求导公式的逆用
- 格式:pptx
- 大小:2.04 MB
- 文档页数:17
不定积分公式总结在微积分的学习中,不定积分是一个非常重要的概念,它是求导的逆运算。
掌握不定积分公式对于解决各种积分问题至关重要。
接下来,就让我们一起系统地总结一下常见的不定积分公式。
一、基本积分公式1、常数的积分:∫C dx = Cx + C₁(其中 C 为常数,C₁为任意常数)这意味着任何常数乘以自变量 x 的积分,结果是该常数乘以 x 再加上一个任意常数。
2、幂函数的积分:∫xⁿ dx =(1/(n + 1))xⁿ⁺¹+ C (n ≠ -1)∫x⁻¹ dx = ln|x| + C3、指数函数的积分:∫eˣ dx =eˣ + C∫aˣ dx =(1 /ln a) aˣ + C (a > 0 且a ≠ 1)4、对数函数的积分:∫ln x dx = x ln x x + C5、三角函数的积分:∫sin x dx = cos x + C∫cos x dx = sin x + C∫tan x dx = ln|cos x| + C∫cot x dx = ln|sin x| + C6、反三角函数的积分:∫arcsin x dx = x arcsin x +√(1 x²) + C∫arccos x dx =x arccos x √(1 x²) + C∫arctan x dx = x arctan x (1/2) ln(1 + x²) + C二、凑微分法相关公式凑微分法是一种非常重要的积分方法,通过将被积表达式凑成某个函数的微分形式,然后进行积分。
例如:∫f(ax + b) dx =(1/a) ∫f(u) du (其中 u = ax + b)常见的凑微分形式有:1、∫cos(ax + b) dx =(1/a) sin(ax + b) + C2、∫sin(ax + b) dx =(1/a) cos(ax + b) + C三、换元积分法相关公式换元积分法分为第一类换元法(凑微分法)和第二类换元法。
不定积分计算公式积分是微积分中的一个重要概念,不定积分即求导的逆运算。
计算不定积分可以使用一些常见的公式和技巧,下面将介绍一些常见的不定积分公式。
1.基本积分公式(1) ∫x^n dx = 1/(n+1)x^(n+1) + C,其中n不等于-1(2) ∫1/x dx = ln,x, + C。
(3) ∫e^x dx = e^x + C。
(4) ∫a^x dx = (1/lna) * a^x + C。
(5) ∫sinx dx = -cosx + C。
(6) ∫cosx dx = sinx + C。
(7) ∫tanx dx = -ln,cosx, + C。
(8) ∫cotx dx = ln,sinx, + C。
(9) ∫sec^2x dx = tanx + C。
(10) ∫cosec^2x dx = -cotx + C。
2.函数的初等不定积分公式(1) ∫e^u du = e^u + C。
(2) ∫sinu du = -cosu + C。
(3) ∫cosu du = sinu + C。
(4) ∫tanu du = -ln,cosu, + C。
(5) ∫cotu du = ln,sinu, + C。
(6) ∫sec^2u du = tanu + C。
(7) ∫cosec^2u du = -cotu + C。
(8) ∫secu * tanu du = secu + C。
(9) ∫cosecu * cotu du = -cosecu + C。
(10) ∫(1+u^2) du = u + (1/3)u^3 + C。
3.基本积分法则(1) 线性法则:∫(af(x) + bg(x)) dx = a∫f(x) dx + b∫g(x) dx,其中a和b为常数。
(2) 乘法法则:∫f(x)g'(x) dx = f(x)g(x) - ∫f'(x)g(x) dx。
(3) 分部积分法:∫f(x)g'(x) dx = f(x)g(x) - ∫g(x)f'(x) dx。
逆用求导公式构造新函数,确定构造出新函数的性质常见的构造函数方法有如下几种: (1)利用和、差函数求导法则构造函数①对于不等式)(x f '+)(x g '>0(或<0),构造函数F (x )=f (x )+g (x ); ②对于不等式)(x f '-)(x g '>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式)(x f '>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (2)利用积、商函数求导法则构造函数①对于不等式)(x f 'g (x )+f (x ))(x g '>0(或<0),构造函数F (x )=f (x )g (x ); ②对于不等式)(x f 'g (x )-f (x ))(x g '>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).(3)利用积、商函数求导法则的特殊情况构造函数①对于不等式x )(x f '+f (x )>0(或<0),构造函数F (x )=xf (x ); ②对于不等式x )(x f '-f (x )>0(或<0),构造函数F (x )=f (x )x (x ≠0);③对于不等式x )(x f '+nf (x )>0(或<0),构造函数F (x )=x n f (x ); ④对于不等式x )(x f '-nf (x )>0(或<0),构造函数F (x )=f (x )x n (x ≠0);⑤对于不等式)(x f '+f (x )>0(或<0),构造函数F (x )=e x f (x ); ⑥对于不等式)(x f '-f (x )>0(或<0),构造函数F (x )=f (x )e x ;⑦对于不等式)(x f '+kf (x )>0(或<0),构造函数F (x )=e kx f (x ); ⑧对于不等式)(x f '-kf (x )>0(或<0),构造函数F (x )=f (x )e kx ;⑨对于不等式f (x )+)(x f 'tan x >0(或<0),构造函数F (x )=sin xf (x ); ⑩对于不等式f (x )-)(x f 'tan x >0(或<0),构造函数F (x )=f (x )sin x (sin x ≠0);⑪对于不等式)(x f '-f (x )tan x >0(或<0),构造函数F (x )=cos xf (x ); ⑫对于不等式)(x f '+f (x )tan x >0(或<0),构造函数F (x )=f (x )cos x (cos x ≠0).1.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x ≠时,()()'0f x f x x+>,若1122a f ⎛⎫= ⎪⎝⎭,()22b f =--,11ln ln 22c f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,则a b c ,,的大小关系是( ) A .a b c << B .b c a << C .c a b << D .a c b << 解:构造()()F x xf x =,且()F x 为偶函数,()()()F x xf x f x ''=+,由()()()()()000f x xf x f x F x f x xxx''+'+>⇒>⇒>,∴0x >,()0F x '>,函数()F x 在()0,+∞单调递增,12a F ⎛⎫=⎪⎝⎭,()()22b F F =-=,()1ln ln 22c F F ⎛⎫== ⎪⎝⎭,a c b << 2.已知()'f x 是函数()()0f x x R x ∈≠且的导函数,当0x >时 ,()()'0xf x f x -<成立,记()()()0.2220.22220.2log 5,,20.2log 5f f f a b c ===,则( )A .a b c <<B .b a c <<C .c a b <<D .c b a << 构造()()f x F x x=,()()()20xf x f x F x x'-'=<,()F x ∴单调递减,()0.22a F =,()20.2b F =,()2log 5c F =,c a b <<,选C3.定义在上R上的可导函数)(x f ,满足2)()(x x f x f =+-,当0<x 时,xx f <')(,则不等式x x f x f +-≥+)1(21)(的解集为_________ 解:构造221)()(x x f x g -=,0)()(=-+x g x g ,由)(x g 为奇函数,当0<x 时,0)()(<-'='x x f x g ,)(x g 为减函数,,x x f x f +-≥+)1(21)(,可得22)1(21)1(21)(x x f x x f ---≥-,即)1()(x g x g -≥∴x x -≤1,即21≤x优解:根据经验判断,所解的不等式一定是)1()(x g x g ->,这样就不需要复杂的变形结合)(x g 的单调性快速得出答案。
三角函数反三角函数积分公式求导公式三角函数是数学中常见的一类函数,包括正弦函数、余弦函数、正切函数等。
而反三角函数则是三角函数的逆运算,用于解决三角方程和计算角度值。
三角函数与反三角函数的积分求导公式在数学中有着重要的应用,下面将介绍这些公式以及其推导。
一、正弦函数与反正弦函数的积分求导公式:1.正弦函数的积分求导公式:∫sin(x) dx = -cos(x) + C该公式可以通过求导得到,即对右边的-cos(x) + C对x求导,由导数的链式法则可得到sin(x)。
2.反正弦函数的积分求导公式:∫arcsin(x) dx = x * arcsin(x) + sqrt(1 - x^2) + C这个公式可以通过对右边的表达式求导来验证,即对x * arcsin(x) + sqrt(1 - x^2)对x求导,应用链式法则和反正弦函数的导数即可得到1 / sqrt(1 - x^2)。
二、余弦函数与反余弦函数的积分求导公式:1.余弦函数的积分求导公式:∫cos(x) dx = sin(x) + C可以通过对右边的sin(x) + C求导来验证,由导数的链式法则可得到cos(x)。
2.反余弦函数的积分求导公式:∫arccos(x) dx = x * arccos(x) - sqrt(1 - x^2) + C可以通过对右边的x * arccos(x) - sqrt(1 - x^2)求导来验证,应用链式法则和反余弦函数的导数即可得到-1 / sqrt(1 - x^2)。
三、正切函数与反正切函数的积分求导公式:1.正切函数的积分求导公式:∫tan(x) dx = -log,cos(x), + C可以通过对右边的-log,cos(x), + C求导来验证,应用对数函数的导数和链式法则即可得到sec^2(x) = 1/cos^2(x)。
2.反正切函数的积分求导公式:∫arctan(x) dx = x * arctan(x) - 1/2 * log(1 + x^2) + C可以通过对右边的x * arctan(x) - 1/2 * log(1 + x^2)求导来验证,应用对数函数的导数和链式法则即可得到1 / (1 + x^2)。
不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。
根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。
分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。
5本词条无参考资料, 欢迎各位编辑词条,额外获取5个金币。
基本信息中文名称分布积分法外文名称Integration by parts目录1定义2应用折叠编辑本段定义不便于进行换元的组合分成两部份进行积分部积分法分部积分法分,其原理是函数四则运算的求导法则的逆用。
根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。
分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。
折叠编辑本段应用在不定积分上的应用具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组分部积分法分部积分法成则按口诀先积三角函数(即:按公式∫udv = uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。
原公式:(uv)'=u'v+uv'求导公式:d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为:d(uv) = vdu + udv移项后,成为:udv = d(uv) -vdu两边积分得到:∫udv = uv - ∫vdu例:∫xcosxdx = xsinx - ∫sinxdx从这个例子中,就可以体会出分部积分法的应用。
在定积分上的应用与不定积分的分部积分法一样,可得∫b/a u(x)v'(x)dx=[∫u(x)v'(x)dx]b/a=[u(x)v(x) - ∫v(x)u'(x)dx]b/a=[u(x)-v(x)]b/a- ∫b/a v(x)u'(x)dx简记作∫b/a uv'dx=[uv]b/a-∫b/a u'vdx 或∫b/a udv=[uv]b/a-∫b/a vdu例如∫1/0arcsin xdx=[xarcsinx]1/0-∫1/0 xdarcsinx从这个例子中就可以看到在定积分上是如何应用的。
导数的逆运算技巧
导数的逆运算技巧是反求原函数或者反求方程的过程,也称为求解微分方程的方法。
下面介绍几种常见的导数的逆运算技巧。
1. 反向应用常见导数公式:
常见的导数公式包括幂函数、指数函数、对数函数、三角函数等的导数规则。
当已知函数的导数,可以反向应用这些导数公式来求解原函数。
2. 积分运算:
导数与积分是互为逆运算的关系,因此可以通过积分运算来进行导数的逆运算。
具体而言,如果已知函数f(x) 的导数为g(x),那么原函数F(x) 可以通过积分运算得到:F(x) = ∫g(x) dx + C,其中C 是积分常数。
3. 分部积分法:
对于一个函数乘以另一个函数的积分,可以通过分部积分法将其转化为更容易求解的形式。
分部积分法公式为:∫u dv = uv - ∫v du。
选择合适的u 和dv 并进行积分运算,可以反向求解出原函数。
4. 反函数法:
若已知函数f(x) 的导数,且该函数在某个区间内是严格单调连续的,那么
可以应用反函数法来求解原函数。
具体步骤是先求出导函数f'(x) 的反函数,再对其进行求导得到原函数的导数。
5. 递归运算:
对于一些特定的函数组合形式,可以应用递归运算来求解导数的逆运算。
例如,对于连续多次求导的情况,可以通过递归地进行积分操作来求解原函数。
导数的逆运算往往需要结合具体的问题与函数特性来选择适当的方法。
同时,求解导数的逆运算也可能存在多个解或无解的情况,需要在具体问题中进行验证和判断。
逆用函数求导公式--------构造法解题数学试题的呈现方式,是数学公式逆用形式,如两角和与差的三角公式逆用,可以用辅助角公式解决,线性规划的目标函数,常见的有截距,距离,斜率公式的形式,,求定积分的运算就是导数公式的逆用寻找原函数,两个函数和差积商的导数公式逆用,可以通过构造新函数来解决。
本文通过对导数公式的逆用,构造新函数,并结合函数的单调性,奇偶性来解决不等式问题。
背景知识:(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0).典型例题:类型一:和差导数公式逆用:例1. 设函数()f x ,()g x 在[],a b 上均可导,且()()f x g x '>',则当a x b <<时,有.A ()()f x g x > .B ()()f x g x <.C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+解:构造)()()(x g x f x F -=,0)()()(>'-'='x g x f x F ,)(x F 为增函数,)()()(b F x F a F <<)()()()()()(b g b f x g x f a g a f -<-<-,∴()()()()f x g b g x f b +>+,选D 类型二,积的导数公式逆用:9.设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0<x 时,()()()()f x g x f x g x ''+>0.且0)1(=g .则不等式0)()(<x g x f 的解集是_________解:)()()(x g x f x F =,0)()()()()(>'+'='x g x f x g x f x F ,)(x F 为增函数,)(x F 为奇函数,0)3(=g ,0)1(=F ,结合)(x F 的图象可得0)(<x F 的解集为)1,0()1,(⋃--∞7.设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 的解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,解:由()()f x xf x x '+<,0x <得: [()]0xf x x '<<,令()()F x xf x =,则当0x <时,()0F x '<,即()F x 在(,0)-∞是减函数,(2014)+=F x (2014)(2014)x f x ++ ,(2)(2)(2)F f -=--,由题意:(2014)F x +>(2)F -又()F x 在(,0)-∞是减函数,∴20142x +<-,即2016x <-,故选C设)(x f 是定义在R 上的可导函数,且满足0)()(>'+x f x x f .则不等式)1(1)1(2-->+x f x x f 的解集为 .解: 令)()(x xf x h =,因为0)()(>'+x f x x f ,=')(x h 0)]([>'x f x ,)(x h 在定义域上递增函数,所以)1(1)1(122-->++x f x x f x ,1≥x ,∴112->+x x ,2<x ,解集为)2,1[8.设函数()f x 是定义在(0)-∞,上的可导函数,其导函数为()f x ',且有22()()f x x f x x '+>,则不等式2(2014)(2014)4(2)0x f x f ++-->的解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,解:由22()()f x xf x x '+>,0x <得:232()()xf x x f x x '+<,即23[()]0x f x x '<<,令2()()F x x f x =,则当0x <时,()0F x '<,即()F x 在(,0)-∞是减函数,2(2014)(2014)(2014)F x x f x +=++ ,(2)4(2)F f -=-,(2014)(2)0F x F +-->,()F x 在(,0)-∞是减函数,所以由(2014)(2)F x F +>-得,20142x +<-,即2016x <-,故选C类型三,商的导数公式逆用:当出现导数差的形式是,可以考虑商的导数例1.已知函数)(x f 是定义在R 上的奇函数,0)1(=f , 当0x >时,有2()()0xf x f x x'->成立,则不等式0)(>x f 的解集是A .(1,0)(1,)-+∞B .(1,0)-C .(1,)+∞D .(,1)(1,)-∞-+∞解:由当0x >时,有2()()0xf x f x x '->成立,知函数xx f x F )()(=的导函数0)()()(2>-'='x x f x f x x F 在),0(+∞上恒成立,所以函数x x f x F )()(=在),0(+∞上是增函数,又因为函数)(x f 是定义在R 上的奇函数,所以函数xx f x F )()(=是定义域上的偶函数,且由0)1(=f 得0)1()1(==-F F ,由此可得函数xx f x F )()(=的大致图象为: 由图可知不等式0)(>x f 的解集是),1()0,1(+∞⋃-.故选A.例2.函数)(x f 是R 上的可导函数,0x ≠时,()()0f x f x x '+>,则函数1()()g x f x x =+的零点个数为( )A .3B .2C .1D .0解:方法一:构造函数)()(x xf x F =,)()()(x f x x f x F +'=',()()0f x f x x '+>,0)(>'xx F ,当0>x 时,0)(>'x F ,)(x F 为增函数,当0<x 时,故可得0)(<'x F ,)(x F 为减函数,0)0(=F ,0)(≥x F ,1()()g x f x x =+xx F x x xf 1)(1)(+=+=无零点 方法二:由于函数g(x)=f(x)+1x,可得x≠0,因而 g (x )的零点跟 xg (x )的非零零点是完全一样的,故我们考虑 xg (x )=xf (x )+1 的零点.由于当x≠0时,f ′(x)+()f x x>0,①当x >0时,(())(()1)()()xg x xf x xf x f x '''=+=+=()(())f x x f x x '+>0,所以()xg x 在(0,+∞)上是单调递增函数.又∵0lim[()1]1x xf x →+=,∴当x ∈(0,+∞)时,函数()xg x =()1xf x +>1恒成立,因此()xg x =()1xf x +在(0,+∞)上没有零点.②当x <0时,由于(())(()1)()()xg x xf x xf x f x '''=+=+=()(())f x x f x x'+<0, 故函数()xg x 在(-∞,0)上是递减函数,函数()xg x =()1xf x +>1恒成立,故函数()xg x 在(-∞,0)上无零点.综上可得,函g(x)=f(x)+1x 在R 上的零点个数为0.上的函数,其中()f x 的导函数为'()f x ,满足.22012(2)(0),(2012)(0)f e f f e f ><.22012(2)(0),(2012)(0)f e f f e f <>解:由'()()f x f x <,知0)()()()()()(2<-'=-'='x x x x ex f x f e e x f e x f x F ,故函数是定义在R 上的减函数,),0()2(F F <∴即)0()2(202f e f e e <⇒<,同理可得)0()2012()0(2012201202012f e f ef e f <⇒<)(,故选B例4设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',)()(x f x f >',且1)3(=f ,解不等式3)(->x e x f解:构造函数x e x f x g )()(=,则x ex f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ;即函数)(x g 在R 上为增函数,)3()(g x g >,∴3>x例5.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定【答案】C解:构造函数x e x f x g )()(=,则x ex f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ;即函数)(x g 在R 上为增函数,则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 例6.若不等式定义在0,2π⎛⎫ ⎪⎝⎭上的函数()f x ,其导函数是()()(),tan f x f x f x x ''<⋅且恒有成立,则A .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ B .63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭解:在0,2π⎛⎫ ⎪⎝⎭时,cos 0x >,由()()sin 'cos x f x f x x <,得()()'sin cos 0f x x f x x ->,构造函数()sin f x y x =,则()()2'sin cos 'sin f x x f x x y x-=0>,函数()sin f x y x =为增函数,由63ππ<,则63sin sin 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭. 例7(周考22)14.已知定义在R 上的奇函数)(x f 的导函数为)('x f ,当0<x 时,)(x f 满足()()2 ') (f x xf x xf x +<,则)(x f 在R 上的零点个数为 A.1 B.3 C. 5 D .1或3 导函数,不分段 0<x ,)()()(222x f x x f x x xf >'+ 由()()2 ') (f x xf x xf x +<两边同乘x 可得,)()()(222x f x x f x x xf <'+,则可得)(])([22x f x x f x >',构造函数x e x f x x F )()(2=,0)(])([)(22>-'='xe xf x x f x x F ,函数x e x f x x F )()(2=为增函数,当0<x ,0)0()(=<F x F ,02>x ex , 0)(<x f ,)(x f 为奇函数,)(x f 零点个数为1例8)(x f 是定义在上R 的奇函数,且0)1(=-f ,当0>x 时,0)(2)()1(2<-'+x xf x f x ,则不等式0)(>x f 的解集为 解:1)()(2+=x x f x F ,0)1()(2)()1()(222<+-'+='x x xf x f x x F ,)(x F 为减函数,)(x F 为奇函数,0)1(=-f0)1(=-F ,结合)(x F 的图象可得不等式0)(>x f 的解集为)1,0()1,(⋃--∞6.()f x 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数,a b ,若a b <,则必有( )A .()()af b bf a ≤B .()()bf a af b ≤C .()()af a f b ≤D .()()bf b f a ≤解:由()()0x f x f x '+≤可得()()x f x f x '≤-,因为(0,)x ∈+∞且()0f x ≥,所以()0f x '≤在(0,)+∞上恒成立,所以()f x 在(0,)+∞单调递减或()f x 为非负的常数函数(当且仅当(0,)x ∈+∞时,都有()0f x '=时,()f x 才为常数函数),当()f x 在(0,)+∞单调递减时,由0a b <<可得()()0f a f b >≥,再由不等式性质中的可乘性可得()()bf a af b >;当()f x 为非负常数函数时,()()0f a f b =≥,所以()()af b bf a ≤(当且仅当()0((0,))f x x =∈+∞时,等号成立),综上可知,选A.方法二:由()()0xf x f x '+≤,即[()]0xf x '≤,设()()F x x f x =,则()0F x '≤,所以()F x 在(0,)+∞单调递减或()F x 为恒大于零的常数函数(当且仅当(0,)x ∈+∞时,都有()0F x '=时,()F x 才为常数函数),当()F x 在(0,)+∞单调递减时,由a b <,可得()()F a F b >即()()af a bf b >;当()F x 为恒大于零的常数函数时,()()F a F b =即()()af a bf b =,根据不等式传递性,)()()()(b af b bf a af a bf ≥≥≥ 方法三:构造函数x x f x F )()(=,2)()()(xx f x f x x F -'=',由()()xf x f x '≤-得,2)()()(x x f x f x x F -'='0)()(2≤--≤x x f x f ,)(x F 为单调减函数或常函数,由a b <可得()()af b bf a ≤时,()'()'()f x f x xf x +<恒A D .c b a <<解:构造函数1)(-=x x F ,=')(x F 0)1()(]1[2>--='-x x f x ,)(x F 为单调增函数, 12)2(-=f a ,13)3(-=f b ,12)12(--=f c ,由3212<<-,可得c a b <<,选A类型四,构造组合函数形式例1 定义在上R 上的可导函数)(x f ,满足2)()(x x f x f =+-,当0<x 时,x x f <')(,则不等式x x f x f +-≥+)1(21)(的解集为_________ 解:221)()(x x f x g -=,0)()(=-+x g x g ,)(x g 为奇函数,当0<x 时,0)()(<-'='x x f x g ,)(x g 为减函数,,x x f x f +-≥+)1(21)(,可得22)1(21)1(21)(x x f x x f ---≥-,即)1()(x g x g -≥∴ x x -≤1,即21≤x 例2定义在上R 上的可导函数)(x f ,满足2)()(x x f x f =+-,当0>x 时,x x f >')(,若a a f a f 22)()2(-≥--,则实数的取值范围是的_________解:221)()(x x f x g -=,0)()(=-+x g x g ,)(x g 为奇函数,当0>x 时,0)()(>-'='x x f x g ,)(x g 为增函数,a a f a f 22)()2(-≥--,可得2221)()2(21)2(a a f a a f -≥---,即)1()(x g x g -≥∴ )()2(a g a g ≥-,a a ≥-2,即1≤a例3定义在上R 上的可导函数)(x f ,满足1)()(>'+x f x f 4)0(=f ,则不等式3)(+>x x e x f e (其中为自然对数的底数)的解集为_________解:构造函数x x e x f e x F -=)()(,=')(x F )1)()(()()(-+'=-+'x f x f e e x f e x f e x x x x ,)(x F 为R 单调增函数, 3)0(=F ,原不等式等价于)0()(F x F >,∴解集为),0(+∞。
分部积分法顺序口诀微积分中的一类积分办法:对于那些由两个不同函数组成的被积函数,不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。
根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。
分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。
定义微积分中的一类积分办法:对于那些由两个不同函数组成的被积函数,不便于进行换元的组合分成两部份进行积分部积分法分,其原理是函数四则运算的求导法则的逆用。
根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。
分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。
应用在不定积分上的应用具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组分部积分法成则按口诀先积三角函数(即:按公式∫udv = uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。
原公式:(uv)'=u'v+uv'求导公式:d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为:d(uv) = vdu + udv 移项后,成为:udv = d(uv) -vdu两边积分得到:∫udv = uv - ∫vdu例:∫xcosxdx = xsinx - ∫sinxdx从这个例子中,就可以体会出分部积分法的应用。
在定积分上的应用与不定积分的分部积分法一样,可得∫b/a u(x)v'(x)dx=[∫u(x)v'(x)dx]b/a=[u(x)v(x) - ∫v(x)u'(x)dx]b/a=[u(x)-v(x)]b/a- ∫b/a v(x)u'(x)dx简记作∫b/a uv'dx=[uv]b/a-∫b/a u'vdx 或∫b/a udv=[uv]b/a-∫b/a vdu例如∫1/0arcsin xdx=[xarcsinx]1/0-∫1/0 xdarcsinx从这个例子中就可以看到在定积分上是如何应用的。
不定积分公式总结不定积分是微积分中的一个重要概念,它是求导的逆运算。
在数学分析、物理学、工程学等领域都有着广泛的应用。
不定积分公式众多,熟练掌握这些公式对于解决积分问题至关重要。
下面我们就来对常见的不定积分公式进行总结。
一、基本积分公式1、常数的积分:∫k dx = kx + C (k 为常数)这是最简单的积分公式,常数的积分就是常数乘以自变量再加上常数 C。
2、幂函数的积分:∫x^n dx =(1/(n + 1))x^(n + 1) + C (n ≠ -1)∫x^(-1) dx = ln|x| + C对于幂函数的积分,当指数不为-1 时,将指数加 1 然后除以新的指数,再加上常数 C;当指数为-1 时,积分结果为自然对数。
3、指数函数的积分:∫e^x dx = e^x + C∫a^x dx =(1/ln a)a^x + C (a > 0,a ≠ 1)指数函数 e^x 的积分就是其本身,而对于底数为 a 的指数函数,积分结果需要除以其底数的自然对数。
4、对数函数的积分:∫ln x dx = x ln x x + C这是对数函数的一个重要积分公式。
5、三角函数的积分:∫sin x dx = cos x + C∫cos x dx = sin x + C∫tan x dx = ln|cos x| + C∫cot x dx = ln|sin x| + C∫sec x dx = ln|sec x + tan x| + C∫csc x dx = ln|csc x + cot x| + C三角函数的积分需要牢记这些常见的公式,在解题中经常会用到。
二、凑微分法相关公式凑微分法是积分中的一种重要方法,通过对被积表达式进行适当的变形,将其凑成某个函数的微分形式,然后进行积分。
1、例如:∫f(ax + b) dx =(1/a)∫f(u) du (令 u = ax + b)2、∫cos(ax + b) dx =(1/a)sin(ax + b) + C (令 u = ax + b)3、∫sin(ax + b) dx =(1/a)cos(ax + b) + C (令 u = ax + b)凑微分法需要我们对函数的形式有敏锐的观察力,能够准确地找到合适的代换。
高中数学求导公式表求导是高中数学中的一个重要概念,也是微积分的基础。
求导公式表是数学求导时经常用到的一些公式的集合,下面是一个详细的高中数学求导公式表:1.常数的导数公式:如果f(x)=c,则f'(x)=0,其中c是常数。
2.变量的导数公式:如果f(x)=x,则f'(x)=13.幂函数的导数公式:如果f(x) = x^n,则f'(x) = nx^(n-1),其中n是常数。
4.指数函数的导数公式:如果f(x) = a^x,则f'(x) = a^x * ln(a),其中a是常数且a > 0。
5.对数函数的导数公式:如果f(x) = log_a(x),则f'(x) = 1 / (x * ln(a)),其中a是常数且a > 0。
6.三角函数的导数公式:如果f(x) = sin(x),则f'(x) = cos(x)。
如果f(x) = cos(x),则f'(x) = -sin(x)。
如果f(x) = tan(x),则f'(x) = sec^2(x)。
如果f(x) = arcsin(x),则f'(x) = 1 / sqrt(1 - x^2)。
如果f(x) = arccos(x),则f'(x) = -1 / sqrt(1 - x^2)。
如果f(x) = arctan(x),则f'(x) = 1 / (1 + x^2)。
8.双曲函数的导数公式:如果f(x) = sinh(x),则f'(x) = cosh(x)。
如果f(x) = cosh(x),则f'(x) = sinh(x)。
如果f(x) = tanh(x),则f'(x) = 1 - tanh^2(x)。
9.复合函数的导数公式:如果f(x)=g(h(x)),则f'(x)=g'(h(x))*h'(x)。
10.和差法则:如果f(x)=g(x)+h(x),则f'(x)=g'(x)+h'(x)。