反比例函数检测卷3
- 格式:docx
- 大小:224.62 KB
- 文档页数:4
第十七章《反比例函数》单元过关检测题班级 姓名一、填空题:(每题3分,共30分)。
1、已知反比例函数y=xk的图像经过点(3 ,—2),则此函数的解析式为____________;当x>0时 y 随x 的增大而____________2、写出一个具有性质“在每个象限内y 随x 的增大而减小”的反比例函数的表达式为_______3、反比例函数422)1(---=m mx m y 当x <0时 y 随x 的增大而增大,则 m的值是________,它图象位置在4、反比例函数y=8x的图像与一次函数y=kx+k 的图像在第一项限交与点B(4,n),则k=______ n=_____ . 5、反比例函数y= ||k x,若点A (x 1,y 1),B(x 2,y 2)在此图像的同一分支上,且x 1<x 2,,则y 1_____y 2,6、若一个长方形的面积是82cm ,则其长y(cm) 与宽x(cm)之间的关系是____________7、点A (2,1)在反比例函数y=kx的图像上,当1<x<4时,y 的取值范围是________。
8、已知 反比例函数)0(≠=k xky 当x>0 时,y 随x 增大而增大 ,则k 0, 一次函数 y=kx —k 的图像经过_________象限。
9、如图,点A、B是双曲线3y x=上的点,分别经过A、B两点,向x 轴y 轴作垂线,若S阴影=1,则12s s += 。
10、反比例函数xy 6=的图像上横坐标和纵坐标都是整数的点的个数是_____________二、选择题:(每题3分,共30分)。
11.已知点M(—2,3)在双曲线y=kx上,则下列各点一定在双曲线上的是 ( )A (3 ,—2)B (—2 ,—3)C (2 ,3)D (3 ,2)12.一个圆柱的侧面展开图是一个面积为4个平方单位的长方形,那么这个圆柱的高h 和底面半径r 之间的函数关系是 ( )A 正比例函数B 反比例函数C 一次函数D 以上都不是 13.已知反比例函数y=2k x-的图k 的取值范围是( )A. k>2B. k ≥ 2C. k ≤ 2D. k<2 14.已知反比例函数y=kx的图像经过点P (—1,2),则这个函数图像位于( )A 第二、三象限B 第一、三象限C 第三、四象限D 第二、四象限 15.三角形的面积为24cm ,底边上的高()y cm 与底边()x cm 之间的函数关系图象大致应为( )16.当k ≠0时,函数y=kx+k 与y=kx在同一坐标系中的图像大致是( )17.已知三点A(x,y)、B (a,b)、C (1,-2)都在反比例函数图像y=kx上,若x<0,a>0,则下列式子正确的是 ( )A. y<b<0B. y<0<bC. y>b>0D. y>0>b 18.已知点(a,—1)、 (b, — 254)、 (c,-25)在函数y= —1x 的图像上,则下列关系式正确的是 ( )A .c>b>a B.a>b>c C.a>c>b D.b>c>a 19.已知反比例函数y=kx的图像在第二、四象限,则一次函数y=kx-5的图像不经过( )A.第一象限 B 。
第1章《反比例函数》单元检测题2023-2024学年九年级上册数学湘教版一、单选题(共10小题,满分40分)1.函数是反比例函数,则a 的值是( )A .B .1C .D .2.反比例函数的比例系数是( )A .-1B .-2C .D .3.如图,反比例函数(,且k 为常数)的图象与直线(,且a 为常数)交于、B 两点,则点B 的坐标为( )A .B .C .D .4.反比例函数y =的图象,当x <0时,y 随x 的增大而增大,则k 的取值范围为( )A .k ≥2B .k ≤﹣2C .k >2D .k <﹣25.如图,在平面直角坐标系中,点为坐标原点,平行四边形的顶点在反比例函数的图像上,顶点在反比例函数的图像上,顶点在轴的负半轴上.若平行四边形的面积是5,则的值是( )A .1B .C .2D .36.如图,点是反比例函数图象上任意一点,轴于,点是轴上的动点,则的面积为( )()221ay a x -=-1-1±12y x=-12-12ky x=0k ≠y ax =0a ≠()2,3A -()3,2-()2,3-2kx-O OBAD A 2y x=-B ky x=D x OBAD k 32A 2y x=(0)x >AB y ⊥B C xA .1B .2C .4D .不能确定7.如图,等边△ABC 的边长是2,内心O 是直角坐标系的原点,点B 在y 轴上.若反比例函数y=(x >0),则k 的值是( )A BCD8.一辆汽车匀速通过某段公路,所需时间(h )与行驶速度(km/h )满足函数关系 ,其图象为如图所示的一段双曲线,端点为和,若行驶速度不得超过60 km/h ,则汽车通过该路段最少需要( )A .分钟B .40分钟C .60分钟D .分钟9.如图,在平面直角坐标系中,点A 在第一象限,AB ⊥y 轴于点B ,函数的图象与线段AB 交于点C ,且AB=3BC ,若△AOB 的面积为12,则k 的值( )A .4B .6C .8D .12kxv kt v=(0)k >(40,1)A (,0.5)B m 232003(0,0)k y k x x=>>10.如图,点A 是双曲线在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为( )A .y=﹣xB .y=﹣xC .y=﹣D .y=﹣二、填空题(共8小题,满分32分)11.如图,在平面直角坐标系中,直线y =3x +3与x 轴、y 轴分别交于A 、B 两点,以线段AB 为边在第二象限内作正方形ABCD ,点C 恰好落在双曲线y =上,则k 的值是 .12.直线与双曲线的图象交于A 、B 两点,设A 点的坐标为,则边长分别为m 、n 的矩形的面积为,周长为.13.如果点,,都在反比例函数的图象上,那么,,的大小关系是 (用“<”连接).14.若点是一次函数与反比例函数图像的交点,则的值为 .15.已知反比例函数图像上三点的坐标分别是、、,且,试判断,,的大小关系 .16.已知点A 是双曲线y=在第三象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为一边作等边三角形ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .4y x=14124x2xkx5y x =-4(0)y x x=>(,)m n ()12,A y -()21,B y -()32,C y 10y x=-1y 2y 3y (,)a b 263y x =-+9y x =32a b +()0ky k x=>()11,x y ()22,x y ()33,x y 1230x x x <<<1y 2y 3y17.在平面直角坐标系xOy 中,已知反比例函数满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线P ,且k=18.在平面直角坐标系中,对于不在坐标轴上的任意一点,我们把点称为点A 的“倒数点”.如图,矩形的顶点C 为,顶点E 在y 轴上,函数的图象与交于点A .若点B 是点A 的“倒数点”,且点B 在矩形的一边上,则点B 的坐标为.三、解答题(共6小题,每题8分,满分48分)19.已知x ,y 满足下表.x … 14…y…41…(1)求y 关于x 的函数表达式:(2)当时,求y 的取值范围.20.如图,已知反比例函数与一次函数的图象相较于点、,点的纵坐标为3,点的纵坐标为-2.(1)求一次函数的表达式.(2)连接、,求.(3)请直接写出的解集.2(0)ky k x=≠y x =-+|OP (),A x y 11,B x y ⎛⎫⎪⎝⎭OCDE ()3,0()20y x x =>DE OCDE 2-1-2-4-24x <<6y x=y kx b =+A B A B AO BO AOB S V 6kx b x>+21.已知函数和函数(的常数)的图象交于点.(1)求的函数关系式;(2)当时,比较与的大小(直接写出结果).22.已知一次函数的图像与反比例函数的图像相交于点,.(1)求一次函数的表达式,并在图中画出这个一次函数的图像;(2)过B 作轴,垂足为C 点,点D 在第一象限的反比例函数图像上,连接,若,求点D 的坐标;(3)直接写出关于x 的不等式的解集.23.如图,在平面直角坐标系中,函数的图象与函数的图象相交于点,并与轴交于点.点是线段上一点,与的面积比为.(1)填空: , ;(2)求点的坐标;(3)若将绕点顺时针旋转,使点的对应点落在轴正半轴上,得到,判断点是否在函数的图象上,并说明理由.24.某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55~0.75元/度之间,经测算,若电14y x =-+2ky x=0k ≠()1,A m 2y 23x <<1y 2y 0y kx b k =+≠()4y x=1A m (,)3B n -(,)0y kx b k =+≠()BC y ⊥CD 4BCD S =V 4kx b x+≥y x b =+(0)k y x x=>(1,4)B x A C AB OAC V OAB △1:4k =b =C OAC V O C C 'x OA C ''V A '(0)ky x x=>价调至x元/度,则本年度新增用电量y(亿度)与(x-0.4)成反比例.又知当x=0.65时,y=0.8.(1)求y与x之间的函数解析式;(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]参考答案:1.A 2.C 3.D 4.C 5.D 6.A 7.A 8.B 9.C 10.C 11.-1212.41013.y 3< y 1<y 214.215.16.y=﹣.17.18.(,1)(3,)19.(1)(2)当时,20.(1);(2);(3)或21.(1);(2).22.(1)一次函数的解析式为(2)213y y y <<15x12164y x=24x <<12y <<1y x =+523x <-02x <<23y x=12y y >31y x =+4(,3)3(3)或23.(1)4,3(2)(3)点不在函数的图象上24.(1) y =;(2) 当电价调至0.6元/度时,本年度电力部门的收益将比上年度增加20%.403x -<<1x >()2,1-A 'ky x=()0x >152x -。
反比例函数单元检测题 2011.4一、选择题:(每题3分,共30分) 1、下列函数中,反比例函数是( ) (A ) 1)1(=-yx (B ) 11+=x y (C ) 21xy=(D ) xy31=2、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )3、若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( )(A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 4、若反比例函数22)12(--=m xm y的图像在第二、四象限,则m 的值是( ) (A )-1或1 (B )小于21 的任意实数 (C ) -1 (D) 不能确定5、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) (A )(-a ,-b ) (B )(a ,-b ) (C )(-a ,b ) (D )(0,0)6、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数k yx=(k>0)的图象上,则1y 、2y 、3y 的大小关系是( )(A )132y y y >>(B )312y y y >>(C )213y y y >> (D )123y y y >>7、如图,A 为反比例函数k y x=图象上一点,AB 垂直x 轴于B 点,若AOB S ∆=5,则k 的值为( )(A ) 10 (B ) 10- (C ) 5- (D )25- 8、在同一直角坐标系中,函数y=kx-k 与(0)k yk x=≠的图像大致是( )9、如图是三个反比例函数312,,k k k yy y x x x===,在x 轴上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( ) (A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 110、在同一直角坐标平面内,如果直线1yxk =与双曲线2k yx=没有交点,那么1k 和2k 的关系一定是( ) (A) 1k 、2k 异号(B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D)1k <0, 2k>0二、填空题:(每题3分,共18分) 11、已知22)1(--=a xa y 是反比例函数,则a=____ .12、已知P 为反比例函数y=xk 上的一点,过P 点向x 轴、y 轴分别作垂线,垂足分别为A 、B ,则S ABCD 矩形= 13、在反比例函数xk y1+=的图象上有两点11()x y ,和22()x y ,,若x x 120<<时,y y 12>,则k 的取值范围是 .14、.已知圆柱的侧面积是π102cm,若圆柱底面半径为rcm,高为hcm,则h 与r 的函数关系式是 。
初中数学(人教版)九年级下册单元检测卷及答案—反比例函数一、选择题(每小题3分,共30分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( ) A .y =1x B .y =-1x C .y =2x D .y =-2x2.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )3.在反比例函数y =k -3x 图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >3 B .k >0 C .k <3 D .k <04.点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .±35.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k≠0)的图象大致是( )6.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.如图,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >28.已知反比例函数y =kx (k <0)图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( )A .正数B .负数C .非负数D .不能确定9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( ) A .2 B .4 C .6 D .8第6题图) ,第7题图) ,第9题图),第10题图)10.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A .(54,0)B .(74,0)C .(94,0)D .(114,0)点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题(每小题3分,共24分)11.写出一个图象在第二、四象限的反比例函数解析式:____.12.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A (2,y 1),B (5,y 2),则y 1与y 2的大小关系为____.13.双曲线y=kx和一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=____.14.若点A(m,2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是____.15.直线y=ax(a>0)与双曲线y=3x交于A(x1,y1),B(x2,y2)两点.则4x1y2-3x2y1=____.16.点A在函数y=6x(x>0)的图象上,如果AH⊥x轴于点H,且AH∶OH=1∶2,那么点A的坐标为____.17.在平面直角坐标系xOy中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=kx的图象的一个交点为A(a,2),则k的值等于____.18.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=k1x和y=k2x的一支上,分别过点A,C作x轴的垂线,垂足分别为M和N,则有以下的结论:①AMCN=|k1||k2|;②阴影部分面积是12(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是____.(把所有正确的结论的序号都填上)三、解答题(共66分)19.(6分)已知y=y1+y2,其中y1与3x成反比例,y2与-x2成正比例,且当x=1时,y=5;当x=-1时,y=-2.求当x=3时,y的值.20.(8分)已知点P(2,2)在反比例函数y=kx(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.21.(10分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y万元.预计x年后结清余款,y与x之间的函数关系如图,试根据图象所提供的信息回答下列问题:(1)确定y与x之间的函数表达式,并说明超超家交了多少万元首付款;(2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元?(3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?22.(10分)如图是反比例函数y=kx的图象,当-4≤x≤-1时,-4≤y≤-1.(1)求该反比例函数的表达式;(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.23.(10分)如图是函数y=3x与函数y=6x在第一象限内的图象,点P是y=6x的图象上一动点,PA⊥x轴于点A,交y=3x的图象于点C,PB⊥y轴于点B,交y=3x的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.24.(10分)如图,已知反比例函数y=k1x的图象与一次函数y=k2x+b的图象交于A,B两点,A点横坐标为1,B(-12,-2).(1)求反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使△AOP为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(12分)如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(k>0,x>0)的图象上,点P(m,n)是函数y=kx(k>0,x>0)的图象上任一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求点B的坐标和k的值;(2)当S=92时,求点P的坐标;(3)写出S关于m的函数表达式.参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.A 7.D 8.D 9.D10.C点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题11.y =-1x (答案不唯一) 12.y 1<y 2 13.-2 14.x≤-2或x >015.-3 16.(23,3) 17.2 18.①④ 三、解答题19.解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =443. 20.解:(1)-43;(2)43<y <4.21.解:(1)12×5=60(万元),100-60=40(万元),∴y =60x,超超家交了40万元的首付款.(2)把x =10代入y =60x得y =6,∴每年应向银行交付6万元.(3)∵y≤2,∴60x ≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款.22.解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx得k =4,∴该反比例函数的表达式为y =4x .(2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N 的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN≥4 2.23.(1)证明:∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m ),∵点D 在函数y =3x上,BP ∥x轴,∴设点D 坐标为(3m ,m ),由题意,得BD =3m ,BP =6m =2BD ,∴D 是BP 的中点.(2)解:S 四边形OAPB =6m ·m =6,设C 坐标为(x ,3x ),D 点坐标为(3y ,y ),S △OBD =12·y ·3y =32,S△OAC=12·x·3x =32,S 四边形OCPD =S 四边形PBOA -S △OBD -S △OAC =6-32-32=3. 24.解:(1)反比例函数为y =1x ,一次函数为y =2x -1.(2)存在,点P 的坐标是(1,0)或(2,0).25.解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S 正方形OABC =x B ·y B =9.∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9.(2)①∵P (m ,n )在y =9x上,当P 点位于B 点下方时,如图(1),∴S 矩形OEPF =mn =9,S 矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32).②当P 点位于B 点上方时,如图(2),同理可求得P 2(32,6).(3)①如图(1),当m≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m,∴S =S 矩形OEP 1F -S 矩形OAGF=9-3n =9-27m .②如图(2),当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m.。
湘教版九年级数学上册第一章反比例函数单元评估检测试卷一、单选题(共10题;共30分)1.下列函数中,变量y是x的反比例函数的是()A. y=1x2B. y=-1xC. y=2x+3D. y=1x-12.反比例函数y=kx的图象经过点A(−1, 2),则当x>1时,函数值y的取值范围是()A. B. C. D.3.反比例函数y=-15x的图像在( )A. 第一、二象限B. 第二、三象限C. 第一、三象限D. 第二、四象限4.若反比例函数y= kx图象经过点(5,﹣1),该函数图象在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限5.下列四个点,在反比例函数y=6x图象上的是()A. (2,-3)B. (2,3)C. (-1,6)D. (-12,3)6.若A(a,b),B(a-2,c)两点均在函数y=1x的图象上,且a<0,则b与c的大小关系为()A. b>cB. b<cC. b=cD. 无法判断7.对于反比例函数y=3x,下列说法正确的是A. 图象经过点(1,﹣3)B. 图象在第二、四象限C. x>0时,y随x的增大而增大D. x<0时,y随x增大而减小8.在同一平面直角坐标系中,函数y=x+k与y= kx(k为常数,k≠0)的图象大致是()A. B. C. D.9.已知点A(x1,3)、B(x2,6)都在反比例函数y=−3x的图象上,则下列关系式一定正确的是()A. x1<x2<0B. x1<0<x2C. x2<x1<0D. x2<0<x110.如图,函数y1=k1x与y2=k2x的图象相交于点A(1,2)和点B,当y1>y2时的自变量x的取值范围是()A. x>1B. ﹣1<x<0C. ﹣1<x<0或x>1D. x<﹣1或0<x<1二、填空题(共10题;共30分)11.若反比例函数y=k的图象经过点(﹣1,2),则k的值是________.x12.如图,反比例函数y= 2的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面x积等于________个面积单位.13.如图,它是反比例函数y= m−5图象的一支,根据图象可知常数m的取值范围是x________.(k>0)上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴14.如图,A、B是双曲线y=kx于点C,若S△AOC= 2√6.则k的值是________.15.已知晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是________ .(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长16.如图,点A、B在反比例函数y= kx线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.17.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F的图象上,OA=1,OC=6,则正方形ADEF的边长为________.在AB上,点B、E在反比例函数y= kx18.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数y= 3x (x >0),y=﹣6x (x >0)的图象交于A 点和B 点,若C 为y 轴任意一点.连接AB 、BC ,则△ABC 的面积为________.19.如图,点A 是双曲线y= 1x (x >0)上的一动点,过A 作AC ⊥y 轴,垂足为点C ,作AC 的垂直平分线交双曲线于点B ,交x 轴于点D .当点A 在双曲线上从左到右运动时,对四边形ABCD 的面积的变化情况,小明列举了四种可能:①逐渐变小;②由大变小再由小变大;③由小变大再由大变小;④不变.你认为正确的是________.(填序号)20.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC=60°,顶点C 的坐标为(m, 3√3 ),反比例函数y =kx 的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是________三、解答题(共9题;共60分)21.已知y =y 1−y 2,y 1与x 成反比例,y 2与(x −2)成正比例,并且当x=-1时,y=-15,当x=2时,y= 32;求y 与x 之间的函数关系式.22.如图所示,Rt △AOB 中,∠AOB=90°,OA=10,点B 在反比例函数y=12x 图象上,且点B 的横坐标为3. (1)求OB 的长;(2)求过点A的双曲线的解析式.23.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=12x的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.24.反比例函数y=kx 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=kx的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=kx的图象上,求t的值.25.已知A(﹣4,2),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向上平移n个单位长度,交y轴于点C,若S△ABC=12,求n的值.26.如图,已知反比例函数y = mx的图象经过点A(1,-3),一次函数y =kx +b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.试确定点B的坐标.27.如图,Rt△ABO的顶点A是双曲线y=kx 与直线y=−x−(k+1)在第二象限的交点,AB⊥x轴于B且S△ABO= 32。
第11章 反比例函数 检测卷(满分:100分 时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分)1.下列各点中在反比例函数y =6x的图像上的是 ( ) A .(-2,-3) B .(-3,2) C .(3,-2) D .(6,-1) 2.(2013.常州)下列函数中,图像经过点(1,-1)的反比例函数关系式是 ( )A .y =1x -B .y =1xC .y =2xD .y =2x-3.(2013.青海)在同一直角坐标系中,函数y =2x 与y =-1x的图像大致是( )4.已知反比例函数y =bx(b 为常数),当x>0时,y 随x 的增大而增大,则一次函数y =x +b 的图像不经过第_______象限. ( ) A .一 B .二 C .三 D .四5.小兰画了一个函数y =a x -1的图像如图,那么关于x 的分式方程ax-1=2的解是( )A .x =1B .x =2C .x =3D .x =46.一次函数y 1=kx +b(k ≠0)与反比例函数y 2=mx(m ≠0)在同一直角坐标系中的图像如图所示,若y 1>y 2,则x 的取值范围是 ( ) A .-2<x<0或x>1 B .x<-2或0<x<1 C .x>1 D .-2<x<1 7.(2013.苏州)如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =kx(x>0)的图像经过顶点B ,则k 的值为 ( ) A .12B .20C .24D .328.(2013.孝感)如图,函数y =-x 与函数y =-4x的图像相交于 A 、B 两点,过A 、B 两点分别作y 轴的垂线,垂足分别为点C 、D , 则四边形ACBD 的面积为 ( ) A .2 B .4 C .6 D .8二、填空题(本大题共10小题,每小题2分,共20分) 9.菱形的面积为10,两条对角线长分别为x 和y ,则y 与x 之间的函数关系式为_______. 10.若反比例函数的图像经过点P(-1,4),则它的函数关系式是_______.11.如图,反比例函数的图像位于第一、三象限,其中第一象限内的图像经过点A(1,2),请在第三象限内的图像上找一个你喜欢的点P ,你选择的P 点坐标为_______.12.若反比例函数y =(m -1)25m x 的图像在第二、四象限,则m 的值是_______.13.已知反比例函数y =2x ,当-4≤x ≤-1时,y 的最大值是_______. 14.点P 在反比例函数y =kx(k ≠0)的图像上,点Q(2,4)与点P 关于y 轴对称,则反比例函数的解析式为_______.15.若点A(x 1,y 1)和B(x 2,y 2)在反比例函数y =2x的图像上,且0<x 1<x 2则y 1、y 2的大小关系是y 1_______y 2.16.(2013.贵阳)直线y =ax +b(a>0)与双曲线y =3x相交于A(x 1,y 1),B(x 2,y 2)两点,则x 1y 1+x 2y 2的值为_______.17.(2013.鄂州)已知正比例函数y =-4x 与反比例函数y =kx的图像交于A 、B 两点,若点A 的坐标为(x ,4),则点B 的坐标为_______. 18.如图,点A(x 1,y 1)、B(x 2,y 2)都在双曲线y =kx(x>0)上,且x 2-x 1=4,y 1-y 2=2;分别过点A、B向x轴、y轴作垂线段,垂足分别为C、D、E、F,AC与BF相交于G点,四边形FOCG的面积为2,五边形AEODB的面积为14,那么双曲线的解析式为_______.三、解答题(第19题8分,第20题8分,第21题8分,第22题8分,第23题12分,第24题12分,共56分)19.一定质量氧气,它的密度p(kg/m3)是它体积V(m3)的反比例函数,当V=10 m3时,p =1.43 kg/m3.求:(1)p与V的函数关系式;(2)求当V=2 m3时氧气的密度p.20.如图,正比例函数y=kx(x≥0)与反比例函数y=mx(x>0)的图像交于点A(2,3).(1)求k、m的值;(2)写出正比例函数值大于反比例函数值时自变量x的取值范围.21.已知y是x的反比例函数,当x=-2时,y=6.(1)求这个反比例函数的关系式;(2)请判断点B(-3,-4)是否在这个函数图像上,并说明理由;22.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图像交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.23.(2013.烟台)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上.点B的坐标为(4,2),直线y=-12x+3交AB、BC分别于点M.N,反比例函数y=kx的图像经过点M、N.(1)求反比例函数的解析式,(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.24.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降,如图,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?参考答案一、1.A 2.A 3.D 4.B 5.A 6.A 7.D8.D二、9.y=20x10.y=-4x11.答案不唯一12.-213.-1214.y=-8x15.> 16.6 17.(1,-4) 18.y=6 x三、19.(1)p=14.3V(2)7.15 kg/m320.(1)k=32、m=6(2)x>221.(1)y=12x(2)不在22.(1)反比例函数的解析式为:y=8x直线AB的解析式为y=x+2;(2)223.(1)y=4x(2)(0,4)或(0,-4).24.(1)y=322xx>7.(2)1.5(km/h).(3)73.5小时。
第二十六章检测卷(120分钟150分)一、选择题(本大题共1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y 轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.:16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?第二十六章检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.解:∵y=x2m-1是反比例函数,∴2m-1=-1,解得m=0.16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?解:∵由题意得xy=1200,∴y=,∴y是x的反比例函数.四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.解:(1)设反比例函数解析式为y=,把A点坐标(2,-3)代入得k=2×(-3)=-6,所以反比例函数的解析式为y=-.(2)把P点坐标代入y=-,得3×=-6,解得a=-4,把Q点坐标(-5,b)代入y=-,得-5b=-6,解得b=,所以a+=-4+=-4+1=-3.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.解:(1)∵反比例函数y=的图象经过点C(3,m),∴m=4.作CD⊥x轴于点D,由勾股定理,得OC==5,∴菱形OABC的周长为20.(2)作BE⊥x轴于点E,∵BC=OA=5,OD=3,∴OE=8.又∵BC∥OA,∴BE=CD=4,∴B(8,4).五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.解:如图,过D点作GH⊥x轴,过A点作AG⊥GH,过B点作BM⊥HC于点M.设D点坐标为,∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-x-1-,x=-2,∴D点坐标为(-2,-3),CH=DG=BM=1-=4,-∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E点坐标为--,∴EH=2-,∴CE=CH-HE=4-,∴S△CEB=CE·BM=×4=7.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.解:(1)将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y=.(2)∵B(3,2),点B与点C关于原点O对称,∴C点坐标(-3,-2).∵BA⊥x轴于点A,CD⊥x轴于点D,∴A点坐标(3,0),D点坐标(-3,0).∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(-4,-3),∴k=-4×(-3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),点C(6m,y2),∴y1=,y2=,∵y1-y2=4,∴=4,∴m=1.(2)设BD与x轴交于点E.∵点B,点C,∴D点坐标为,BD=.∵三角形PBD的面积是8,∴BD·PE=8,∴·PE=8,∴PE=4m,∵E点坐标为(2m,0),点P在x轴上,∴点P的坐标为(-2m,0)或(6m,0).七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)函数解析式为y=.表格中数从左至右:300,50.(2)2104-(30+40+48+50+60+80+96+100)=1600.当x=150时,y==80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)1600-80×15=400(千克).400÷2=200(千克).即如果正好用2天售完,那么每天需要售出200千克.当y=200时,x==60.答:新确定的价格最高不超过60元/千克才能完成销售任务.八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?解:(1)∵--=1+-,∴a=-4.(2)---------=-3--,∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y=------=3+-,∴将y=的图象向右移动2个单位长度得到y=-的图象,再向上移动3个单位长度得到y-3=-,即y=--.。
第26章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列函数中,y 与x 成反比例的是( B )A .y =x 2B .y =14xC .y =3x 2D .y =1x+12.(黔西南州中考)对于反比例函数y =-5x ,下列说法错误的是( C )A .图象经过点(1,-5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大3.(德州中考)已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y =a 2+1x (a 是常数)的图象上,且y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系为( D )A .x 2>x 1>x 3B .x 1>x 2>x 3C .x 3>x 2>x 1D .x 3>x 1>x 2 4.(2022·贵阳)如图,在平面直角坐标系中有P ,Q ,M ,N 四个点,其中恰有三点在反比例函数y =k x (k >0)的图象上.根据图中四点的位置,判断这四个点中不在函数y =kx 的图象上的点是( C )A .点PB .点QC .点MD .点N第4题图第5题图第8题图5.(2022·黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =3x 的图象上,顶点A 在反比例函数y =kx 的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( D )A .2B .1C .-1D .-2 6.(2022·宜昌)已知经过闭合电路的电流I (单位:A)与电路的电阻R (单位:Ω)是反比例I /A 5 … a … … … b … 1 R /Ω2030405060708090100A.a >7.(2022·德阳)一次函数y =ax +1与反比例函数y =-ax 在同一坐标系中的大致图象是( B )8.(朝阳中考)如图,O 是坐标原点,点B 在x 轴上,在△OAB 中,AO =AB =5,OB =6,点A 在反比例函数y =kx(k ≠0)图象上,则k 的值( A )A.-12 B .-15 C .-20 D .-309.(临沂中考)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系,如图为表示镭的放射规律的函数图象,据此可计算32 mg 镭缩减为1 mg 所用的时间大约是( C )A.4860年 B .6480年 C .8100年 D .9720年第9题图第10题图第14题图10.如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y =x 上,点A 的横坐标为1,正方形ABCD 的边分别平行于x 轴,y 轴.若双曲线y =kx 与正方形ABCD 有公共点,则k 的取值范围为( C )A.1<k <9 B .2≤k ≤34 C .1≤k ≤16 D .4≤k <16 二、填空题(每小题3分,共15分)11.(2022·辽宁)反比例函数y =kx 的图象经过点A (1,3),则k 的值是__3__.12.(2022·成都)在平面直角坐标系xOy 中,若反比例函数y =k -2x 的图象位于第二、四象限,则k 的取值范围是__k <2__.13.(2022·孝感)在反比例函数y =k -1x 的图象的每一支上,y 都随x 的增大而减小,且整式x 2-kx +4是一个完全平方式,则该反比例函数的解析式为__y =3x__.14.(玉林中考)如图,△ABC 是等腰三角形,AB 过原点O ,底边BC ∥x 轴,双曲线y =kx过A ,B 两点,过点C 作CD ∥y 轴交双曲线于点D ,若S △BCD =8,则k 的值是__3__. 15.(2022·江西)已知点A 在反比例函数y =12x (x >0)的图象上,点B 在x 轴正半轴上,若△OAB 为等腰三角形,且腰长为5,则AB 的长为__5或25 或10 __.三、解答题(共75分)16.(8分)(玉林中考)先化简再求值:(a -2+1a )÷(a -1)2|a |,其中a 使反比例函数y=ax的图象分别位于第二、四象限. 解:反比例函数y =ax 的图象分别位于第二、四象限,∴a <0,∴|a |=-a ,原式=(a -1)2a ·-a(a -1)2=-117.(9分)已知y =y 1+y 2,其中y 1与3x 成反比例,y 2与-x 2成正比例,且当x =1时,y =5;当x =-1时,y =-2.求当x =3时,y 的值.解:设y =k 13x +k 2(-x 2),由题意可求得y =72x +32 x 2,当x =3时,y =44318.(9分)(宿迁中考)如图,一次函数y =kx +b 的图象与反比例函数y =-5x 的图象相交于点A (-1,m ),B (n ,-1)两点.(1)求一次函数的解析式; (2)求△AOB 的面积.解:(1)分别把A (-1,m ),B (n ,-1)代入反比例函数y =-5x ,得⎩⎨⎧m =-5-1,-1=-5n , 解得{m =5,n =5, 所以A (-1,5),B (5,-1).把A ,B 两点坐标代入一次函数y =kx +b中,得{5=-k +b ,-1=5k +b , 解得{k =-1,b =4, 所以一次函数的解析式为y =-x+4(2)设一次函数与x 轴的交点为C ,可得C (4,0),S △AOB =S △AOC +S △BOC =12 OC ×|y A |+12OC ×|y B |=12 ×4×|5|+12×4×|-1|=1219.(9分)(江西中考)如图,Rt △ABC 中,∠ACB =90°,顶点A ,B 都在反比例函数y =kx (x >0)的图象上,直线AC ⊥x 轴,垂足为D ,连接OA ,OC ,并延长OC 交AB 于点E ,当AB =2OA 时,点E 恰为AB 的中点,若∠AOD =45°,OA =22 .(1)求反比例函数的解析式;(2)求∠EOD 的度数.解:(1)∵直线AC ⊥x 轴,垂足为D ,∠AOD =45°,∴△AOD 是等腰直角三角形,∵OA =22 ,∴OD =AD =2,∴A (2,2),∵顶点A 在反比例函数y =kx (x >0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y =4x (2)∵AB =2OA ,点E 恰为AB 的中点,∴OA=AE ,∴∠AOE =∠AEO ,∵在Rt △ABC 中,∠ACB =90°,∴CE =BE ,∠ECB =∠EBC ,∴∠AEO =∠ECB +∠EBC =2∠ECB ,∵BC ∥x 轴,∴∠EOD =∠ECB ,∴∠AOE =2∠EOD ,∵∠AOD =45°,∴∠EOD =15°20.(9分)(2022·重庆)已知一次函数y =kx +b (k ≠0)的图象与反比例函数y =4x 的图象相交于点A (1,m ),B (n ,-2).(1)求一次函数的解析式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx +b >4x的解集;(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求△ABC 的面积.解:(1)∵反比例函数y =4x 的图象过点A (1,m ),B (n ,-2),∴4m =1,n =4-2 ,解得m =4,n =-2,∴A (1,4),B (-2,-2),∵一次函数y =kx +b (k ≠0)的图象过A 点和B点,∴{k +b =4,-2k +b =-2, 解得{k =2,b =2, ∴一次函数的解析式为y =2x +2,描点作图如图所示 (2)由(1)中的图象可得,不等式kx +b >4x 的解集为:-2<x <0或x >1(3)∵点C 是点B 关于y 轴的对称点,且B (-2,-2),∴C (2,-2),∴BC ∥x 轴,BC =4,BC 边上的高为6,∴S △ABC =12×4×6=1221.(10分)(2022·雅安)如图,在平面直角坐标系中,等腰直角三角形ABO 的直角顶点A 的坐标为(m ,2),点B 在x 轴上,将△ABO 向右平移得到△DEF ,使点D 恰好在反比例函数y =8x(x >0)的图象上.(1)求m 的值和点D 的坐标; (2)求DF 所在直线的解析式;(3)若该反比例函数图象与直线DF 的另一交点为点G ,求S △EFG .解:(1)如图,过A 点作AH ⊥BO 于点H ,∵△ABO 是等腰直角三角形,A (m ,2),∴OH =AH =2,∴m =-2,由平移可得D 点纵坐标和A 点纵坐标相同,设D (n ,2),∵点D 在y =8x 图象上,∴n =4,∴D (4,2) (2)如图,过点D 作DM ⊥EF 于点M ,∵△DEF 是等腰直角三角形,∴∠DFM =45°,∴DM =MF =2,由D (4,2)得F (6,0),设直线DF 的解析式为y =kx +b ,将F (6,0)和D (4,2)代入,得{2=4k +b ,0=6k +b , 解得{k =-1,b =6,∴直线DF 的解析式为y =-x +6 (3)延长FD 交y =8x图象于点G ,⎩⎨⎧y =-x +6,y =8x , 解得{x 1=4,y 1=2, {x 2=2,y 2=4, ∴G (2,4),由(1)得EF =BO =2HO =4,∴S △EFG =12 EF ·y G =12×4×4=822.(10分)(台州中考)电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1,R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图①所示;图②的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0,该读数可以换算为人的质量m .温馨提示:①导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =UR ;②串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式;(3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量. 解:(1)将(0,240),(120,0)代入R 1=km +b ,得{b =240,120k +b =0, 解得{k =-2,b =240, ∴R 1=-2m +240(0≤m ≤120) (2)由题意得:可变电阻两端的电压=电源电压-电表电压,即:可变电阻电压=8-U 0,∵I =UR ,可变电阻和定值电阻的电流大小相等,∴8-U 0R 1 =U 0R 0 ,化简,得R 1=R 0(8U 0 -1),∵R 0=30,∴R 1=240U 0 -30 (3)将R 1=-2m +240(0≤m ≤120)代入R 1=240U 0 -30,得-2m +240=240U 0 -30,化简,得m =-120U 0 +135(0≤m ≤120) (4)∵m =-120U 0 +135中-120<0,且0≤U 0≤6,∴m 随U 0的增大而增大,∴U 0取最大值6的时候,m 有最大值,m max =-1206 +135=115.答:该电子秤可称的最大质量为115千克23.(11分)在平面直角坐标系内,反比例函数和二次函数y =k (x 2+x -1)的图象交于点A (1,k )和点B (-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.解:(1)y =-2x (2)∵要使反比例函数和二次函数都是y 随着x 的增大而增大,∴k <0,∵二次函数y =k (x 2+x -1)=k (x +12 )2-54 k ,对称轴为直线x =-12 ,∴要使二次函数y =k (x 2+x -1)满足上述条件,在k <0的情况下,x 必须在对称轴的左边,即x <-12 时,才能使得y 随着x 的增大而增大,∴k <0且x <-12(3)由(2)可得Q (-12 ,-54 k ),∵△ABQ 是以AB 为斜边的直角三角形,A 点与B 点关于原点对称(如图是其中的一种情况),∴原点O 平分AB ,∴OQ =OA =OB ,作AD ⊥x 轴,QC ⊥x 轴,∴OQ =CQ 2+OC 2 =14+2516k 2,∵OA =AD 2+OD 2 =1+k 2 ,∴14+2516k 2 =1+k 2 ,解得k =±233。
人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.下列函数是反比例函数的是( )A .y=xB .y=kx ﹣1 C .y=-8x D .y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .0C .﹣2D .14.函数y=﹣x +1与函数y= -2x在同一坐标系中的大致图象是( )C BAy yy y5.若正比例函数y=﹣2x 与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2)C .(﹣2,﹣1)D .(﹣2,1)6.如图,过反比例函数y=kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )xC .4D .5 k ≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向xD、C,若矩形ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x+是反比例函数?OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴S △AOB =1,求双曲线y 2的解析式. =4xy=kx的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于y 轴对称的点的坐标是 .(2)反比例函数y=x 关于y 轴对称的函数的解析式为 .(3)求反比例函数y=kx(k ≠0)关于x 轴对称的函数的解析式.22.(本题10分)如图,Rt △ABC 的斜边AC 的两个顶点在反比例函数y=1kx的图象上,点B 在反比例函数y=2kx的图象上,AB 与x 轴平行,BC=2,点A 的坐标为(1,3).(1)求C 点的坐标;(2)求点B 所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.O为坐标原点,△ABO的边AB垂直与x轴,垂足AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=kx的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则 S=12ab . ∵S 为定值,∴ab=2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .3.【答案】∵y 都随x 的增大而增大, ∴此函数的图象在二、四象限, ∴1﹣k <0, ∴k >1.故k 可以是2(答案不唯一), 故选A .4.【答案】函数y=﹣x +1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A .5.【答案】∵正比例函数与反比例函数的图象均关于原点对称, ∴两函数的交点关于原点对称, ∵一个交点的坐标是(﹣1,2), ∴另一个交点的坐标是(1,﹣2). 故选B .6.【答案】∵点A 是反比例函数y=kx图象上一点,且AB ⊥x 轴于点B ,∴S △AOB =12|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4. 故选C .7.【答案】∵反比例函数y=kx(k ≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A 、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B 、﹣12×4=﹣2,故此点,在反比例函数图象上;C 、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D 、12×4=2≠﹣2,故此点不在反比例函数图象上. 故选B .8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B .9.【答案】依照题意画出图形,如下图所示.x+6x ﹣n=0, 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m=故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2).14.【答案】:∵反比例函数y=kx 的图象过点P (2,6),∴k=2×6=12,故答案为:12.15.【答案】根据题意,得﹣3=k2,解得,k=﹣6.16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12.x2m 113x 是反比例函数,∴2m +1=1,解得:m=0.OABC 中,OA=3,OC=2,∴B (3,2), F (3,1),∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0);19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB ,k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ),∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3,∴x •y=﹣6,而xy=k ,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3,即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x,∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2kx 得k 2=3×3=9,所以点B 所在函数图象的解析式为y=9x.23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点,12,2).,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x.(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴cos ∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。
《反比例函数》检测题成都 雷银光(满分:100分,时间:60分钟)一、选择题(每小题4分,共20分)1、下列函数中,反比例函数是( )(A )1)1(=-y x (B) 11+=x y(C ) 21xy =(D ) x y 31=2、函数y 1=kx 和y 2=kx的图象如图,自变量x 的取值范围相同的是( )3、若点A(x 1,1)、B(x 2,2)、C(x 3,-3)在双曲线1y x=-上,则( ) A 、x 1>x 2>x 3 B 、x 1>x 3>x 2 C 、x 3>x 2>x 1 D 、x 3>x 1>x 24、如图3,已知点A 是一次函数y =x 的图象与反比例函数2y x=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且OA =OB=2,那么△AOB 的面积为A 、2B 、22C 、D 、5、在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x =没有交点,那么1k 和2k 的关系一定是( ) (A) 1k 、2k 异号(B) 1k 、2k 同号 (C) 1k >0, 2k <0 (D) 1k <0, 2k >0二、填空题(每小题4分,共28分)1、已知y 与(2x+1)成反比例且当x=0时,y=2,那么当x=-1时,y=________。
2、设反比例函数1k y x+=的图象经过点(x 1,y 1)和(x 2,y 2)且有y 1>y 2,则k 的取值范围是__ ____。
3、已知203xy+=,那么,k=________,其图象在第_______象限。
4、菱形面积为12cm 2,且对角线长分别为x cm 和y cm ,则y 关于x 的函数关系式是_________。
5、反比例数y=22(21)mm x --,当x >0时,y 随x 的增大而增大,则m 的值是 。
6、.已知圆柱的侧面积是π102cm ,若圆柱底面半径为r cm ,高为h cm ,则h 与r 的函数关系式是 。
第六章反比例函数检测题3
一、选择题(共12小题;共36分)
1. 已知双曲线 y =k
x k ≠0 经过点 3,1 ,则它还经过点
A. 13,−9
B. −1,3
C. −1,−3
D. 6,−1
2 2. 函数 y = m −1 x m
2−2
是反比例函数,则 m 的值是 A. m =±1
B. m =1
C. m =± 3
D. m =−1
3. 某闭合电路中,电源的电压为定值,电流 I A 与电阻 R Ω 成反比例.如图所示的是该电路中电
流 I 与电阻 R 之间函数关系的图象,则用电阻 R 表示电流 I 的函数表达式为 ( )
A. I =2
R
B. I =3
R
C. I =6
R
D. I =−6
R
4. 如图,正比例函数 y 1=k 1x 和反比例函数 y 2=k 2x
的图象交于 A −1,2 ,
B 1,−2 两点,若 y 1<y 2,则 x 的取值范围是 ( )
A. x <−1 或 x >1
B. x <−1 或 0<x <1
C. −1<x <0 或 0<x <1
D. −1<x <0 或 x >1
5. 已知点,A −1,y 1 ,B 2,y 2 是反比例函数 y =−5x
的图象上的两点,下列结论正确的是 A. y 1<0<y 2 B. y 2<0<y 1 C. y 1<y 2<0 D. y 2<y 1<0
6. 反比例函数 y =
n +5x
图象经过点 2,3 ,则 n 的值是
A. −2
B. −1
C. 0
D. 1 7. 下列四个函数中,是反比例函数的是 ( )
A. y =x
2
B. y =2
x
C. y =3x −2
D. y =x 2
8. 一块蓄电池的电压为定值,用此蓄电池作为电源时,电流 I A 与电阻 R Ω 之间的函数关系如图.如果以此蓄电池为电源的用电器限制电流不得超过 10A ,那么此用电器的可变电阻应 A . 不小于 4.8Ω
B. 不大于 4.8Ω
C. 不小于 14Ω
D. 不大于 14Ω
9. 一次函数 y =kx +k 和反比例函数 y =k
x (k ≠0)在同一直角坐标系中的图象大致是 ( )
A. B. C. D .
10. 若点 M 、 N 是一次函数 y 1=−x +5 与反比例函数 y 2=k
x (k ≠0,x >0)图象的两个交点,
其中点 M 的横坐标为 1,下列结论:①一次函数 y 1=−x +5 的图象不经过第三象限;②点 N 的纵坐标为 1;③若将一次函数 y 1=−x +5 的图象向下平移 1 个单位,则与反比例函数 y 2=k
x (k ≠0,x >0)图象有且只有一个交点;④当 1<x <4 时,y 1<y 2.其中结论正确的个数
是 ( ) A. 4 个
B. 3 个
C. 2 个
D. 1 个
11. 若函数 y = m +2 x m −3 是反比例函数,则
A. m =2
B. m =−2
C. m =±2
D. m ≠2
12. 如图,反比例函数 y =−4
x 的图象与直线 y =−1
3x 的交点为 A ,B ,过点
A 作 y 轴的平行线与过点
B 作 x 轴的平行线交于点
C ,则 △ABC 的面积为
A. 8
B. 6
C. 4
D. 2
二、填空题(共4小题;共12分) 13. 如果函数 y =kx 2k
2+k−2
是反比例函数,则函数的解析式是 .
14. 一个反比例函数 y =
2k x
k ≠0 的图象经过点 P −2,−1 ,则 k = .
15. 已知正比例函数 y =−2x 与反比例函数 y =k
x 的图象的一个交点坐标为 −1,2 ,则另一个交点的坐标为 .
16. 如图,已知直线 y =−x +2 分别与 x 轴、 y 轴交于 A ,B 两点,与双曲线
y =k
x 交于 E ,F 两点.若 AB =2EF ,则 k 的值是 .
三、解答题(共7小题;共52分)
17. 下列哪些式子中的 y 是 x 的反比例函数?如果是反比例函数,请你写出系数 k 的值.(5分) ① y =2x +1
;② y =5
x
;③ y =5x ;④ xy =6;⑤ y =
15x
;⑥ y =a
x
;⑦ y =−2x −1.
18. 已知反比例函数 y =m−5x
(m 为常数,m ≠5),若这个函数图象的一支位于第二象限.(8分)
(1) 求 m 的取值范围.(4分)
(2) 若 P −1,a 在函数 y =2x +4 的图象上,又在反比例函数 y =m−5x
的图象上,求 m 的值;
并求出当 −3<x <−1 时,反比例函数 y =
m−5x
函数值 y 的取值范围.(4分)
19. 如图,已知在平面直角坐标系中,O是坐标原点,点A2,5在反比例函数y=k
的图象上.一
x 次函数y=x+b的图象过点A,且与反比例函数图象的另一交点为B.(8分)
(1)求k和b的值;(4分)
(2) 设反比例函数值为y1,一次函数值为y2,求y1>y2时x
的取值范围.(4分)
20. 已知反比例函数y=m−7
的图象的一支位于第一象限.(8分)
x
(1)判断该函数图象的另一支所在的象限,并求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,
点B与点A关于x轴对称,若△OAB的面积为6,求m的值.
21. 面积等于10的梯形,其上底是下底长一半,设下底长为x cm时,高为y cm.(8分)
(1) 求y与x的函数关系式;
(2) 求当y=5时,下底长多少?
22. 甲、乙两地相距500千米,一辆汽车往返于甲、乙两地之间,从甲地到乙地的平均速度为x千
米/时,从乙地返回甲地的平均速度为来时速度的1.25倍,往返两地的时间为y小时.(8分)
(1) 求y与x之间的函数关系式;
(2) 若已知往返两地的时间为9小时,求x的值.
的图象在第一象限的交点为A,AB垂直于x轴,垂足为23. 如图,直线y=2x与反比例函数y=k
x
B,已知OB=1,求点A的坐标和这个反比例函数的解析式.(7分)。