CF=.所以DECD=13.图2 图3例 2016年上海市静安区青浦区中考一模第18题如图1,将平行四边形ABCD 绕点A 旋转后,点D 落在边AB 上的点D ′,点C 落到C ′,且点C ′、B 、C 在一直线上,如果AB =13,AD =3,那么∠A 的余弦值为.图1动感体验请打开几何画板文件名“16静安青浦一模18”,拖动点D 绕着点A 旋转,可以体验到,∠1=∠2=∠3=∠4=∠保持不变(如图2).当点C ′、B 、C 在一直线上时,△C ′D ′B 是等腰三角形(如图3).答案135.思路如下: 如图3,在等腰三角形C ′D ′B 中,C ′D ′=CD =13,BD ′=13-3=10. 在Rt △C ′D ′E 中,ED ′=5,C ′D ′=13,所以cos ∠1=135.例 2016年上海市闵行区中考一模第18题将一副三角尺如图1摆放,其中在Rt △ABC 中,∠ACB =90°,∠B =60°.在Rt △EDF 中,∠EDF =90°,∠E =45°.点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C .将△EDF 绕点D 顺时针旋转角α(0°<α<60°),后得到△E ′DF ′,DE ′交AC 于点M ,DF ′交BC 于点N ,那么PMCN的值为_________.图1动感体验请打开几何画板文件名“16闵行一模18”,拖动点F ′绕着点D 旋转,可以体验到,△PDM 与△CDN 保持相似,对应边的比等于30°角的直角三角形PDC 的直角边的比..思路如下:如图2,在Rt △PCD 中,∠PCD =∠A =30°,所以3PD CD =如图3,由△PDM ∽△CDN ,得PM PD CN CD ==图2 图3例 2016年上海市浦东新区中考一模第17题若抛物线y=ax2+c与x轴交于A(m, 0)、B(n, 0)两点,与y轴交于点C(0, c),则称△ABC 为“抛物三角形”.特别地,当mnc<0时,称△ABC为“正抛物三角形”;当mnc>0时,称△ABC为“倒抛物三角形”.那么当△ABC为“倒抛物三角形”时,a、c应分别满足条件_________.动感体验请打开几何画板文件名“16浦东一模17”,拖动点C在y轴上运动,可以体验到,当点C在y轴负半轴时,△ABC为“倒抛物三角形”.答案a>0,c<0.思路如下:因为A(m, 0)、B(n, 0)两点关于y轴对称,所以mn<0.当mnc<0时,c>0,这时抛物线开口向下,所以a<0(如图1所示).当mnc>0时,c<0,这时抛物线开口向上,所以a>0(如图2所示).图1 正抛物三角形图2 倒抛物三角形例 2016年上海市浦东新区中考一模第18题在△ABC 中,AB =5,AC =4,BC =3.D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE =_________.动感体验请打开几何画板文件名“16浦东一模18”,拖动点E 在AC 上运动,可以体验到,△CDE 与△ABC 相似存在4种情况,其中有一种情况点E 与点A 重合.答案2,3625或258.思路如下:如图1,当E 为直角顶点,∠DCE =∠A 时,DA =DC ,因此E 是AC 的中点.此时CE =2. 如图2,当E 为直角顶点,∠DCE =∠B 时,CD ⊥AB .此时CE =3625.图1 图2如图3,当D 为直角顶点,∠DCE =∠A 时,DA =DC ,因此点D 在AC 的垂直平分线上, CD 是直角三角形ABC 斜边上的中线.此时CE =258. 如图4,当D 为直角顶点,∠DCE =∠B 时,点E 与点A 重合.图3 图4已知点A (3, 2)是平面直角坐标系中的一点,点B 是x 轴负半轴上一动点,联结AB ,并以AB 为边在x 轴上方作矩形ABCD ,且满足BC ∶AB =1∶2,设点C 的横坐标为a ,如果用含a 的代数式表示点D 的坐标,那么点D 的坐标是__________.动感体验请打开几何画板文件名“16普陀一模18”,可以体验到,△AFD ≌△CHB ∽△BGA .答案1(2,3)2a -.思路如下:如图1,构造矩形ABCD 的外接矩形EFGH ,那么△AFD ≌△CHB ∽△BGA . 设C (a , y ),B (b , 0),根据12CH BH CB BG AG BA ===,得1322y b a b -==-. 解得b =a +1,112y a =-.因此DF =BH =b -a =1,AF =CH =y =112a -. 于是x D =3-1=2,y D =FG =AG +AF =2+112a -=132a -.图1例 2016年上海市松江区中考一模第18题已知在△ABC中,∠C=90°,BC=3,AC=4,点D是AB边上一点,将△ABC沿着直线CD翻折,点A落在直线AB上的点A′处,则sin∠A′CD=_________.动感体验请打开几何画板文件名“16松江一模18”,拖动点D在AB上运动,可以体验到,当点A′落在直线AB上时,CD⊥AB.答案4.思路如下:5如图1,△ACD与△A′CD关于直线DC对称.如图2,当点A′落在直线AB上时,CD⊥AB.此时∠A′CD=∠ACD=∠ABC.图1 图2如图1,在Rt△ABC中,∠BAC=90°,AB=3,cos B=35,将△ABC绕着点A旋转得△ADE,点B的对应点D落在边BC上,联结CE,那么CE的长是________.图1动感体验请打开几何画板文件名“16徐汇一模18”,拖动点E绕着点A旋转,可以体验到,等腰三角形ABD与等腰三角形ACE保持相似(如图2),当点D落在BC上时,△ABD的三边比是5∶5∶6(如图3).答案245.思路如下:在Rt△ABC中,AB=3,cos B=35,所以BC=4,AC=4.如图3,在△ACE中,56ACCE=,所以62455CE AC==.例 2016年上海市杨浦区中考一模第18题如图1,已知△ABC 沿角平分线BE 所在直线翻折,点A 恰好落在BC 边的中点M 处,且AM =BE ,那么∠EBC 的正切值为_________.图1动感体验请打开几何画板文件名“16杨浦一模18”,拖动点A 运动,可以体验到,AB =AD ,点E 是BD 的三等分点,点G 是BD 的中点.答案23.思路如下:如图2,由∠1=∠2=∠3,可得AB =AD .又因为AB =MB ,M 是BC 的中点,所以AD =MB =MC .所以1BG MB DG AD ==,2BE BCDE AD==(如图3). 所以23BE BD =,12BG BD =.所以43BE BG =.当AM =BE 时,12MG BE =.此时tan ∠EBC =1223MG BE BG BG =⨯=.图2 图3如图1,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G,则CG∶GD的值为________.图1动感体验请打开几何画板文件名“16闸北一模18”,拖动点D可以改变矩形ABCD的形状,可以体验到,△ABE是等腰直角三角形保持不变,EG与E′G保持相等,当点E′与点D重合时,△CEG是等腰直角三角形.答案1如图4,当点E′与点D重合时,△CEG是等腰直角三角形,CG∶EG=1例 2016年上海市长宁区金山区中考一模第18题如图1,四边形ABCD为正方形,E为BC上一点,将正方形折叠,使点A与点E重合,折痕为MN,如果tan∠AEN=13,DC+CE=10,那么△ANE的面积为_________.图1动感体验请打开几何画板文件名“16长宁金山一模18”,可以体验到,根据对称性,∠AEN=∠EAN,AN=EN.答案103.思路如下:如图2,根据对称性,∠AEN=∠EAN,当tan∠AEN=tan∠EAN=13,设BE=m,那么正方形的边长为3m.当DC+CE=10时,2m+3m=10.解得m=2.设AN=EN=n,在Rt△BEN中,由勾股定理,得n2=(6-n)2+22.解得n=103.所以S△ANE=12AN BE=103.图2如图1,抛物线y=x2-2x-3交x轴于A、B两点,交y轴于点C,M是抛物线的顶点.现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为_____________(面积单位).图1动感体验请打开几何画板文件名“16宝山一模18”,拖动点M ′上下运动,可以体验到,夹在两条抛物线之间的竖直线段的长与MM′保持相等,因此曲线CMB在平移过程中扫过的面积等于平行四边形CMM ′C′和平行四边形BMM ′B′的和.答案9.思路如下:由y=x2-2x-3=(x+1)(x-3),得A(-1, 0),B(3, 0),C(0,-3).如图3,当CC′=3时,S平行四边形CMM ′C′+S平行四边形BMM ′B′=MM ′×OB=9.。
黄浦区2015学年度第一学期九年级期终调研测试数 学 试 卷 2016年1月(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果两个相似三角形的周长比为1∶4,那么这两个三角形的相似比为( ▲ )(A )1∶2; (B )1∶4; (C )1∶8; (D )1∶16.2.已知线段a 、b 、c ,其中c 是b a 、的比例中项,若cm a 9=,cm b 4=,则线段c 长( ▲ )(A )18cm ; (B )5cm ; (C )6cm ; (D )6cm ±. 3.如果向量a 与向量b 方向相反,且3a b =,那么向量a 用向量b 表示为( ▲ )(A )3a b =; (B )3a b =-;(C )13a b =; (D )13a b =-.4.在直角坐标平面内有一点P (3,4),OP 与x 轴正半轴的夹角为α,下列结论正确的是( ▲ )(A )4tan 3α=; (B )4cot 5α=; (C )3sin 5α=; (D )5cos 4α=.5.下列函数中不是二次函数的有( ▲ )(A )()1y x x =- ;(B )21y =- ; (C )2y x =- ;(D )()224y x x =+-.6.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且DCE B ∠=∠,那么下列说法中,错误的是( ▲ )(A )△ADE ∽△ABC ;(B )△ADE ∽△ACD ; (C )△ADE ∽△DCB ;(D )△DEC ∽△CDB .二、填空题:(本大题共12题,每题4分,满分48分)7.如果sin α=α= ▲ °. 8.已知线段a 、b 、c 、d ,如果23a c b d ==,那么a cb d+=+ ▲ .9.计算:()312422a b a b --+= ▲ .A B C DE 图110.在Rt △ABC 中,90C ︒∠=,AC =2,1cot 3A =,则BC = ▲ .11.如图2,已知AD 、BC 相交于点O ,AB ∥CD ∥EF ,如果CE =2,EB =4,FD =1.5,那么AD = ▲ .12.如图3,在△ABC 中,点D 是BC 边上的点,且CD =2BD ,如果AB a =,AD b =,那么BC = ▲(用含a 、b 的式子表示).13.在△ABC 中,点O 是重心,DE 经过点O 且平行于BC 交边AB 、AC 于点D 、E ,则:ADE ABC S S ∆∆= ▲ .14.如图4,在△ABC 中,D 、E 分别是边AC 、AB 上的点,且AD =2,DC =4,AE =3,EB =1,则DE :BC = ▲ .15.某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为 ▲ 米.16.如图5,AD 、BE 分别是△ABC 中BC 、AC 边上的高,AD =4,AC =6,则sin EBC ∠= ▲ .17.已知抛物线12()y a x m k =-+与22()y a x m k =++()0m ≠关于y 轴对称,我们称1y 与2y 互为“和谐抛物线”.请写出抛物线2467y x x =-++的“和谐抛物线” ▲ . 18.如图6,在梯形ABCD 中,AD ∥BC ,∠B =45°,点E 是AB 的中点,DE =DC ,∠EDC =90°,若AB =2,则AD 的长是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22tan30cos 45cot 302sin60︒︒-+︒︒.20.(本题满分10分)如图7,已知△ABC 中,点D 、E 分别在边AB 和AC 上,DE //BC ,点F 是DE 延长线上的点,AD DE BD EF=,联结FC ,若23AE AC =,求AD FC 的值.21.(本题满分10分)已知抛物线2y ax b x c =++如图8所示,请结合图像中所给信息完成以下问题:(1)求抛物线的表达式;ABCDE图5ABCDE 图6ABCD E F 图8AB C D 图3 A B C D E F 图2图4 E A B C D O(2)若该抛物线经过一次平移后过原点O ,请写出一种平移方法,并写出平移后得到的新抛物线的表达式.22.(本题满分10分) 如图9,已知四边形ABCD 的对角线AC 、BD 交于点F ,点E 是BD 上一点,且BCA ADE ∠=∠,∠CBD =∠BAE .(1)求证:ABC ∆∽AED ∆; (2)求证:AB CD AC BE ⋅=⋅.23.(本题满分12分)如图10,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O 到球心的长度为50厘米,小球在A 、B 两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C 点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE 所成的角度为30°.(6.037sin ≈︒,8.037cos ≈︒,75.037tan ≈︒)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD 这段细绳的长度. 24.(本题满分12分)在平面直角坐标系xOy 中,抛物线c ax ax y +-=32与x 轴交于)0,1(-A 、B 两点(A 点在B 点左侧),与y 轴交于点)2,0(C .(1)求抛物线的对称轴及B 点的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为BOD ∆外一点E ,若BDE ∆与ABC ∆相似,求点D 的坐标. 25.(本题满分14分)已知直线1l 、2l ,1l ∥2l ,点A 是1l 上的点,B 、C 是2l 上的点,AC ⊥BC ,∠ABC =60°,AB =4,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合.(1)如图12,当点'D 落在直线1l 上时,求DB 的长; (2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .① 如图13,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;图11OxyBCDOE图10ABCDE F图9② 若DON ∆的面积为323时,求AE 的长.黄浦区2015学年度第一学期九年级期终调研测试评分标准参考一、选择题(本大题6小题,每小题4分,满分24分) 1.B ;2.C ;3.D ;4.A ;5.D ;6.C . 二、填空题:(本大题共12题,每题4分,满分48分) 7.60; 8.23; 9.a b +; 10.6; 11.92; 12.33b a -; 13.4:9; 14.1:2; 15.26; 16.53; 17.2337444y x ⎛⎫=-++ ⎪⎝⎭; 18.22.三.解答题:(本大题共7题,满分78分)19.(1)解:原式=()2232332322⎛⎫-+ ⎪ ⎪⎝⎭⨯………………………………………………(8分)11323=-+ =136.……………………………………………………………………(2分)20解:∵DE BC ∥,∴AD AEBD EC=,……………………………………………………(2分) 又∵AD DE BD EF=,∴AE DE EC EF =,…………………………………………………………(2分) ∴AB FC ∥,………………………………………………………………………………(2分) ∴AD AE FC EC =,………………………………………………………………………………(2分) ∵23AE AC =,21AE EC =,………………………………………………………………………(1分) ∴2AD FC=.…………………………………………………………………………………(1分) 21.解:(1)∵抛物线2y ax bx c =++经过点()1,0,()3,0-,()0,3,B CD 'D O1l 2l A图12ABCD 'D O1l 2l MNE 图13∴0,930,3.a b c a b c c ++=⎧⎪-+=⎨⎪=⎩……………………………………………………………………(3分) 解,得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩………………………………………………………………………(2分)∴抛物线的表达式为223y x x =--+.………………………………………………(1分) (本题若利用其他方法,请参照评分标准酌情给分)(2)方法一:将抛物线向下平移3个单位,得到新的抛物线22y x x =--. ……(4分) 方法二:将抛物线向左平移1个单位,得到新的抛物线()224y x =-++.…(4分) 方法三:将抛物线向右平移3个单位,得到新的抛物线()224y x =--+.…(4分) 22. 证明:(1)∵∠BCA =∠ADE ,又∠BFC =∠AFD ,∴∠CBD =∠CAD ,………(1分) 又∵∠CBD =∠BAE ,∴∠CAD =∠BAE ,…………………………………………………(1分) ∴∠BAC =∠DAE ,…………………………………………………………………………(1分) ∴△ABC ∽△AED. …………………………………………………………………………(1分) (2)∵△ABC ∽△AED , ∴AB AC AE AD = ,∴AB AEAC AD =,…………………………………………………………(2分) 又∠BAE =∠CAD ,∴△BAE ∽△CAD ,…………………………………………………(2分) ∴BE ABCD AC=,∴AB CD AC BE ⋅=⋅.…………………………………………………(2分) 23. 解:(1)过点A 作AF ⊥OC ,垂足为点F .……………………………………………(1分) 在Rt △AFO 中,∵37AOF ∠=︒,AO =50cm ,∴50cos37OF =⨯︒…………………………………………………………………………(2分) 500.8=⨯40cm = ………………………………………………………………………………(1分) ∴504010CF cm =-=.……………………………………………………………………(1分) 答:小球达到最高点位置与最低点位置的高度差为10cm. ……………………………(1分) (2)因为B 点与A 点的高度相同,所以B 点与C 点的高度差为10cm ,联结BF ,BF ⊥OC . 设OD 长为x cm ,……………………………………………………………………………(1分) ∵30BDE ∠=︒,90ODE ∠=︒, ∴60BDC ∠=︒,∴()40DF x cm =-,()50DB x cm =-,………………………………………………(2分) 在Rt △DFB 中,()4050cos60x x -=-︒ ,……………………………………………(1分)30x =∴30OD = …………………………………………………………(1分)答:OD 这段细绳的长度为30cm .…………………………………………………………(1分) 24.解:(1)∵抛物线c ax ax y +-=32,∴3322a x a -=-=,∴对称轴是直线32x =,………………………………………………………………(2分) ∵()0,1-A ,且A 点在B 点左侧,∴()0,4B ,………………………………………(1分) (2)∵2==COBOAO CO ,∠COA =∠COB =90°,∴COA ∆∽BOC ∆,…………………(2分) ∴∠CAO =∠BCO . …………………………………………………………………(1分)(3)过点()0,4B ,()2,0C 的直线BC 表达式221+-=x y ,设D 点坐标为⎪⎭⎫⎝⎛+-221,m m ,∵∠CAO +∠ACO =90°,∠CAO =∠BCO ,∴∠ACB =∠BCO +∠ACO =90°. ∴90ACB BED ∠=∠=︒.当点D 在线段BC 上时,∵BDE ∆与ABC ∆相似,CBA EDB ∠>∠,∴∠EDB =∠CAO ,………………………(1分) ∵∠CAO =∠BCO ,又∠EDB =∠CDO ,∴∠BCO =∠CDO ,∴CO =DO , ∵CO =2,∴2222221=⎪⎭⎫⎝⎛+-+m m ,……………………………………(1分)解得01=m (舍),582=m ,∴⎪⎭⎫⎝⎛56,58D .…………………………………………………(1分) 当点D 在线段BC 的延长线上,∵BDE ∆与ABC ∆相似,∠CAO =∠BCO ,∠BCO >∠BDE ,∴∠BDE =∠CBA ,……(1分)∴DO =BO ,∵BO =4,∴2224221=⎪⎭⎫⎝⎛+-+m m ,………………………………………(1分)解得5121-=m ,42=m (舍),∴⎪⎭⎫⎝⎛-516,512D ,………………………………………(1分) 综上所述,D 点的坐标为⎪⎭⎫ ⎝⎛56,58或⎪⎭⎫⎝⎛-516,512.25.解:(1)∵AC ⊥BC ,O 是AB 的中点,∴CO =BO ,∵∠ABC =60°,∴∠OCB =∠ABC =60°,∵AB =4,∴OB =BC =2,……………………………………………………………………(1分) ∵DOC ∆沿CO 翻折,点D 与'D 重合,∴'CD CD =,'60OCB OCD ∠=∠=︒,∴'120DCD ∠=︒,∴'180DCD ABC ∠+∠=︒,∴AB ∥'CD ,…………………………(1分) 又1l ∥2l ,∴四边形'ABCD 是平行四边形,……………………………………………(1分) ∴'AB CD =,∴CD =AB =4,∴DB =2,……………………………………………………(1分) (2)①∵1l ∥2l ,O 是AB 的中点,∴11==BO AO DB AE ,∴AE =DB ,………………………(1分) ∵AB ∥'CD ,∴'NOB OD C ∠=∠,又∠ODC ='OD C ∠,∴∠NOB =∠ODC ,………………………………………………(1分)又∠DBO =∠DBO ,∴DBO ∆∽OBN ∆,…………………………………………………(1分) ∴OB :BN =DB :OB ,∵AE =x ,DN =y ,OB =2,∴()y x x +=22,………………………(1分)∴()2042≤<-=x xx y .……………………………………………………………………(2分)②过点O 作OH ⊥l 2,垂足为点H ,∵OB =2,∠ABC =60°,∴OH =3,∵DON ∆的面积为323,∴32321=⋅OH DN ,∴3=y ,…………………………(1分) 当点E 在线段AM 上时,xx y 24-=,∴xx 243-=,解得11=x ,42-=x (舍),∴AE =1. …………………………………(1分)当点E 在线段AM 的延长线上时,xx y 42-=,…………………………………………(1分)∴xx 432-=,解得41=x ,12-=x (舍),∴AE =4,…………………………………(1分)综上所述,AE =1或4.。
浦东新区2015学年第一学期初三教学质量检测数学试卷(完卷时间100分钟,满分150分)考生注意: 1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸...规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸...的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂】1.如果两个相似三角形对应边之比是1∶4,那么它们的对应边上的中线之比是( ▲ ). (A)1∶2; (B)1∶4; (C )1∶8; (D )1∶16.2.在Rt △ABC 中,∠C =90°,若AB =5,BC =4,则sin A 的值为( ▲ )。
(A )43; (B )53; (C) 45; (D )43.3.如图,点D 、E 分别在AB 、AC 上,能推得DE ∥BC 的条件是( ▲ ). (A )AD ∶AB =DE ∶BC ; (B )AD ∶DB =DE ∶BC ; (C )AD ∶DB =AE ∶EC ; (D)AE ∶AC =AD ∶DB .4.已知二次函数c bx ax y ++=2的图像如图所示,那么a 、b 、c 的符号为( ▲ ). (A )a <0,b <0,c >0; (B)a <0,b <0,c <0; (C )a >0,b >0,c >0; (D)a >0,b >0,c <0.5.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,下列结论中错误的是( ▲ ).(A )2AC AD AB =⋅; (B ) 2CD AC BC =⋅; (C ) 2CD AD DB =⋅;(D ) 2BC BD BA =⋅.6.下列命题是真命题的是( ▲ ).(A )有一个角相等的两个等腰三角形相似;(B)两边对应成比例且有一个角相等的两个三角形相似; (C)四个内角都对应相等的两个四边形相似;(D )斜边与一条直角边对应成比例的两个直角三角形相似.第4题图第5题图BACD第3题图E D CBA二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.已知13x y =,那么yx x += ▲ . 8.计算:1233a ab ⎛⎫-+ ⎪⎝⎭=▲ .9.上海与杭州的实际距离约200千米,在比例尺为1:5 000 000的地图上,上海与杭州的图上距离约▲ 厘米. 10.某滑雪运动员沿着坡比为1:3的斜坡向下滑行了100米,则运动员下降的垂直高度为_▲_米. 11.将抛物线2)1(+=x y 向下平移2个单位,得到新抛物线的函数解析式是 ▲ .12.二次函数y=ax 2+bx+c 的图像如图所示,对称轴为直线x =2,若此抛物线与x 轴的一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ▲ 。
2016年第一学期南模教育集团预初年级质量监控考试数学学科试卷(时间60分钟,满分100分)考生注意:1,本试卷含四个大题,共32题。
2,答题时,考生务必按答题卡的要求在答题纸规定的位置上做答,在草稿纸,本试卷上一律答题无效。
3,除第一,二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出计算的主要步骤。
一,填空题(本大题共16题,每题2分,满分32分)1.看A=2×2×5,B=2×3×3,那么A 和B 的最小公倍数是2.把分数43化成百分数是3.把数825313、π、按从小到大的顺序排列,并用<号连接起来是5.把一条4米长的绳子平均分成6段,每段长米6.某班共有50名学生,在数学学科的期中考试中,有48人在60-100分之间,有2人在59分以下,则这个班在这次考试中,数学成绩的合格率是7.下列三个分数1613,2825,503,不能化成有限小数的是8.某商品现价416元,比原价便宜了104元,则该商品打折出售9.如果一只挂钟分针的针尖15分钟正好走了25.12厘米,那么它的分针长厘米(π取3.14)10.半径为4厘米的半圆面的周长是厘米.(结果保留π)11.圆心角为160度的扇形面积是它所在圆的面积的(填分数)12.若甲比乙少51,丙比乙多51,用最简整数比表示甲:乙:丙=13.如果是7a 真分数,5a是假分数,则满足条件的a 的值是14.有14个型号相同的杯子,其中一等品有7个,二等品有6个,三等品有1个,从中任意取1个,取到二等品的可能性大小是15.如图所示,正方形的边长为6厘米,内有一圆环,环宽与内圆直径相等,则阴影部分面积是平方厘米。
(结果保留π)16.在一项活动中,甲组人数比乙组人数多5人,乙组人数又比丙组人数多2人,现在要分配各组人数,将甲组若干人调到乙组,再将乙组若干人调到丙组,最后从丙组调3人到甲组,这样三个组的人数相等,那么从甲组调到乙组的人数是人二、选择题(本大题共5题,每题3分,满分15分)17.下列说法中,正确的是()A,)(o m mb ma b a ≠++=B,在数轴上表示的542点在表示432的点的左边C,假分数的值一定不小于1D,分数的分子和分母都乘以同一个数,分数的大小不变18.下列各数中,大于31且小于21的数是()A,125B,134C,127D,121119.某种商品,先降价8%,后有涨价8%,此时商品的售价与原价相比()A,变大B,变小C,不变D,不确定20.预备年级(3)班共有男生25人,女生20人,那么男生人数比女生人数多()A,15%B,20%C,25%D,30%21,为了美化校园,同学们要在一块正方形空地上种草,他们设计了下列图案,其中阴影部分为绿化面积,哪个图案的绿化面积与其他图案的绿化面积不相等()A,B,C,D,三、计算题(本大题共4题,每小题4分,满分16分)22.计算:75987272112--+23.计算:8.6)3275.0(125⨯+÷24.计算:92818725.4214÷+⨯+25.计算:999999998999⨯四、简答题(本大题共7题,满分37分)26.(本题满分5分)数轴上点A 表示的数是313,点B 距离点A 有212个长度单位,求点B 表示的数27.(本题满分5分)小强妈妈把20000元钱存入银行,定期2年,到期后她从银行取出,拿到本息和是20840元,问年利率是多少?28.(本题满分5分)已知:60%c=1.1b,b a 4332=,求a:b:c29.(本题满分3分)将两筐水果分成3份,第一份分得总量的52,剩下的按5:7再分成两份,已知第二筐水果是第一筺的910,且比第一筐少5千克,求这三份水果分别是多少千克?30.(本题满分5题)如图,用边长为20厘米的正方形铁皮为材料制作一种零件用料(阴影部分),试求制作这种零件用料的材料利用率(π取3.14)31.(本题满分6分)某同学做家庭作业前看了一下时钟,(钟面一圈均匀分为60格),看到长短针都指在7与8之间,并且长针在短针后一小格,当短针指向8与9之间,而长针正好指向短针相反方向时,该同学恰好完成作业。
请你计算出这个同学的家庭作业做了多长时间?32.(本题满分6分)如图所示,已知直角三角形ABC,AB=6,BC=3,AC=角形ABC的边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置,试问点A运动到A″的位置时,点A经过的路线与直线l所组成的图形面积是多少?(π取3.14,结果保留一位小数)2016年第一学期南模教育集团预初年级质量监控考试数学学科试卷参考答案和解析考生注意:1,本试卷含四个大题,共32题。
2,答题时,考生务必按答题卡的要求在答题纸规定的位置上做答,在草稿纸,本试卷上一律答题无效。
3,除第一,二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出计算的主要步骤。
一,填空题(本大题共16题,每题2分,满分32分)1.看A=2×2×5,B=2×3×3,那么A 和B 的最小公倍数是【解答】解:最小公倍数=2×2×3×3×5=1802.把分数43化成百分数是 3.把数833、π、按从小到大的顺序排列,并用<号连接起来是【解答】解:4÷6=3米6.某班共有50名学生,在数学学科的期中考试中,有48人在60-100分之间,有2人在59分以下,则这个班在这次考试中,数学成绩的合格率是【解答】解:合格率=48÷50×100%=96%7.下列三个分数1613,2825,503,不能化成有限小数的是【解答】解:8125.016132825,06.0503==是无限不循环小数,所以不能化成有限小数的是28258.某商品现价416元,比原价便宜了104元,则该商品打折出售【解答】解:原价为416+104=520元,416÷520×100%=80%,所以打八折9.如果一只挂钟分针的针尖15分钟正好走了25.12厘米,那么它的分针长厘米(π取3.14)【解答】解:用圆周长公式算,15分钟对应4分之一圆,25.12×4÷(2×3.14)=16厘米10.半径为4厘米的半圆面的周长是厘米.(结果保留π)【解答】解:特别注意半圆面的周长包括弧的长度和直径4π+2×4=4π+8(厘米),半圆面的周长是4π+8厘米。
11.圆心角为160度的扇形面积是它所在圆的面积的(填分数)【解答】解:943616360160==÷12.若甲比乙少51,丙比乙多51,用最简整数比表示甲:乙:丙=【解答】解:设乙为1,则甲为54511=-,丙为56511=+所以甲:乙:丙=6:5:456:1:54=13.如果是7a 真分数,5a是假分数,则满足条件的a 的值是14.有14个型号相同的杯子,其中一等品有7个,二等品有6个,三等品有1个,从中任意取1个,取到二等品的可能性大小是【解答】解:73146=÷15.如图所示,正方形的边长为6厘米,内有一圆环,环宽与内圆直径相等,则阴影部分面积是平方厘米。
(结果保留π)【解答】解:内圆直径=6÷3=2(厘米)内圆面积=π×(2÷2)²=π(平方厘米)外圆面积=π×(6÷2)²=9π(平方厘米)圆环面积=9π-π=8π(平方厘米)正方形面积=6×6=36(平方厘米)阴影部分面积=36-8π(平方厘米)16.在一项活动中,甲组人数比乙组人数多5人,乙组人数又比丙组人数多2人,现在要分配各组人数,将甲组若干人调到乙组,再将乙组若干人调到丙组,最后从丙组调3人到甲组,这样三个组的人数相等,那么从甲组调到乙组的人数是人【解答】解:设丙人数为x,则乙的人数为2+x,甲的人数为7+x,,可表示出总人数是9+3x 人,再设甲调到乙的人数为m 人,乙调到丙的人数为n 人,丙又调3人到甲组,三个组人数相等,调完之后甲人数为n+x-3,乙人数为2+x+m-n,丙人数为10+x-m,分别都等于3+x,可求出m=7人二、选择题(本大题共5题,每题3分,满分15分)17.下列说法中,正确的是()A,)(o m mb ma b a ≠++=B,在数轴上表示的542点在表示432的点的左边C,假分数的值一定不小于1D,分数的分子和分母都乘以同一个数,分数的大小不变【解答】解:分数的分子和分母同时乘上或除以相同的数(0除外),分数的大小不变。
A、D 都错B 选项中432542>,在数轴上右侧的点比左侧的点的数值大。
故错误C 选项中假分数是分子等于分母或比分母大的分数。
故正确故选D18.下列各数中,大于31且小于21的数是()A,125B,134C,127D,1211【解答】解:正确<<A 126125124,12621,12431==故选A 19.某种商品,先降价8%,后有涨价8%,此时商品的售价与原价相比()A,变大B,变小C,不变D,不确定【解答】解:可设原价是单位"1",则现价是(1-8%)×(1+8%)==0.92x1.08=0.99360.9936<1,所以与原价相比变少了故选B 20.预备年级(3)班共有男生25人,女生20人,那么男生人数比女生人数多()A,15%B,20%C,25%D,30%【解答】解:男生人数比女生人数多:(25-20)÷20×100%=25%故选C 21,为了美化校园,同学们要在一块正方形空地上种草,他们设计了下列图案,其中阴影部分为绿化面积,哪个图案的绿化面积与其他图案的绿化面积不相等()A,B,C,D ,【解答】解:B、C、D 三个图案中的阴影部分的面积都是正方形的面积和一个以正方形边长为直径的圆的面积的差,但第一个不是,图A 是半径为正方形的边长半圆的面积减去正方形的面积,所以第一个图案的绿化面积与其他图案的绿化面积不相等.故选:A.三、计算题(本大题共4题,每小题4分,满分16分)22.计算:75987272112--+23.计算:8.6)3275.0(125⨯+÷24.计算;92818725.4214÷+⨯+25.计算:999999998999⨯【解答】解:22.56285654456161566325628768823779275987272112=--+=--+=--+22.25341712125534)3243(1258.6)3275.0(125=⨯⨯=⨯+÷=⨯+÷23.18429818231(292981823292992818725.4214=⨯=++⨯=⨯+⨯+=÷+⨯+25.998999999999998999999999998999=⨯=⨯四、简答题(本大题共7题,满分37分)26.(本题满分5分)数轴上点A 表示的数是313,点B 距离点A 有212个长度单位,求点B 表示的数【解答】解:由题意得点B 的位置可能在点A 的左侧,也可能在A 的右侧当点B 在点A 的左侧,6525310212313=-=-当点B 在点A 的右侧,63525310212313=+=+所以点B 表示的数为63565或27.(本题满分5分)小强妈妈把20000元钱存入银行,定期2年,到期后她从银行取出,拿到本息和是20840元,问年利率是多少?【解答】解:根据利息计算公式,利息=本金×存期×利率,本息和=本金+利息解:设年利率x,由题意得,20840=20000+20000×2x 解得x=2.1%答:年利率是2.1%28.(本题满分5分)已知60%c=1.1b,b a 4332=,求a:b:c【解答】解:两个比中都含有b,所以可用b 分别表示出a 和c 由60%c=1.1b 得,6c=11b,b c 611=由b a 4332=得,8a=9b,b a 89=所以44:24:27611::89::==b b b c b a 29.(本题满分3分)将两筐水果分成3份,第一份分得总量的52,剩下的按5:7再分成两份,已知第二筐水果是第一筺的910,且比第一筐少5千克,求这三份水果分别是多少千克?【解答】解:根据题意可求出第二筐比第一筐少的千克数,及相对应的份数,再用对应千克数除以对应分数从而求出第一筐重量,进而求出第二筐,总重量,再根据各自占总分数,求出三个班各分的苹果质量.解:第一筐:5÷(1﹣),=5÷,=50(千克),第二筐:50×=45(千克),总重:50+45=95(千克),甲:(50+45)×=38(千克),5+7=12,乙:(95﹣38)×=23.75(千克);丙:95﹣38)×=33.25(千克);答:甲、乙、丙班分得的苹果分别是38、23.75、33.25千克;故答案为:38,23.75,33.25.30.(本题满分5题)如图,用边长为20厘米的正方形铁皮为材料制作一种零件用料(阴影部分),试求制作这种零件用料的材料利用率(π取3.14)【解答】解:=314-157,=157(平方厘米),157÷(20×20)×100%,=157÷400×100%,=39.25%;答:制作这种零件的材料的利用率是39.25%.31.(本题满分6分)某同学做家庭作业前看了一下时钟,(钟面一圈均匀分为60格),看到长短针都指在7与8之间,并且长针在短针后一小格,当短针指向8与9之间,而长针正好指向短针相反方向时,该同学恰好完成作业。