当前位置:文档之家› LM75数字温度传感器应用

LM75数字温度传感器应用

LM75数字温度传感器应用
LM75数字温度传感器应用

DS18B20数字温度传感器要点

DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺 纹式,磁铁吸附式,不锈钢 封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。 1: 技术性能描述 ①、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 ②、测温范围-55℃~+125℃,固有测温误差(注意,不是分辨率,这里之前是错误的)1℃。 ③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。 ④、工作电源: 3.0~5.5V/DC (可以数据线寄生电源) ⑤、在使用中不需要任何外围元件 ⑥、测量结果以9~12位数字量方式串行传送 ⑦、不锈钢保护管直径Φ6 ⑧、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温 ⑨、标准安装螺纹 M10X1, M12X1.5, G1/2”任选 ⑩、PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。[1]信息DS18B20+ 和 Maxim Integrated Manufactured by Maxim Integrated, DS18B20+ is a 温度传感器. 3应用范围编辑 2.1 该产品适用于冷冻库,粮仓,储罐,电讯机房,电力机房,电缆线槽等测温和控制领域 2.2 轴瓦,缸体,纺机,空调,等狭小空间工业设备测温和控制。 2.3 汽车空调、冰箱、冷柜、以及中低温干燥箱等。 2.4 供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制 4型号规格编辑 型号测温范围安装螺纹电缆长度适用管道 TS-18B20 -55~125 无 1.5 m TS-18B20A -55~125 M10X1 1.5m DN15~25 TS-18B20B -55~125 1/2”G 接线盒 DN40~ 60

单线数字温度传感器DSB原理及其应用

单线数字温度传感器DS18B20原理及其应用 DALLAS最新单线数字温度传感器DS18B20简介新的"一线器件"体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持"一线总线"接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 "一线总线"数字化温度传感器同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C 。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B2 0、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 1. DS18B20的新性能 (1) 可用数据线供电,电压范围:3.0~5.5V; (2) 测温范围:-55~+125℃,在-10~+85℃时精度为±0.5℃; (3) 可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃; (4) 12位分辨率时最多在750ms内把温度值转换为数字; (5) 负压特性:电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. DS18B20的外形和内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: 图(1)DS18B20外形图 引脚定义: (1) DQ为数字信号输入/输出端; (2) GND为电源地;

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

DS18B20温度传感器工作原理及其应用电路图

DS18B20温度传感器工作原理及其应用电路图 时间:2012-02-16 14:16:04 来源:赛微电子网作者: 前言 温度与工农业生产密切相关,对温度的测量和控制是提高生产效率、保证产品质量以及保障生产安全和节约能源的保障。随着工业的不断发展,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。现在,新一代的DS18B20温度传感器体积更小、更经济、更灵活。DS18B20温度传感器测量温度范围为-55℃~+125℃。在-10℃~+85℃范围内,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。基于DS18B20温度传感器的重要性,小编整理出DS18B20温度传感器工作原理及其应用电路图供大家参考。 一、DS18B20温度传感器工作原理(热电阻工作原理) DS18B20温度传感器工作原理框图如图所示: DS18B20温度传感器工作原理框图 图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 二、DS18B20温度传感器的应用电路 1.DS18B20温度传感器寄生电源供电方式电路图 寄生电源方式特点: (1)进行远距离测温时,无须本地电源。 (2)可以在没有常规电源的条件下读取ROM。 (3)电路更加简洁,仅用一根I/O口实现测温。 (4)只适应于单一温度传感器测温情况下使用,不适于采用电池供电系统中。

基于数字温度传感器的数字温度计

黄河科技学院《单片机应用技术》课程设计题目:基于数字温度传感器的数字温度计 姓名:时鹏 院(系):工学院 专业班级: 学号: 指导教师:

黄河科技学院课程设计任务书 工学院机械系机械设计制造及其自动化专业S13 级 1 班 学号1303050025 时鹏指导教师朱煜钰 题目:基于数字温度传感器的数字温度计设计 课程:单片机应用技术课程设计 课程设计时间2014年10月27 日至2014年11 月10 日共2 周 课程设计工作内容与基本要求(设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页)

课程设计任务书及摘要 一、课程设计题目:基于数字温度传感器的数字温度计 二、课程设计要求 利用数字温度传感器DS18B20与单片机结合来测量温度。利用数字温度传感器DS18B20测量温度信号,计算后在LED数码管上显示相应的温度值。其温度测量范围为-55℃~125℃,精确到0.5℃。数字温度计所测量的温度采用数字显示,控制器使用单片机AT89C51,温度传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示。 三、课程设计摘要 DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。 该系统由上位机和下位机两大部分组成。下位机实现温度的检测并提供标准RS232通信接口,芯片使用了ATMEL公司的AT89C51单片机和DALLAS公司的DS18B20数字温度传感器。上位机部分使用了通用PC。该系统可应用于仓库测温、楼宇空调控制和生产过程监控等领域。 四、关键字:单片机温度测量DS18B20 数字温度传感器AT89C51

温度传感器简介

简谈温度传感器及研究进展 摘要:温度传感器是使用范围最广,数量最多的传感器,在日常生活,工业生产等领域都扮演着十分重要的角色。从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器。近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。关键词:温度传感器;智能温度传感器;接触式温度传感器 中图分类号:TP212.1 文献标识码:A Abstract:temperature transducer is used most widely, the largest number of sensors, in daily life, such as industrial production field plays a very important role.Since the 17th century temperature sensor for the first time application, was born in turn contact temperature sensor, non-contact temperature sensor, integrated temperature sensor.Intelligent temperature sensor in recent years in semiconductor technology, materials technology, under the support of new technologies such as the temperature sensor is developing rapidly.Due to the software and hardware of the intelligent temperature sensor reasonable matching can greatly enhance the function of the sensor, improve the precision of the sensor, and can make the temperature sensor has simple and compact structure, use more convenient, thus intelligent temperature sensor is a hot spot nowadays.The introduction of the microprocessor, which makes the temperature signal collection, memory, storage, comprehensive, processing and control integration, make the temperature sensor to the intelligent direction. Key words:temperature transducer; Smart temperature sensor; Contact temperature sensors 前言:温度作为国际单位制的七个基本量之一,测量温度的传感器的各种各样,温度传感器是温度测量仪表的核心部分,十分重要。据统计,温度传感器是使用范围最广,数量最多的传感器。简而言之,温度传感器(temperature transducer)就是是指能感受温度并转换成可用输出信号的传感器。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。在材料技术的支持下,陶瓷,有机,纳米等新材料用于温度传感器中可以使温度的测量和控制更加科学和精确。由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用更加方便,因此智能温度传感器是当今的一个研究热点。微处理器的引入,使得温度信号的采集,记忆,存储,综合,处理与控制一体化,使温度传感器向智能化方向发展。

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全 温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。 温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。 1、热电偶传感器: 两种不同导体或半导体的组合称为热电偶。热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。 2、热敏电阻传感器: 热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃?130℃。 3、模拟温度传感器: HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带

全面了解数字温度传感器规范

全面了解数字温度传感器规范 为了实现最佳性能并确保系统稳健性,就必须要进行系统监控测量。其中一个必需的典型测量项目就是环境温度。使用简单的数字温度传感器进行该测量将为系统设计人员提供如下保证:组件正常工作,系统处于其性能或校准限值范围内,不会使用户遇到危险。 测量结束后,通常由系统中的微控制器对环境温度进行相应调整。系统监控微控制器可以改变风扇速度、关闭非必要系统进程或使系统智能进入省电模式。系统设计人员需全面正确地了解数字温度传感器规范以设计系统,并就测量结果采取最佳措施。另外,全面了解传感器规范将确保在选择数字温度传感器器件时,可做到权衡得当。 当选择数字温度传感器(也称作串行输出温度传感器)时,应考虑的主要规范包括精度、分辨率、功耗、接口和封装。 精度 数字温度传感器精度表示传感器读数和系统实际温度 之间的误差。在产品说明书中,精度指标和温度范围相对应。通常针对不同温度范围,有数个最高精度指标。对于25~

+100℃温度范围来说,±2℃精度是很常见的。Analog Device 公司的ADT75、Maxim公司的DS75、National公司的LM75以及TI的TMP75均具有这种精度节点。但是,还有更高精度的器件。例如,TI的TMP275在120~100℃温度范围内的精度为±0.5℃。 虽然温度精度指标是非常重要的,然而对系统监控应用来说,它并非一定是最为关键的因素。这些应用更重视检测温度变化,而不是确定温度绝对值。 分辨率 数字温度传感器分辨率是描述传感器可检测温度变化细微程度的指标。集成于封装芯片的温度传感器本身就是一种模拟传感器。因此所有数字温度传感器均有一个模数转换器(ADC)。ADC分辨率将决定器件的总体分辨率,分辨率越高,可检测到的温度变化就越细微。 在产品说明书中,分辨率是采用位数和摄氏温度值来表示的。当采用位数来考虑分辨率时,必须多加注意,因为该值可能包括符号位,也可能不包括符号位。此外,该器件的内部电路可能以不同于传感器总体温度范围的值,来确定内部ADC的满量程范围。以摄氏度来表示的分辨率是一种更直接分辨率值,采用该数值可进行设计分析。

温度传感器的应用及原理

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC 的温度等等,下面介绍几种常用的温度传感器。温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050K Ω。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏

数字温度传感器AD7416及其应用

数字温度传感器AD7416及其应用 AD7416 是美国模拟器件公司(ADI)出品的单片机温度监控系统集成电路。其内部包含有带隙温度传感器和10位模数转换器,可将感应温度转换为0.25℃量化间隔的数字信号,以便用来与用户设置的温度点进行比较。AD7416片内寄存器可以进行高/低温度门限的设置当温度超过设置门限时,过温漏级开路指示器(OTI)将输出有效信号。另外,可以通过I2C接口对AD7416的内部寄存器进行读/写操作,最多可允许8片AD7416挂接在同一个串行总线上。该温度传感器可广泛应用于数据采集系统中的环境温度监测、 工业过程控制、电池充电以及个为计算机等系统。 1 基本特性与引脚功能 AD AD7416具有如下基本特性: ●工作电压范围为+2.7V~+5.5V; ●测温范围为-55℃~+125℃; ●具有10位数字输出温度值,分辨率为0.25℃; ●精度为±2℃(-25℃~+100℃)和±3℃(-55℃~+125℃); ●转换时间为15~30μs,更新速率为400μs; ●带有过温漏级开路指示器(OTI); ●具有I2C兼容的串行接口和可选的串行总线地址; ●具有低功耗关闭模式(典型值为0.2μA); ●可用来升级替换LM75。 AD7416采用8脚表面贴SO和8脚小型SOIC封装形式,图1所示为AD7416的引脚排列图,各引 脚功能如表1所列。 表1 AD7416引脚功能

2 工作原理 AD7416的内部功能框图如图2所示。它的片内带隙温度传感器可按预先设置的工作方式对环境温度进行实时测量,并将结果转化为数字量存入到温度值寄存器中(地址00H),其环境温度与输出数据的关 系如表2所列。 表2 环境温度与输出数据的关系 AD7416预先设置的工作方式分两种: ●自动测温方式。在这种方式下,AD7416每隔400μs对环境温度测量一次,每次的量化转换时间为1 5~30μs,其余时间芯片则自动转入休眠状态;

各种温度传感器分类及其原理.

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化, 在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1. 热电偶的工作原理 当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 TO ,称为自由端 (也称参考端或冷端,则回路中就有电流产生,如图 2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一, 当有电流流过两个不同导体的连接处时, 此处便吸收或放出热量 (取决于电流的方向 , 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量 (取决于电流相对于温度梯度的方向 ,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T, T0 是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势, 此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关, 而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势, 热电偶测量的热电势是二者的合成。当回路断开时,在断开处 a , b 之间便有一电动势差△ V ,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由 A 流向 B 时, 称 A 为正极, B 为负极。实验表明,当△ V 很小时,△ V 与△ T 成正比关系。定义△ V 对△ T 的微分热电势为热电势率, 又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2. 热电偶的种类

浅析数字温度传感器

浅析数字温度传感器 在传感器技术突飞猛进的今天,多家现代传感器企业提供的新型数字温度传感器,与传统温度传感器相比,具有性价比高、性能优越、可靠性高、使用方便、体积小、灵敏度高和控制电路简单等特点。与传统产品相比,新型温度传感器呈现出微型化、高精度、低功耗等发展趋势。完全可以替代传统热敏电阻和电阻式温度检测器。具体来说,数字温度传感器的主要构成包括一个双电流源、一个Δ-ΣA/D转换器、数字逻辑和一个通向数字器件(如与一个微处理器或微控制器连接)的串行接口(如I2C总线、SMBus或SPI)。 新型数字温度传感器原理 数字温度传感器也叫热电偶,是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。热电偶是工业上最常用的温度检测元件之一。其优点是:(1)测量精度高;(2)测量范围广;(3)构造简单,使用方便。 新型数字温度传感器的应用 当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。 新型数字温度传感器的应用范围很广,它不仅广泛应用于寻常百姓的日常生活中,而且也大量用于现代工业生产的自动化控制和生产过程检测控制系统。 当前世界范围内温度传感器正从模拟式向新型数字式、从传统集成式向现代智能化的方向发展。新型数字温度传感器自从二十世纪九十年代中期面世以来,在中国国内也迅猛发展,并迅速在广大人民群众的日常生活中推广应用。

最新DS18B20数字温度传感器介绍

D S18B20数字温度传 感器介绍

目前常用的微机与外设之间进行的数据通信的串行总线主要有 I 2C 总线,SPI 总线等。其中 I 2C 总线以同步串行 2 线方式进行通信(一条时钟线,一条数据线), SPI 总线则以同步串行 3 线方式进行通信(一条时钟线,一条数据输入线,一条数据输出线)。这些总线至少需要两条或两条以上的信号线。而单总线( 1-wire bus ),采用单根信号线,既可传输数据,而且数据传输是双向的, CPU 只需一根端口线就能与诸多单总线器件通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。因而,这种单总线技术具有线路简单,硬件开销少,成本低廉,软件设计简单,便于总线扩展和维护。同时,基于单总线技术能较好地解决传统识别器普遍存在的携带不便,易损坏,易受腐馈,易受电磁干扰等不足,因此,单总线具有广阔的应用前景,是值得关注的一个发展领域。 单总线即只有一根数据线,系统中的数据交换,控制都由这根线完成。主机或从机通过一个漏极开路或三态端口连至数据线,以允许设备在不发送数据时能够释放总线,而让其它设备使用总线。单总线通常要求外接一个约为 4.7K 的上拉电阻,这样,当总线闲置时其状态为高电平。 DS18B20 数字式温度传感器,与传统的热敏电阻有所不同的是,使用集成芯片,采用单总线技术,其能够有效的减小外界的干扰,提高测量的精度,同时,它可以直接将被测温度转化成串行数字信号供微机处理,接口简单,使数据传输和处理简单化。部分功能电路的集成,使总体硬件设计更简洁,能有效地降低成本,搭建电路和焊接电路时更快,调试也更方便简单化,这也就缩短了开发的周期。

使用单片机和温度传感器制作数字式温度计

《微机原理》课外设计制作 总结报告 题目(B):使用单片机和温度传感器制作数字式温度计组号:29 任课教师:王向阳 组长:11122412 侯景业20% 成员:11122445 白波20% 成员:11122510 吕锦涛20% 成员:11123633 柴金磊20% 成员:11123722 沈璘熙20% 联系方式:0 二零一三年五月十五日

一、课程设计目的与要求 利用学习过的《单片机与接口技术》课程的内容和其他相关课程的内容,设计数字式温度计。 使用单片机和温度传感器制作数字式温度计 (1)实时温度采集 (2)数字显示 (3)显示精度:0.1℃ (4)其它与温度有关的扩展 二、课程设计内容 2.1数字温度计设计方案 考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以可以采用一只温度传感器DS18B20,该传感器可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2方案的总体框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机8051,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。

图1 总体设计方框图主控制器 单片机8051具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。 温度传感器 数字温度传感器DS18B20,它不仅能直接输出串行数字信号,而且具有微型化、低功耗、高性能、易于微处理器连接和抗干扰能力强等优点。DS18B20数字温度传感器对于实测的温度提供了9-12位的数据和报警温度寄存器,它的测温范围为-55℃~+125℃,其中在-10℃~+85℃的范围内的测量精度为±0.5℃。由于每个DS18B20有唯一的一个连续64位的产品号,所以允许在一根电缆上连接多个传感器,以构成大型温度测控网络。 DS18B20特性 DS18B20 可以程序设定9~12 位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设

温度传感器在工业中的应用

红外温度传感器在工业中的应用 随着工业生产的发展,温度测量与控制十分重要,温度参数的准确测量对输出品质、生产效率和安全可靠的运行至关重要。目前,在热处理及热加工中已逐渐开始采用先进的红外温度计等非传统测温传感器,来代替传统的热电偶、热电阻类的热电式温度传感器,从而实现生产过程或者重要设备的温度监视和控制。 基本原理 温度传感器基本原理,最常用的非接触式温度传感器基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。 在水泥制造生产中的应用 红外温度传感器在水泥制造生产中有着广泛的应用。据调查目前我国每年因红窑事故造成的直接经济损失达2000万元,间接损失达3亿元。用常规的方法很难对非匀速旋转的水泥胴体进行测温,国际上先进的办法是在窑尾预热平台上安装一套红外扫描测温仪,系统的软件部分主要由数据采集滤波、同步扫描控制、数据通讯处理等,红外辐射测温仪按预定的扫描方式,实现对窑胴体轴向每一个测量段成的温度的测量,在一个扫描周期内,红外温度传感器将在扫描装置的驱动下,将每一个测量元表面的红外辐射转换成温度相关的电信号,送进数据采集装置作为数据采集,同步装置保证数据采集与回转窑的旋转保持严格同步,要让测量的温度值与测量元下确对应,测温仪由扫描起点扫描到终点后,即对窑胴体表面各测量元完成了一次逐元温度检测后,立即快速返回扫描起点,开始下一扫描周期的检测,数据经微机处理后,给出反映窑内状况的图像,文字信息,必要时可以发射声光报警。为保证测量的精度,定要考虑物体的发射率,周围环境影响。红外测温仪要垂直对准窑胴体的表面,因因水汽,尘埃,烟雾的影响,要采取加装水冷,风吹扫装置。意义:1.生产过程中对产品的质量监控与监视,只要温度控制在设定值内,产品质量会有保证,过低过高都浪费能源;2.在线安全的检测可以起到保护人以及设备安全;3.降低能耗,节约能源。 在热处理行业中的应用 红外温度传感器可以广泛的应用于钢铁生产过程中,对生产过程的温度进行监控,对于提高生产率和产品质量至重要。红外温度传感器可精确地监视每个阶段,使钢材在整个加工过程中保持正确的冶金性能。红外温度传感器可以帮助钢铁生产过程中提高产品质量和生产率、降低能耗、增强人员安全、减少停机时间等。 红外温度传感器在钢铁加工和制造过程中主要应用在连铸、热风炉、热轧、冷轧、棒材和线材轧制等过程中。 红外温度传感器传感头有数字和模拟输出两种,发射率可调。—这对于发射率变化金属材料尤其重要。要生产出优质的产品和提高生产率,在炼钢的全过程中,精确测温是关键。连铸将钢水变为扁坯、板坯或方坯时,有可能出现减产或停机,需精确的实时温度监测,配以水嘴和流量的调节,以提供合适的冷却,从而确保钢坯所要求的冶

智能温度传感器原理及应用

智能温度传感器原理及应用 电气信息学院 一、热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。与热电偶的测温原理不同的是,热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即 Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为 Rt=AeB/t 式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。 相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。 目前应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。 热电阻的信号连接方式热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。 目前热电阻的引线主要有三种方式 ○1二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合 ○2三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻。 ○3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。

基于温度传感器的数字温度计.

华东交通大学电子测量传感器设计报告 报告题目:基于温度传感器的数字温度计 作者姓名: 专业班级: 学号: 指导老师: 时间:2013~2014学年第一学期

摘要 温度控制系统广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等,常用的控制电路根据应用场合和所要求的性能指标有所不同, 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用,但由于继电器动作频繁,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。 采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。由于DS18B20芯片的小型化,更加可以通过单跳数据线就可以和主电路连接,故可以把数字温度传感器DS18B20做成探头,探入到狭小的地方,增加了实用性。更能串接多个数字温度传感器DS18B20进行范围的温度检测。 本文主要介绍了一个基于89C51单片机和DS18B20的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,适合于我们日常生活和工、农业生产中的温度测量。 关键词:AT89C51单片机、温度传感器DS18B20 Abstract Temperature control system is widely applied in various fields of social life, such as household appliances, automobiles, materials, power electronics, the commonly used

数字温度传感器

中南林业科技大学涉外学 院 传感器课程设计 题 指导老师向诚 学生姓名王璋娅 学号 20148080 专业班级电子信息工程四班 摘要

目前,单片机已经在测控领域中获得了广泛的应用,它除了可以测量电信以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计,主要介绍了一个基于AT89C51单片机和数字温度传感器DS18B20的测温系统,并用LED 数码管显示温度值,易于读数。系统电路简单、操作简便,能任意设定报警温度并可查询最近的10个温度值,系统具有可靠性高、成本低、功耗小等优点。

目录 1. 引言 --------------------------------------------------------------4 2.总体方案设计---------------------------------------------------6 2.1设计要求-------------------------------------------------------6 2.2方案论证-------------------------------------------------------6 2.3 系统整体方案思路 -----------------------------------------7 3.硬件电路设计---------------------------------------------------9 3.1 主控制器系统的设计---------------------------------------11 3.2 温度传感器的设计-----------------------------------------11 3.2.1DS18B20基本介绍----------------------------------------11 3.2.3DS18B20测温原理---------------------------------------12 3.3 温度控制电路的设计--------------------------------------18 3.4 显示电路的设计 ------------------------------------------19 3. 4.1显示电路模块---------------------------------------------19 3.4.2数字显示驱动电路---------------------------------------19 4. 系统的软件设计----------------------------------------------20 5.系统的安装与调试--------------------------------------------22 结论----------------------------------------------------------------23 参考资料---------------------------------------------------------25

相关主题
文本预览
相关文档 最新文档