盾构掘进风险浅析
- 格式:doc
- 大小:137.00 KB
- 文档页数:9
盾构施工过程中的地质风险分析及治理措施设计一、引言盾构施工是一种在地下进行隧道掘进的技术方法,广泛应用于城市地下管网、地铁和隧道等工程建设中。
然而,在盾构施工过程中,地质风险是不可避免的。
本文将对盾构施工过程中的地质风险进行分析,并提出相应的治理措施设计。
二、盾构施工中的地质风险1. 岩层变化带来的地质风险:在盾构施工中,可能会遇到地质构造变化导致岩层的突变,例如断层、脆弱带等。
这会对盾构机的推进和掘进造成不稳定性,增加地质风险。
2. 地下水位对施工的影响:地下水位的高低会直接影响盾构施工的进行。
在水位较高的地区,可能会导致隧道涌水,对施工工艺和安全造成威胁。
3. 地下空洞和洞室的存在:在地下施工中,可能会遇到地下洞室或空洞,这会导致盾构机的下沉和地质灾害的发生,对施工风险形成潜在威胁。
4. 后期地质沉降引发的地质风险:盾构施工完成后,地下的岩土会发生固结沉降,可能会影响地面建筑物的稳定性,引发地质风险。
三、盾构施工中地质风险分析的方法1. 前期地质调查:在盾构施工前,进行详细的地质调查,掌握施工区域的地质情况,包括岩性、断层、脆弱带、地下水位等信息。
这有助于预测地质风险发生的可能性,为治理措施的设计提供依据。
2. 现场勘探与监测:在盾构施工过程中,进行地下水位监测、地质构造检测等现场勘探工作,及时掌握工程进展情况,发现地质风险的迹象,并采取相应的措施进行治理。
四、盾构施工中地质风险的治理措施设计1. 岩层突变风险治理:对于存在断层和脆弱带的区域,可以采取预处理或加固措施,如钻孔注浆、锚索加固等,提高盾构施工的稳定性。
2. 地下水位控制治理:根据地下水位调查结果,设计合理的水封措施,包括增加隧道内部的防水层、设置排水系统等,避免盾构施工过程中的涌水风险。
3. 地下空洞治理:对于已知的地下洞室或空洞,采取相应的填充或加固措施。
另外,通过地质勘探和监测,及时发现潜在的地下空洞,避免施工过程中悬空洞室的发生。
盾构始发及到达的风险分析与对策盾构始发和到达是盾构施工过程中最重要的两个阶段之一。
在始发阶段,盾构机需要从出发点开始沿着预定线路挖掘隧道;在到达阶段,盾构机需要成功到达目的地完成任务。
然而,这两个阶段都存在一定的风险和挑战。
本文将分析盾构始发和到达的风险,并提出相应的对策。
首先,盾构始发阶段存在一些风险。
例如,由于地下环境复杂多变,可能存在岩溶地质、地下水等问题,在盾构始发过程中可能会遇到地质灾害,如地层塌陷、涌水等。
解决这些问题需要提前进行详细的地质勘察和分析,并采取相应的施工措施,如注浆处理、地层加固等。
此外,盾构机始发时可能会遇到土层过软、土壤液化等问题,需要合理调整盾构机的工作参数,以确保施工安全。
其次,盾构到达阶段也存在一定的风险。
一方面,盾构机在推进过程中可能会遇到地下管线、建筑物等障碍物,容易引起破坏和事故。
为了避免这种风险,需要提前进行地下管线的勘察和标定,并设计合理的盾构线路和穿越方案。
另一方面,在到达目的地之前,盾构机可能会遭遇地下水涌入、高地应力等问题,这可能导致盾构机停工或甚至受损。
在施工过程中,需要及时监测地下水位和应力变化,并采取相应的防范措施,如加固隧道衬砌、排水降水等。
为了应对盾构始发和到达的风险,需要采取一系列的对策。
首先,加强勘察工作,提前了解地下环境的地质条件、地下管线等情况,制定合理的施工方案。
其次,加强监测和预警,及时掌握地下水位、地应力等变化情况,确保施工过程中的安全。
此外,加强技术培训和施工管理,提高施工人员的技能水平和安全意识,确保施工过程中的操作规范和安全执行。
最后,建立应急预案,预留足够的备用设备和物资,以应对突发情况,确保盾构始发和到达的顺利进行。
综上所述,盾构始发和到达的风险分析与对策是盾构施工过程中的重要内容。
通过进行地质勘察、加强监测和预警、提高施工管理水平等措施,可以最大程度地减少风险,确保盾构始发和到达的安全顺利进行。
盾构始发及到达的风险分析与对策盾构始发及到达是盾构施工过程中最重要的两个阶段之一。
盾构机施工中的风险分析与应对策略一、引言盾构机作为一种先进的地下施工设备,广泛应用于隧道、管道等工程的建设中。
然而,在盾构机施工过程中,一些风险和隐患也时常出现,可能导致工期延误、工程质量下降甚至损失人员生命安全。
为了确保盾构机施工的安全和有效进行,本文将对盾构机施工中的风险进行分析,并提出相应的应对策略。
二、盾构机施工中的风险分析1. 地质风险:地下地质情况的不确定性是盾构机施工中的重要风险源,包括岩土层的稳定性、断裂带和地下水位等问题。
如果地质风险得不到有效处理和防范,可能导致盾构机卡钻、坍塌等事故。
2. 设备故障:盾构机作为复杂的机械设备,其各个部件的正常运行对于施工的顺利进行至关重要。
设备故障可能导致施工的暂停、工期延误和维修成本的增加。
3. 安全管理风险:盾构机施工需要有经验丰富、高素质的施工人员进行操作和管理。
如果安全管理不到位,可能导致人员伤亡和事故发生。
4. 施工质量风险:盾构机施工的质量问题可能会导致隧道的稳定性和使用寿命出现问题,严重影响工程的安全性和可持续性。
5. 环境保护风险:盾构机施工会产生大量的噪音、振动和废水等对环境的影响,如果不加以控制和治理,可能导致环境的破坏和污染。
三、盾构机施工中的应对策略1. 在施工前进行详细的地质勘察,了解地质情况,制定相应的施工方案和风险评估,采取合适的地质处理措施,如加固岩土层、处理断裂带和降低地下水位等。
2. 做好设备的定期检修、维护和保养工作,加强对盾构机设备状态的监测和管理,及时处理设备故障,确保设备的可靠运行。
3. 设立专职安全管理团队,建立完善的安全管理制度,制定详细的安全操作规程,加强安全宣传教育,实施严格的安全监控,确保施工过程中的人员安全。
4. 引入国际标准和先进技术,加强施工质量的监控和检验,建立质量控制体系,严格执行质量验收标准,确保盾构机施工的质量。
5. 按照环保法规要求,制定合理的环境管理措施,控制噪音、振动和废水等对环境的影响,加强环境监测和治理,保护周边生态环境。
盾构施工所面临的几大主要风险一、不良地质中盾构施工风险1、盾构处在承压水砂层中,由于正面压力设定不够高,缺少必要的砂土改良措施以及盾尾密封失效,而引起正面及盾尾涌砂涌水导致盾构突沉、隧道损坏;2、在盾构上部为硬粘土、下部为承压水砂层时,由于硬粘土过硬很难顶进,而承压水砂层则因受压不足不能疏干而发生液化流失导致盾构突沉;另因过硬粘土卡住密封舱搅拌棒使粘土与砂土不能拌合排出,致使盾构下部砂土液化由螺旋器流出,导致盾构底部脱空下沉;3、超越沼气层或其他原因形成的含气层时(如气压法施工的隧道或工作井附近),如未探明其范围和压力、未事先进行必要的释放、未采取防备毒气和燃爆的措施,开挖面喷出的气体及其携带的泥沙可能引起盾构姿态突变、隧道突沉以及毒气燃爆的灾害;4、对沿线穿越地层中的透镜体、洞穴或桩基、废旧构筑物等障碍物。
未事先查明并做预处理或备有应急措施,可能引起盾构推进突沉偏移,盾尾注浆流失,致使地面沉陷过大,盾构无法推进。
二、盾构进出洞风险盾构在工作井出洞或进洞时,需要凿除预留洞口处钢筋混凝土挡土墙,而后由盾构刀盘切削洞口加固土体进入洞圈密封装置,此过程中洞口土体及加固土体暴露时间较长,且受前期工作井施工方法及其施工扰动影响,容易因加固土体或洞圈密封装置的缺陷而发生洞口水土流失或坍方。
如遇饱和含水砂性土层或沼气以及其他原因形成的含气层(如气压法施工的隧道或工作井附近),更易发生向井内的大量涌沙涌水而导致盾构出洞磕头或盾构进洞突沉,甚至在盾构进洞突沉中拖带盾尾后一段隧道严重变形或坍垮,造成极严重的工程事故,并严重破坏周边环境。
由于盾构进出洞事故概率较高,其后果可能极为严重,因此对关系到盾构进出洞风险的每个细节必须严格仔细的采取可靠的风险控制措施。
三、盾构穿越江河水底的风险当盾构推进挤压导致前方土体隆起过多,或盾构处于饱和含水砂层中发生涌水突沉引起上方江底沉陷,产生涌水裂隙,致使大量河水由盾尾或开挖的缺陷处涌入而淹没隧道。
浅谈盾构施工风险分析及应对浅谈盾构施工风险分析及应对摘要:伴随着我国社会主义现代化建设的发展,我国隧道施工水平有了很大的提高。
隧道施工是城市化建设的重要保障,这将对我国的交通压力带来巨大的缓解作用。
从国际上来看,我国的隧道施工技术与欧美发达国家相比还是存在着一定的差距,体现在设备上的落后与技术上的不足。
在盾构法施工会出现一些风险因素,这就要求施工队伍通过有效手段来降低事故的发生概率,从而将风险性控制到最低。
关键词:盾构施工;风险分析;风险应对中图分类号: U455.43文献标识码: A盾构施工风险产生的因素作为六朝古都的西安拥有大量年代久远的古建,这些建(构)筑物的基础大多埋藏较浅。
因此,对西安地铁而言,湿陷性黄土地区地铁隧道如何减小施工对既有结构,尤其是既有建(构)筑物的影响非常重要。
建(构)筑物被看作是一个地基基础与上部结构密切作用的整体,其对外界变形影响敏感,与其它地区不同,湿陷性黄土地区建(构)筑物在结构上更具有复杂性和特殊性,对地表变形更加敏感,破坏机制更加复杂,一旦发生破坏将严重威胁人民生命财产安全。
(一)隧道施工地质的复杂性在隧道施工中,施工环境和工程地质十分复杂,其变动性较大。
在水利特别是在市政隧道施工的过程中会出现大量的水活动情况很多不可控因素,这对于隧道施工会带来很多技术上的困难。
城市中建设地铁,其发展情况从某种程度上会由于某些特定情况的限制会给勘察工作带来一定的困难,使得勘察数据与实际情况有所出入。
(二)建筑物结构复杂在地铁隧道的周围,建筑物结构十分复杂,相关部门也不能提供精确的资料,这样会增加施工的不确定性。
(三)施工准备工作不足在隧道施工前期没有做好相应的准备工作,这样会加大风险发生概率。
(四)隧道施工安全机制还需要改进隧道施工的安全管理机制还不够成熟。
(五)缺乏相应的专业施工人员在很多隧道施工中都会聘请普通务工人员,这些工作人员缺乏专业培训,无论是在理论知识上还是实践经验上都存在着不足,在人员管理上也存在着一定的缺陷。
盾构施工风险掌握近年来,国内地铁区间隧道大量承受盾构法施工,盾构技术有了长足进步,但盾构施工事故还是时有发生。
在盾构施工中地质是根底,设备是关键,人是根本.避开事故的核心是对风险进展辨识,实行有效措施,阻挡或降低风险的发生。
一、盾构进出洞风险掌握盾构在工作井内始开掘进必需凿出预留洞口的钢筋混凝土后,才能将盾构推入洞口,盾构刀盘转动切削洞口外土体.由于凿出预留洞口的钢筋混凝土需要较长时间,洞口土体暴漏时间过长会引起土体坍塌进入工作井,影响盾构始发;如遇含水饱和的砂性土,极易引起大量水涌入工作机,造成严峻的工程事故,延误工期和造成巨大的经济损失。
尤其是大直径盾构由于埋设大和洞口面积大,盾构始发的风险更大。
需实行以下措施:①从设计上加强端头加固措施,如在端头洞门增加排素混凝土桩,端头加固选用效果较好如三轴搅拌桩的施工方案。
②对于富水地层,必需承受降水措施。
③对端头加固加固效果进展检测,确保端头加固的整体性和抗渗性满足设计要求.加固体与井壁密封性不能消灭缺陷点。
二、小曲线半径地段盾构施工风险掌握小半径曲线上推动时,土体对盾构和区间的约束力差,盾构轴线较难掌握。
同时由于曲线半径过小,使得掘进时盾构机向曲线外侧的偏移量增大,对管片拼装造成肯定影响。
施工中严格掌握油缸的分区推力,适时调整盾构姿势,严格掌握盾尾间隙。
小半径曲线盾构掘进时,要实行以下措施:①盾构测量盾构在小半径曲线段推动时,增加隧道测量的频率,确保盾构测量数据的准确性。
通过测量数据来反响盾构机的推动和纠偏.在施工时实施跟踪测量,确保盾构机良好的姿势。
由于隧道转弯曲率半径小,隧道内的通视条件相对较差,需屡次设置的测量点和后视点。
在设置的测量点后,严格加以复测,确保测量点的准确性,防止造成误测.同时,由于盾构机转弯的侧向分力较大,易造成已成环隧道的水平位移,所以必需定期复测后视点,保证成型隧道位置的准确性。
②盾尾间隙掌握小曲率半径段内的管片拼装至关重要,合理的盾尾间隙有利于管片拼装和盾构进展纠偏。
盾构区间施工安全风险及防范措施盾构区间施工可不是简单的“挖个洞”那么轻松,它可是一个技术活,一步错,满盘皆输,风险可不小。
说到盾构,大家都知道,这就是用来“挖地道”的一台大机器,简直就像一个超级大“铲车”,它可以把地面下的泥土一层一层挖出来,慢慢把地道挖通。
看起来是不是挺高大上?但是你要知道,这中间的安全风险,可是隐患重重,稍有不慎,后果不堪设想。
你说是不是?每个工程的进度和质量都跟施工的安全息息相关,如果没有做好安全防范措施,那就如同没有防护措施去玩高空蹦极,后果肯定不堪设想。
盾构施工区间的风险,第一眼看上去或许不太显眼,但实际上充满了各种潜在的危险。
最让人头疼的,就是地质条件不稳定。
这些地下的土层啊,水文地质情况也是千变万化的。
你根本不知道挖到哪儿会碰到水层,甚至可能遇到软土、硬岩交替的地质情况。
一旦盾构机下去时,土层不稳定,那就好比把猪油放到热锅里,滋滋作响,马上就要出现问题了。
所以,做好施工前的地质勘查,找准土层的情况,不然真的得吃一堑长一智了。
再说了,盾构机操作起来的技术要求也是高得让人咋舌。
盾构机的操控者不仅要有扎实的技术功底,还要有丰富的经验。
机器会因为操作失误发生偏移,或者是盾构机头遇到比较坚硬的岩石,这时候就容易产生危险。
想象一下,盾构机如果在地下卡住,或者突然反向,那就真的是“麻烦大了”。
盾构机的推进速度不一样,忽快忽慢,这也让施工人员在判断的时候难免产生失误。
安全操作程序必须严格执行,千万不能抱侥幸心理。
盾构区间施工中涉及的环境问题也不可忽视。
大家都知道,施工过程中,尘土飞扬,噪音也大,不仅对周围居民有影响,对施工人员的身体健康也是不小的挑战。
尤其是土壤中的有害气体,一旦泄漏,简直能让人闻了就头晕目眩,严重的还可能导致中毒。
针对这些潜在风险,必须定期检测空气质量,通风设备一定要安装到位,施工人员的防护措施也得做到位,戴口罩,穿防护服,不管多热,不能偷懒。
除此之外,盾构施工区域的水土保护也至关重要。
盾构隧道施工中的风险管理与安全控制盾构隧道施工是一项复杂而具有挑战性的工程,涉及到许多潜在的风险和安全隐患。
因此,进行有效的风险管理和安全控制是确保施工质量和工人安全的关键。
本文将介绍盾构隧道施工中的一些常见风险,并提供一些建议用于风险管理和安全控制的措施。
一、盾构隧道施工中的风险1. 地质风险:隧道施工过程中,地质条件常常难以预测,例如地下水位、岩层变化等。
这些地质风险可能导致隧道坍塌、水浸等意外情况,严重影响施工进度和工人安全。
2. 机械故障:盾构机是隧道施工的关键设备,机械故障可能导致施工停工、延误或甚至事故。
盾构机的维护和检修至关重要,定期进行维修保养和性能检测,确保其正常运行。
3. 突泥突水:地下水源丰富的地区,隧道施工中常常面临突泥突水的风险。
施工过程中,必须加强水文勘探和监测,在施工过程中采取相应的防水和排水措施。
4. 各种事故风险:隧道施工中还存在火灾、爆破、坍塌等各种事故的风险。
施工前必须进行详细的风险评估,制定相应的应急救援计划,并加强现场安全教育和培训,提高工人的安全意识。
二、风险管理和安全控制措施1. 严格遵守相关法规和标准:施工单位必须严格遵守国家和地方的法规和标准,包括相关的安全生产法规、施工规范等。
2. 预防性控制:在隧道施工前,进行详细的工程地质勘探和风险评估,制定详尽的施工方案和安全管理计划。
合理安排施工时间,避开恶劣气候条件,以预防意外情况的发生。
3. 严格的质量管理:加强材料的选用和质量监控,遵循施工规范和质量检验标准,确保使用的材料符合要求,减少质量问题带来的风险。
4. 安全培训和管理:组织全体工人进行安全培训,并建立完善的安全管理制度。
对工人进行定期的安全教育,提高他们的安全意识和应急处理能力。
5. 定期检查和维护:盾构机和其他施工设备需要定期进行检查和维护,确保其性能正常。
每天对隧道施工现场进行巡视,及时发现和处理安全隐患。
6. 建立应急救援机制:制定详细的应急救援计划,包括事故报告和应急处理流程。
盾构安全风险分析报告盾构是一种专门用于地下隧道建设的机械设备,它的造价昂贵且难以恢复,所以盾构施工的安全风险分析对于工程建设的顺利进行至关重要。
首先,盾构施工过程中可能会出现的安全风险是坍塌事故。
由于盾构机械在地下钻进时需要持续向前推进,而地下的土层和岩石的稳定性往往难以预测,如果遇到不稳定的土层或者岩层,就有可能导致地层坍塌,影响盾构机械的正常运行,甚至造成人员伤亡和设备损坏。
其次,盾构施工可能会遭遇地下水的涌入,导致隧道内部被淹。
在盾构开挖过程中,地下水位的高低以及水质的情况都很难预测,如果地下水位过高或者地下水的流速过大,就可能会对盾构机械和施工人员的安全构成威胁,甚至导致机械损坏和事故发生。
此外,盾构施工还可能遇到地下洞穴或者地下管道的存在,如果无法准确地掌握地下隧道的位置和范围,就有可能在施工过程中意外破坏现有隧道或者管道,造成财产损失和人员伤亡。
针对这些安全风险,我们可以采取以下措施来降低风险。
首先,施工前应进行充分的地质勘探,了解地下地质条件和土层的稳定性,可以采用先进的地质勘探技术,如地下探测雷达和地下水位监测仪等,尽量减少不稳定地层的影响。
其次,应加强对盾构机械的监测和维护,定期检查机械的状态和工作效果,确保设备的正常运行。
另外,应配备专业的维修人员和紧急救援队伍,及时处理设备故障和应对紧急情况。
此外,可以采用隔水墙和密闭掌子面等防水措施,以减少地下水涌入的影响。
同时,可以利用水泥浆和注浆技术进行地层固化,提高地下土层的稳定性。
最后,必须对施工现场进行严格的管理,确保工作人员遵守安全操作规程,配备足够的安全装备,加强安全教育和培训,提高员工的安全意识和应急反应能力。
综上所述,盾构施工存在一定的安全风险,但只要采取科学合理的预防措施和管理措施,可以有效降低风险,并确保施工过程的安全顺利进行。
盾构穿越重大风险源风险及对策
盾构作为一种地下隧道掘进设备,穿越重大风险源时可能面临以下风险:
1. 地质风险:盾构在地下穿行时会遇到不同类型的地质层,如岩石、土壤等。
地质层
的变化可能导致盾构机遭遇困难,如阻力增大、地质变形等。
对策是在前期进行详细
的地质勘查和分析,确保对地质层的了解,并针对不同地质层采取相应的措施。
2. 地下水风险:地下水位的升高会给盾构作业带来困难。
盾构机工作时需要排出大量
的水,如果地下水位过高,则会导致水压增大,进而可能引发水涌、涌水灾害等问题。
对策是在准确掌握地下水位情况的基础上,采取降低地下水位的措施,如排水、抽水等。
3. 断层风险:断层是地壳中的一种构造形态,当盾构机穿越断层时可能会受到断层活
动的影响,如地面突然下沉、裂缝产生等。
对策是在前期进行断层勘查,确定断层位
置和活动情况,并采取相应的加固措施,以确保盾构作业的安全进行。
4. 地震风险:地震是地壳发生剧烈震动的现象,盾构作业在地震区域进行时可能会受
到地震的影响。
对策是在前期进行地震勘查和评估,确定地震风险等级,并采取相应
的震动减震措施,如加固隧道结构、增加抗震支撑等。
5. 硬岩风险:盾构机在穿越硬岩时需要使用钻头进行钻孔,如果遇到过硬的岩石,可
能导致钻头卡车、车磨损加剧等问题。
对策是根据地质勘查的结果,选择合适的钻头
和刀具,以确保盾构机在穿越硬岩时能够顺利进行。
总之,对于盾构机穿越重大风险源的风险,需要在前期进行充分的勘查和评估,制定
相应的对策,并在实施过程中进行严格监测和管理,以确保施工作业的安全进行。
盾构隧道施工中的风险管理与应对策略隧道工程是一项复杂且危险性较高的工程,特别是在盾构隧道施工过程中,存在着多种潜在的风险。
这些风险可能来自于地质条件、施工工艺、安全措施等方面,因此,有效的风险管理与应对策略对于确保隧道施工的安全与高效非常重要。
本文将针对盾构隧道施工中的风险进行分析,并提出相应的管理和应对策略。
一、地质风险在盾构隧道施工中,地质条件是最主要的风险之一。
地质风险主要包括地下水、地层变异和围岩不稳定等。
为了应对地质风险,施工前需要进行详细的地质勘察和分析。
根据勘察结果确定隧道设计方案,选择合适的盾构机,并对施工过程中的地质条件进行实时监测。
同时,应建立健全的风险应对机制,及时采取合理的防治措施,如加固土壤,加装支护结构等,以保障施工的安全进行。
二、施工工艺风险盾构隧道的施工工艺复杂,并且涉及到多个施工环节,因此存在着施工工艺风险。
在工程施工前,需要制定详细的施工方案,并确保施工人员熟练掌握相关工艺技术。
在施工过程中,应加强工艺监控,遵循施工规范,确保每一步施工都符合设计要求,并及时修正和调整工艺方案。
此外,应建立健全的应急预案,针对可能出现的工艺问题,及时采取有效的措施进行应对,以降低施工工艺风险。
三、安全管理风险在盾构隧道施工中,安全管理是风险管理的核心要素。
施工现场存在着机械设备操作、物料运输、人员安全等多个方面的风险。
提高安全意识是保证施工安全的基础。
施工企业应加强对员工的培训和教育,确保每个人都具备相应的安全操作技能。
在施工过程中,应严格执行安全规范和操作程序,建立完善的安全管理制度。
及时修正和改进不安全行为和环境,确保施工现场的安全。
四、环境保护风险盾构隧道施工过程中可能会对周边环境造成一定的影响,如噪音、震动、粉尘等。
为了应对环境保护风险,施工前需要制定详细的环境保护方案,并按照相关法律法规的要求进行施工。
在施工过程中,应采取合理的防护措施,减少对周边环境的影响。
定期进行环境监测,确保施工过程中的环保指标符合要求。
盾构隧道施工中的风险管理与安全措施研究隧道工程是现代城市建设的重要组成部分,而盾构隧道作为一种常见的施工方法,具有高效、快速的特点,被广泛应用于隧道工程中。
然而,盾构施工过程中存在着一系列的风险和安全隐患,对于这些风险进行管理并采取相应的安全措施,对保障施工人员和项目的顺利进行具有重要意义。
一、盾构隧道施工中的风险管理:1.地质风险:盾构隧道施工过程中,地质条件的复杂性是不可忽视的风险。
不同的地质条件可能导致地表沉降、地下水涌入、岩层崩塌等问题,进而对施工安全和隧道结构的稳定性造成威胁。
因此,在盾构施工前,应进行详细的地质勘测和地质预测,制定相应的风险评估和处理措施,如注浆加固地层、排水系统设置等。
2.机械故障:盾构机作为盾构施工的核心设备,其可靠性和稳定性对施工过程至关重要。
然而,机械故障是难以预料和难以控制的风险因素。
为了减少机械故障对施工进度和安全的影响,应加强对盾构机的维护和保养,并定期进行检修和升级。
3.环境污染风险:盾构隧道施工中,可能会产生大量的粉尘、噪音和废水等环境污染物。
这些污染物可能对周边环境和人员健康造成威胁。
因此,在施工过程中,应采取有效的措施,如封闭作业、水洗除尘、噪音隔离等,以减轻环境污染的影响。
二、盾构隧道施工中的安全措施:1.施工人员安全:对于隧道施工人员而言,高强度的工作和特殊的施工环境是安全风险的主要来源。
因此,应加强对施工人员的培训教育,提高其安全意识和操作技能。
同时,应确保施工现场设有安全防护设施,如安全网、护栏等,以减少施工人员的伤害风险。
2.应急预案:在隧道施工过程中,突发事件的发生是无法避免的。
为了应对各种突发事件,应制定详细的应急预案,并组织相关人员进行演练。
预案中应包括应急疏散、事故处理、医疗救护等方面的内容,以最大程度保障施工人员和项目的安全。
3.监测系统:隧道施工过程中的监测是及时了解施工现状、发现安全隐患的重要手段。
在盾构施工中,应设置全面、准确的监测系统,对地表沉降、地下水位、土压力等进行实时监测,并及时报警和采取相应的措施。
盾构施工的十大风险1 地质勘察准确度地质勘察准确度在盾构法隧道施工中尤其重要,准确地勘察出隧道区间地质情况,对盾构的选型起决定性因素,地下水位、岩石抗压强度和土层的物理特性决定了盾构的选型与动力配置,地质勘察在隧道施工中目前30米一个测孔比较多见,也可以做详勘,根据要求确定间隔距离,甚至10米一个孔。
2 盾构的地质适应性盾构的地质适应性在工程开建以前要经过专家论证,确保盾构满足该工程施工要求,包括盾构是泥水还是土压还是硬岩掘进机、刀盘的设计、刀具的配置、动力系统、转弯能力等,盾构机的选型问题是盾构法施工中的关键问题。
3 盾构进出洞盾构进出洞是盾构法施工过程中最需要解决的问题,洞门加固区域一定要按设计要求加固,完成后需要打水平探孔检测加固效果,在满足要求后才能出洞(即始发),进洞(即到达)也一样,如果加固效果不理想是不能轻易进洞的,否则有可能导致洞门土体坍塌,盾构进出洞一定要加固到满足设计要求的强度、宽度、长度和深度,另外控制盾构姿态也是盾构顺利进出洞必不可少的因素。
4 开挖面稳定盾构法隧道施工好坏的一个重要指标是对周围环境造成的影响程度,这点在市区内隧道工程中表现更为突出,施工中开挖控制是影响施工质量的一项关键技术。
支护压力过小导致开挖面前方土体大量进入压力舱,引起地基发生过大沉降,甚至地表坍塌,而支护压力过大,则容易产生地表隆起问题,这些都将给周围构筑物带来不良影响。
同时压力舱内施加支护压力的渣土性质受到原有地层条件影响而使得支护压力处于不断波动,进一步恶化了不良开挖控制的影响。
5盾尾密封失效盾尾密封失效风险从目前施工案例来看,发生的概率较低,但一旦发生处理不及时可能造成较为严重的后果,如泥水从盾尾密封刷间隙涌入隧道内、地面因泥水流失而产生较大沉降、严重时发生江底冒顶而危及整个隧道。
因此该风险事故一旦发生,必须采取有效应对措施,消除风险隐患。
从目前国内大型水底隧道施工的情况来看,发生盾尾密封渗漏的工程案例较少且程度较轻,盾尾密封系统总体未失效,通过采取衬砌环背面贴海绵挡泥条、盾尾间隙塞海带止水等措施,盾构机继续施工完成掘进。
盾构施工安全风险管理1. 前言盾构作为国内工程建设的主要技术之一,被广泛应用于地铁、隧道、水利等各个领域。
而盾构施工所面临的安全风险也因此变得尤为重要。
如何科学有效地管理盾构施工中的安全风险,是今天我们需要考虑和讨论的问题。
2. 盾构施工安全风险的来源盾构施工中的安全风险主要有以下几个方面:2.1. 地质风险盾构的巨大体积需要在地下进行施工,并且其施工地点常常位于地质构造复杂的地区,如沉积岩、基岩隧道等。
这就给盾构施工带来了较大的地质风险,如地裂缝、岩层断裂、洞室塌陷等地质灾害。
2.2. 设备风险盾构施工中需要使用大量的机械设备,如盾构机、掘进机、运输机等,这些设备本身存在故障和事故风险,如机械故障、设备损坏等。
2.3. 人员风险盾构施工中需要有大量人员参与,包括施工、监理、安全等各个环节。
这些人员需要进行专业的培训和安全教育,以确保他们的安全。
盾构施工管理需要进行全方位的组织协调和信息沟通,如质量管理、安全管理、进度管理、成本管理等各方面。
管理风险在盾构施工中同样不能忽视。
3. 盾构施工安全风险的预控为降低和控制盾构施工安全风险,需要从以下几个方面进行预控:3.1. 地质勘探在盾构施工前,需要通过地质勘探、地质勘探钻探等方式对施工地点的地质构造和地下水情况进行详细的评估,温度、透水性等情况进行分析,以制定合理的施工方案和安全风险管理计划。
3.2. 设备检修盾构施工中大量的机械设备需要进行定期的维护和检修,以确保设备的可靠运行、降低故障和事故的发生。
3.3. 人员管理盾构施工中必须严格控制人员的质量,安全合格证、安全培训、公告栏等进行安全警示工作,防止人员的事故运动、减少酒精、荷尔蒙、双手活机、接地透杆等电气化工作等活动。
要注重人的因素和心理、情绪等因素以及各种疾病和伤害对人的危害。
盾构施工需要建立科学严密的管理制度,如安全责任制、巡视制度、岗位责任制等等,以确保管理工作的稳步推进。
4. 总结盾构施工的安全风险管理是盾构工程建设不可或缺的环节,它涉及到工程建设的安全、进度和质量。
一般盾构区间1、下穿建筑物若建筑物桩基较深,侵入盾构隧道的洞身,应进行桩基拖换或拆除该建筑物并对桩基础进行处理,盾构机方可通过。
若建筑物桩基较浅,没有入侵盾构隧道,或者建筑物无桩基,盾构下穿该建筑物时,应采取以下防范措施:①、进一步详细勘察,确定建筑物桩基具体位置、桩径、桩长等基础资料,进一步明确区间隧道与桩基的位置关系。
②、根据工程实际情况,选择进行地表注浆或洞内注浆等措施。
③、盾构施工时,合理设置土压力值,保持正面的平衡,防止超挖和欠挖;④、穿越时降低推进速度,控制总推力,减少土层扰动。
⑤、穿越前调整好盾构姿态,穿越时减少纠偏次数及纠偏量,减少土体的扰动;⑥、保证一次穿过,不能中途换刀,如果实在避免不了在上部地段换刀,事先要准备充足的预案。
首先从盾构前部预留的超前加固装置对土仓上部及前方顶部的土体进行注浆加固,以保持开挖面稳定不出现塌方,然后再对土仓加气压后更换刀具。
⑦、加强建筑物的监控量测,根据建筑物的性质、结构形式、基础形式等建立不同的控制值,通过监控量测及时掌握建筑物的变形情况,及时调整施工工艺,确保建筑物保护管理在可控状态。
2、斜穿建筑物①、进一步详细勘察,确定建筑物桩基具体位置、桩径、桩长等基础资料,进一步明确区间隧道与桩基的位置关系。
②、根据实际情况,设计上考虑采取建筑物隔离、地表注浆或洞内加强注浆等技术措施;③、盾构施工时,合理设置土压力值,保持正面的平衡,防止超挖和欠挖;④、穿越时降低推进速度,控制总推力,减少土层扰动。
⑤、穿越前调整好盾构姿态,穿越时减少纠偏次数及纠偏量,减少土体的扰动;⑥、保证一次穿过,不能中途换刀,如果实在避免不了在上部地段换刀,事先要准备充足的预案。
首先从盾构前部预留的超前加固装置对土仓上部及前方顶部的土体进行注浆加固,以保持开挖面稳定不出现塌方,然后再对土仓加气压后更换刀具。
⑦、加强建筑物的监控量测,根据建筑物的性质、结构形式、基础形式等建立不同的控制值,通过监控量测及时掌握建筑物的变形情况,及时调整施工工艺,确保建筑物保护管理在可控状态。
盾构隧道施工风险分析与规避对策摘要:进入新时期,我国隧道工程建设在近几年来取得了巨大成就,但是,由于我国的地铁与地下工程开发建设还只是刚刚起步,隧道在施工建设过程中存在诸多不确定性风险因素,加上我国隧道工程项目施工过程中风险管理研究尚不成熟,造成近年来隧道施工过程中安全事故频繁发生。
因此,加强地铁盾构施工风险管理,是防范地铁工程建设风险的关键,是合理开发利用地下空间,使地铁工程符合全面协调可持续的科学发展观的要求。
关键词:盾构隧道;施工风险;规避对策;识别1、前言一般来说,地铁隧道的旌工方法主要包括盾构法、矿山法、明挖法等,而每种方法都有其优缺点和适用条件。
其中,盾构法是一种施工过程中依靠盾构自身刚性支护,不断地在前方开挖土体,并在盾尾进行管片拼装和壁后注浆的隧道施工方法。
由于盾构法具有施工速度快、机械化程度高以及对周围环境扰动小等优势,因此成为了城市地铁建设采用较多的施工方法,并先后在上海、北京、广州、深圳、天津、南京等城市的地铁建设中被广泛应用。
深圳地铁自1996以来,已完成深圳轨道交通一二期工程1、2、3、5号线及4号线一期工程总计156公里线路的建设工作,并同步建成了罗湖、深圳北站、深圳东站、福田等重要交通枢纽。
目前轨道交通三期及三期修编6条线路、6条延长线,约260公里。
其中7、9、11号线于2012年陆续开工建设,计划2016年底前开通试运行。
5、9号线延长前海段、6、10号线前期工程于2014年底开工,目前主体工程正加快建设。
其中区间隧道主要采用盾构法施工,仅11号线就同时使用28台套各类盾构机。
深圳地铁路网规划见图1盾构隧道施工时指使用盾构机,一边控制开挖面使围岩不发生坍塌失稳,一边进行隧道衬砌,并及时向盾尾后面的开挖坑道周边与衬砌环外围之间的空隙中压注足够的浆液,以防止围岩松驰和地面下沉。
在盾构推进中可以从开挖面不断地排除适量的土体。
盾构隧道施工原理见图2。
2、盾构隧道施工风险研究的必要性地铁盾构法施工具有配套设备多、施工项目多、旌工技术复杂、不可预见的风险因素多以及对社会环境影响大等特点,因此地铁施工属于一项高风险的建设工程,隧道与地下工程与其他工程项目相比,具有隐蔽性、复杂性和不确定性等突出的特点,在我国地铁盾构法施工过程中,由于地质条件差、技术水平低以及管理力量薄弱等原因,施工事故频发,尤其是在城市繁华或周围环境复杂的地带,隧道与地下工程的施工及运营要涉及到过多的拆迁、对周围环境及管线的影响,如果决策考虑不周,在其规划、设计施工和运营中均会对社会和国家造成不必要的重大的损失和不可估量的社会负面影响。
盾构施工所面临的几大主要风险一、不良地质中盾构施工风险1、盾构处在承压水砂层中,由于正面压力设定不够高,缺少必要的砂土改良措施以及盾尾密封失效,而引起正面及盾尾涌砂涌水导致盾构突沉、隧道损坏;2、在盾构上部为硬粘土、下部为承压水砂层时,由于硬粘土过硬很难顶进,而承压水砂层则因受压不足不能疏干而发生液化流失导致盾构突沉;另因过硬粘土卡住密封舱搅拌棒使粘土与砂土不能拌合排出,致使盾构下部砂土液化由螺旋器流出,导致盾构底部脱空下沉;3、超越沼气层或其他原因形成的含气层时(如气压法施工的隧道或工作井附近),如未探明其范围和压力、未事先进行必要的释放、未采取防备毒气和燃爆的措施,开挖面喷出的气体及其携带的泥沙可能引起盾构姿态突变、隧道突沉以及毒气燃爆的灾害;4、对沿线穿越地层中的透镜体、洞穴或桩基、废旧构筑物等障碍物。
未事先查明并做预处理或备有应急措施,可能引起盾构推进突沉偏移,盾尾注浆流失,致使地面沉陷过大,盾构无法推进。
二、盾构进出洞风险盾构在工作井出洞或进洞时,需要凿除预留洞口处钢筋混凝土挡土墙,而后由盾构刀盘切削洞口加固土体进入洞圈密封装置,此过程中洞口土体及加固土体暴露时间较长,且受前期工作井施工方法及其施工扰动影响,容易因加固土体或洞圈密封装置的缺陷而发生洞口水土流失或坍方。
如遇饱和含水砂性土层或沼气以及其他原因形成的含气层(如气压法施工的隧道或工作井附近),更易发生向井内的大量涌沙涌水而导致盾构出洞磕头或盾构进洞突沉,甚至在盾构进洞突沉中拖带盾尾后一段隧道严重变形或坍垮,造成极严重的工程事故,并严重破坏周边环境。
由于盾构进出洞事故概率较高,其后果可能极为严重,因此对关系到盾构进出洞风险的每个细节必须严格仔细的采取可靠的风险控制措施。
三、盾构穿越江河水底的风险当盾构推进挤压导致前方土体隆起过多,或盾构处于饱和含水砂层中发生涌水突沉引起上方江底沉陷,产生涌水裂隙,致使大量河水由盾尾或开挖的缺陷处涌入而淹没隧道。
一般盾构区间1、下穿建筑物若建筑物桩基较深,侵入盾构隧道的洞身,应进行桩基拖换或拆除该建筑物并对桩基础进行处理,盾构机方可通过。
若建筑物桩基较浅,没有入侵盾构隧道,或者建筑物无桩基,盾构下穿该建筑物时,应采取以下防范措施:①、进一步详细勘察,确定建筑物桩基具体位置、桩径、桩长等基础资料,进一步明确区间隧道与桩基的位置关系。
②、根据工程实际情况,选择进行地表注浆或洞内注浆等措施。
③、盾构施工时,合理设置土压力值,保持正面的平衡,防止超挖和欠挖;④、穿越时降低推进速度,控制总推力,减少土层扰动。
⑤、穿越前调整好盾构姿态,穿越时减少纠偏次数及纠偏量,减少土体的扰动;⑥、保证一次穿过,不能中途换刀,如果实在避免不了在上部地段换刀,事先要准备充足的预案。
首先从盾构前部预留的超前加固装置对土仓上部及前方顶部的土体进行注浆加固,以保持开挖面稳定不出现塌方,然后再对土仓加气压后更换刀具。
⑦、加强建筑物的监控量测,根据建筑物的性质、结构形式、基础形式等建立不同的控制值,通过监控量测及时掌握建筑物的变形情况,及时调整施工工艺,确保建筑物保护管理在可控状态。
2、斜穿建筑物①、进一步详细勘察,确定建筑物桩基具体位置、桩径、桩长等基础资料,进一步明确区间隧道与桩基的位置关系。
②、根据实际情况,设计上考虑采取建筑物隔离、地表注浆或洞内加强注浆等技术措施;③、盾构施工时,合理设置土压力值,保持正面的平衡,防止超挖和欠挖;④、穿越时降低推进速度,控制总推力,减少土层扰动。
⑤、穿越前调整好盾构姿态,穿越时减少纠偏次数及纠偏量,减少土体的扰动;⑥、保证一次穿过,不能中途换刀,如果实在避免不了在上部地段换刀,事先要准备充足的预案。
首先从盾构前部预留的超前加固装置对土仓上部及前方顶部的土体进行注浆加固,以保持开挖面稳定不出现塌方,然后再对土仓加气压后更换刀具。
⑦、加强建筑物的监控量测,根据建筑物的性质、结构形式、基础形式等建立不同的控制值,通过监控量测及时掌握建筑物的变形情况,及时调整施工工艺,确保建筑物保护管理在可控状态。
3、下穿通道、河堤等构筑物二号线一期工程将下穿张公堤、下穿地下通道、长江大堤、伏虎山古墓群(文物重点保护地段)等特殊构筑物,为保证该类构筑物安全,需采取以下防范措施:①、根据需要,设计上出具针对性的加固措施,施工前先对构筑物进行预加固;②、严格控制平衡压力及推进速度,避免波动范围过大;③、施工时采取土体改良,确保土体和易性和流动性,保持进出土顺畅;④、正确确定注浆量和注浆压力,及时、同步进行注浆;⑤、注浆应均匀,根据推进速度的快慢适当地调整注浆的速率,尽量做到与推进速率相符;⑥、采取措施,提高搅拌浆的质量,保证压注浆液的强度;⑦、推进时,经常地压注盾尾密封油脂,保证盾尾钢丝刷具有密封功能;⑧、根据管线及周围地面状况,在管线与隧道之间或管线底部基础,采取钢板桩及注浆加固等形式隔断或减少盾构施工对其的影响;⑨、加强施工监测,实施动态信息化施工管理,盾构通过时专人监管构筑物,编制应急处理措施。
4、下穿或斜穿管线(涵洞)①、从设计上考虑管线针对性加固措施,施工前进行加固处理。
②、加强施工过程监测,在区间隧道施工过程中,必须对地面、土体以及管线实施全过程监测、及时提供监测措施信息和预报,以便评估盾构施工对地下管线的影响程度,预报可能发生的安全隐患。
③、加强施工过程控制,合理优化盾构施工参数,严格控制每一施工步序的地表沉降值或水平位移值。
5、盾构进出洞①、从设计上考虑,采取针对性强、可靠的始发井端头地层加固和洞门密封措施包括备用技术措施;②、严格过程管理,确保地层加固和洞门密封系统的施工质量,加固体必须进行抽芯检查,如不满足始发要求,应采取备用技术措施;③、在凿除围护结构外排钢筋时,全体工作人员就位,一旦钢筋全部割断,清理完毕后,马上推进,刀盘迅速切入土体,出洞过程结束。
在此过程中加强地面监测,若发现地面沉降偏大,有塌方预兆时及时通报并应立即采取应急措施,杜绝工程事故发生;④、若发生洞门喷水,全体人员立刻抢险,用泥袋堵住水源,或用钢板封住盾构外壳与洞门间隙,以减少涌水量,盾构机快速推进,一旦盾构机脱离洞门,马上进行洞门封堵,用预先加工好的洞门钢板将四周空隙全部焊接封住,再进行双液注浆回填。
6、大型设备吊装盾构工程需要吊装大型盾构掘进设备,吊装前如不对地面承载能力、起重机械和分块吊装等进行精确分析、计算以及方案论证,而直接进行吊装做业,容易造成重大吊装事故。
防范措施:①、针对盾构机的功能部件和选用的吊装设备的起吊能力编制盾构分块组装、解体方案,组织相关专家进行方案评审并按程序报批;②、总承包商设计单位根据吊装荷栽进行地面承载力计算和车站围护结构进行验算,按计算结果进行地基处理,确保吊装区域地面稳定;③、严格吊点焊接操作,确保焊接质量;④、设备吊装过程严格按照国家规定的设备吊装操作规程操作。
7、联络通道施工①、每座联络通道必须进行工程水文地质勘察,工程水文地质勘察工作深度等必须满足联络通道工程施工和设计要求;②、设计单位须根据工程本身特点,并结合联络通道工程所处的工程水文地质勘察情况及周边环境情况,进行专项设计,明确联络通道工程可供选择的、安全度较高的施工工艺或工法,同时根据不同的施工工艺或工法明确不同的技术控制指标或参数,对施工安全防护设施进行专业化设计;③、制定联络通道专项设计、施工方案后,组织相关地铁专家进行专项论证并按程序审批后实施;④、方案实施前,施工单位对联络通道工程可能出现的风险进行分析和策划,对可能出现的风险落实防范或应急措施并进行相应演练;⑤、联络通道加固、开挖和构筑施工选择由具有专业资质和过江隧道联络通道施工经验的单位实施;⑥、规定监理单位对施工过程进行全方位、全过程的旁站式监控,严格落实施工专项方案中的各项工作和措施,及时发现和处置过程中出现的问题,做好监理记录。
⑦、监测单位严格按照监测方案实施监测,加强对监测数据的分析何异常数据的判读,加强对报警状态下数据传输的管理,确保监测数据的及时、正确、有效;同时,联络通道实施远程监控,各参建单位实时掌控现场情况,一旦出现任何突发事件,以最快的速度起动应急预案;⑧、冻结法施工应制定专项风险防范措施。
8、不良地质条件(可能存在的溶洞、上软下硬岩层、地质断层等)①、通过补充性地质勘察,进一步准确掌握不良地质条件位置、埋深等必要参数;②、对于溶洞、孔洞、地质断层等不良地质,从设计上考虑进行填充技术处理;③、盾构机应配备地质雷达探测系统以及超前注浆系统,以便实时监测前方土体情况,便于提前处理不良地质;④、盾构应配备硬岩切削刀具,通过典型上软下硬地层时,严格控制出土量、土仓压力,确保同步注浆量,盾构应快速通过;⑤、加强施工监测,实施动态信息化施工管理,盾构通过时专人监管,编制应急处理措施。
过江盾构区间(个性风险)1、地质预测预报准确性风险由于地质勘探的局限性,加之隧道从江底穿过,通过深水进行地质勘测比在地面的地质勘测更困难、造价更高,而且准确性相对较低,所以遇到未预测到的不良地质和地下障碍物的风险更大。
因此,施工前及施工中必须通过地质补勘以及配置超前地质预报等手段对隧道工作面前方地层进一步探明。
①、工程施工前,通过补充地质钻孔、双频回声测深仪和地下水位、流速、流向观测,进一步查清过江隧道的地质、水文地质条件和覆土厚度,为盾构机选型、盾构掘进参数的选取及制定相应的辅助措施提供第一手准确资料;②、盾构机本身具有超前地质钻机及超声波等超前地质探测装置,在施工中进一步对工作面前方地层进行探明,以便早发现、早处理;③、盾构机选型时应充分考虑地质勘测资料不准确性的影响,各功能参数选择要留有余地。
2、盾构机适应性和可靠性(即盾构选型)风险①、认真研究工程地质和水文地质条件,针对工程特点,明确工程施工对盾构机性能和功能的要求,盾构机设备配置必须考虑突发事故以及特殊地质条件的处理;②、通过补充地质勘探,进一步查明盾构隧道特别是过江段的地层特性、江底覆土厚度、隧底水压等地质、水文地质条件,为盾构选型提供尽可能详实的地质资料;③、针对过江地段地层特性,进行大量的研究计算并借鉴国内其他城市地铁盾构隧道同种地层掘进时刀具磨损经验,重点做好盾构刀盘和刀具的设计,确保盾构过江不换刀;④、盾构机必须具有可靠的舱压选择、控制、调节性能,通过与泥浆系统的配合,很好的实现泥水平衡,确保开挖面稳定下的顺利掘进;⑤、盾构机必须配备超前超声波探测、超前地质钻机等超前地质预报系统,加强施工过程中的地质预报,防患于未然;⑥、盾构机必须配置安全可靠的密封系统,能承受高达0.6MPa的高水压;⑦、为满足长距离及穿越长江掘进要求,盾构机各系统,各部件必须有较高的可靠性,且故障少,维修方便、使用寿命长。
⑧、利用隔栅防止过大的物体进入排泥管线,采用较大的管径可确保进入管线的物体排出并设计合理的管内流速防止管内泥砂沉淀,降低管道堵塞风险。
3、盾构开挖面失稳、江底冒浆①、正确地计算选择合理的舱压;②、不同地质条件配置相应泥浆配合比,严格控制土仓压力,使泥浆压力同开挖面土层始终动态平衡;③、控制推进速度和泥渣排土量及新鲜泥浆补给量;④、超浅覆土段,一旦出现冒顶、冒浆随时开启气压平衡系统;⑤、利用探测装置定时进行土体崩塌检查;⑥、地表沉降与信息反馈应及时;⑦、开挖面水压信号检查,确保正常采集数据。
4、盾尾密封和主驱动密封系统失效①、高水压下,地层渗透系数较大情况下,隧道盾尾水密封压力要达到1.2Mpa;②、盾构机设置足够的密封刷,有紧急止水装置,集钢弹簧、钢丝刷、不锈钢金属网于一体;③、尽量避免同步注浆浆液对钢丝刷的损害;④、设备应具备气压保护下能更换维修盾尾密封系统;⑤、严格按要求对盾尾密封进行油脂填充,针对漏水、渗水、漏泥浆部位集中压注盾尾油脂⑥、盾构机应配置安全可靠的主轴承密封系统;⑦、盾构机应配备紧急密封装置,发生盾尾漏水时,能立即堵水。
5、盾构机穿越中间风井①、在盾构机到达中间风井前,对风井洞门端头进行高压旋喷加固,考虑到旋喷加固深度过大,效果比较难以把握,必要时采用冻结法进行端头二次补充加固并应检验加固效果;②、分层次凿除穿越区连续墙,期间严密关注地面沉降和洞口加固土体变化;③、边凿除,边回填塑性混凝土至基坑底以上13m;④、盾构机进入中间风井,穿越塑性混凝土层,同步注浆采用水泥—水玻璃浆液,加大注浆压力,确保将管片外环形缝隙填充密实;⑤、盾构机通过中间风井后,通过管片二次注浆孔进行二次补充加固。
6、江底段可能换刀①、盾构过江前预先处理过的稳定的地层中,全面检修盾构机并根据磨损情况更换全套新耐磨刀具,确保过江段不换刀,但预留换刀条件;②、为了掌握掘进中刀头的磨损状况,配置一套特殊的系统来对盾构机在不同地层中掘进时刀头磨损的进行监测;③、盾构机配备超前预注浆系统,盾构所有的可更换刀具均能够从刀盘的后面安全、快速进行更换;④、盾构机配有人员仓及保压装置,以满足人员带压进仓需要;⑤、引进国外先进换刀技术和人员或签订换刀协议,必要时予以实施。