【教育专用】2017_2018学年高中数学第三章概率3.3几何概型3.3.1几何概型优化练习新人教A版必修3
- 格式:doc
- 大小:143.00 KB
- 文档页数:6
教学资料范本高中数学第3章概率3-3几何概型互动课堂学案编辑:__________________时间:__________________3.3 几何概型互动课堂疏导引导1.几何概型的定义在古典概型中,利用等可能性的概念,成功地计算了某一类问题的概率;不过,古典概型要求可能结果的总数必须有限.这不能不说是一个很大的限制,人们当然要竭力突破这个限制,以扩大自己的研究范围.因此历史上有不少人企图把这种做法推广到有无限多个结果而又有某种等可能性的场合.这类问题一般可以通过几何方法来求解.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.对于这一定义也可以作以下理解:设在空间上有一区域D,又知区域d包含在区域D内(如下图所示),而区域D与d都是可以度量的(可求面积、长度、体积等),现随机地向D内投掷一点M,假设点M必落在D中,且点M可能落在区域D的任何部分,那么落在区域d内的概率只与d的度量(长度、面积、体积等)成正比,而与d的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.2.几何概型的概率计算一般地,在几何区域D中随机地抽取一点,记“该点落在其内部的一个区域d内”为事件A,则事件A发生的概率P(A)=的测度的测度D d .这里要求D的测度不为0,其中“测度”的意义依D确定,当D分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等. 疑难疏引 (1)几何概型的概率的取值范围同古典概型概率的取值范围一样,几何概型的概率的取值范围也是0≤P(A)≤1.这是因为区域d包含在区域D内,则区域d的“测度”不大于区域D的“测度”.当区域d的“测度”为0时,事件A是不可能事件,此时P(A)=0;当区域d的“测度”与区域D的“测度”相等时,事件A是必然事件,此时P(A)=1. (2)求古典概型概率的步骤: ①求区域D的“测度”; ②求区域d的“测度”; ③代入计算公式.(3)对于一个具体问题能否应用几何概率公式计算事件的概率,关键在于将问题几何化,也即可根据问题的情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个区域,且是可度量的.案例1某公共汽车站每隔5分钟有一辆车通过(假设每一辆车带走站上的所有乘客),乘客到达汽车站的任一时刻是任意的,求乘客候车时间不超过3分钟的概率. 【探究】这是一个与长度有关的几何概型问题.记A=“候车时间不超过3分钟”.以x表示乘客到车站的时刻,以t表示乘客到车站后来到的第一辆汽车的时刻,据题意,乘客必然在(t -5,t]内来到车站,于是D={x|t -5<x≤t}. 若乘客候车时间不超过3分钟,必须t -3≤x≤t,所以A={x|t -3≤x≤t}据几何概率公式得P(A)=53=的长度的长度D d =0.6规律总结(1)把所求问题归结到x轴上的一个区间内是解题的关键.然后寻找事件A发生的区域,从而求得d的测度.(2)本题也可这样理解:乘客在时间段(0,5]内任意时刻到达,等待不超过3分钟,则到达的时间在区间[2,5]内. 案例2甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠时必须等待的概率. 【探究】这是一类与面积有关的几何概型问题.设A={两艘船中至少有一艘停靠时等待}.建立平面直角坐标系,x轴表示甲船到达的时间,y轴表示乙船到达的时间,则(x,y)表示的所有结果是以24为边长的正方形.事件A发生的条件是0<x -y<6或0<y -x<6,即图中阴影部分,则D的面积为242,d的面积为242-182.∴P(A)=167242824222=-. 规律总结 (1)甲、乙两船都是在0—24小时内的任一时刻停靠,故每一个结果对应两个时间;分别用x,y轴上的数表示,则每一个结果(x,y)就对应于图中正方形内的任一点.(2)找出事件A发生的条件,并把它在图中的区域找出来,分别计算面积即可. (3)这一类问题我们称为约会问题. 案例3在长度为a的线段上任取两点将线段分成三段,求它们可以构成三角形的概率. 【探究】解法一:假设x、y表示三段长度中的任意两个,因为是长度,所以应有x >0,y>0且x+y<a,即x、y的值在以(0,a)、(a,0)和(0,0)为顶点的三角形内,如右图所示.要形成三角形,由构成三角形的条件知,x和y都小于,且x+y>(如图阴影部分).又因为阴影部分的三角形的面积占形成总面积的,故能够形成三角形的概率为.解法二:如右图,作等边三角形ABC,使其高为a,过各边中点作△DEF.△DEF的面积占△ABC的面积的.因为从△ABC内任意一点P到等边三角形三边的垂线段长度之和等于三角形的高(由等积法易知),为了使这三条垂线线段中没有一条的长度大于,P点必须落在阴影部分即△DEF内(DM=).所以符合题意要求的情况占全部情况的,即所求概率为.解法三:如下图,作一边长为a的正方形,过相对两边的中点作两条斜线,阴影部分占整个正方形面积的.令AB上距离底边为x的点表示第一个截点的位置,则第二个截点一定落入阴影部分(y<,z<).因此,符合题意要求的情况占全部情况的.所以所求的概率为.规律总结解决此题的关键在于弄清三角形三边长之间的关系,由题意易知,三边长之和为定值a,且三边长分别小于a2.把握住了这两点,就能使问题准确获解.3.随机数的产生与随机模拟方法(1)随机数的产生利用计算器或计算机产生[0,1]上的均匀随机数x1=RAND,然后利用伸缩和平移变换,x=x1*(b-a)+a,就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能出现的.(2)随机模拟试验用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法进行,因而随机模拟试验就成为一种重要的方法,它可以在短时间内多次重复.用计算器或计算机模拟试验,首先需要把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型(一维)只用一组,面积型(二维)需要用两组.②由所有的基本事件总体(基本事件空间)对应区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式.(3)随机模拟的基本思想是用频率近似于概率,频率可由试验获得.案例4 取一根长度为3m的绳子,拉直后在任意位置剪断,用随机模拟法估算剪得两段的长都不小于1 m的概率有多大?【探究】在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意实数,并且每一个实数被取到的可能性相等,因此在任意位置剪断绳子的所有结果(即基本事件)对应[0,3 ]上的均匀随机数,其中[1,2]上的均匀随机数就表示剪断位置与端点 的距离在[1,2]内,也就是剪得两段的长都不小于1 m,这样取得的[1,2]内的随机数个数与[0,3]内的随机数个数之比就是事件A 发生的频率.【解析】记事件A={剪得两段的长都不小于1 m}.①利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.②经过伸缩变换,a=a1*3.③统计出试验总次数N和[1,2]内的随机数个数N1.④计算频率fn (A)=N1/N即为概率P(A)的近似值.规律总结用随机模拟法估算几何概率的关键是把事件A及基本事件空间对应的区域转化为随机数的范围.案例5利用随机模拟方法计算图中阴影部分(曲线y=2x与x轴,x=±1围成的部分)的面积.【探究】在坐标系中画出正方形,用随机模拟的方法可以求出阴影部分面积与正方形面积之比,从而求得阴影部分面积的近似值.【解析】(1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND,b1=RAND.(2)进行平移和伸缩变换,a=2a1-1,b=b1*2,得到一组[-1,1]上的均匀随机数和一组[0,2]上的均匀随机数.(3)统计试验总次数N和落在阴影内的次数N1(满足条件b<2a的点(a,b)).(4)计算频率,即为点落在阴影部分的概率的近似值.(5)用几何概率公式求得点落在阴影部分的概率为P=.∴≈.∴S≈即为阴影部分面积的近似值.规律总结解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过方程求得阴影部分面积的近似值.活学巧用1.判断下列概率模型是古典概型还是几何概型?(1)如下图,转盘上有8个面积相等的扇形.转动转盘,求转盘停止转动时指针落在阴影部分的概率.(2)在500 mL的水中有一个草履虫,现从中随机取出2mL水样放到显微镜下观察,求发现草履虫的概率.解析:以上2个试验的可能结果个数无限,所以它们都不是古典概型.而是几何概型.2.利用几何概型求概率应注意哪些问题?解:应该注意到:(1)几何型适用于试验结果是无穷多且事件是等可能发生的概率类型;(2)几何概型主要用于解决与长度、面积、体积有关的题目;(3)公式为P(A)=;(4)计算几何概率要先计算基本事件总体与事件A包含的基本事件对应的长度(角度、面积、体积).3.有一杯1 L的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1L水,则小杯水中含有这个细菌的概率为( )A.0B.0.1C.0.01D.1解析:1个细菌在1L的水中,在每一个位置都是可能的,那么只有这个细菌在这0.1L的水中,这件事件才能发生.由几何概型公式得P(A)==0.1.答案:B4.如下图,如果你向靶子上射200支镖,大概有多少支镖落在红色区域(颜色较深的区域)( )A.50B.100C.150D.200解析:这是几何概型问题.这200支镖落在每一点的可能性都是一样的,对每一支镖来说,落在红色区域的概率P=,每一支镖落在红色区域的概率都是12,则200支镖落在红色区域的概率还是,则落在红色区域的支数=200支×=100支.答案:B5.如下图,假设你在每个图形上随机撒一粒黄豆,则它落到阴影部分的概率分别为_____________________,___________________.解析:这是几何概型问题,在平面上随机撒一粒黄豆,那么黄豆既可能落在三角形内,也可能落在圆内空白区域,并且落在每一点的可能性是一样的,只有落在三角形内才说明事件A发生.①P(A)==.②P(A)==.答案:6.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯;(2)黄灯;(3)不是红灯.解:在75秒内,每一时刻到达路口的时候是等可能的,属于几何概型.(1)P==;(2)P==;(3)P===.7.在线段[0,3]上任取一点,则此点坐标不小于2的概率是( )A. B. C. D.解析:在线段[0,3]上任取一点的可能性是相等的,若在其上任意取一点,此点坐标不小于2,则该点应落在线段[2,3]上.所以,在线段[0,3]上任取一点,则此点坐标不小于2的概率应是线段[2,3]的长度与线段[0,3]的长度之比,即为.答案:A8.圆O有一内接正三角形,向圆O随机投一点,则该点落在内接正三角形内的概率是_______.解析:向圆内投点,所投的点落在圆形区域内任意一点的可能性相等,所以本题的概率模型是几何概型.向圆O随机投一点,则该点落在内接正三角形内的概率应为正三角形的面积与圆的面积的比.答案:9.假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家之前能得到报纸(称为事件A)的概率是多少?解析:如下图所示,正方形区域内任取一点的横坐标表示送报人到达的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在正方形内任何一点是等可能的,所以符合几何概型的条件,根据题意,只要点落到阴影部分,就表示父亲在离开家前得到报纸,即事件A发生,所以P(A)==87.5%.10.如右图所示,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,求射线OA落∠xOT内的概率.分析:以O为起点作射线OA是随机的,因而射线OA落在任何位置都是等可能的,落在∠xOT内的概率只与∠xOT的大小有关,符合几何概型的条件.解:设事件A“射线OA落在∠xOT内”.事件A的角度是60°,区域D的角度是360°,所以,由几何概率公式得P(A)=.11.甲、乙两辆货车停靠站台卸货的时间分别是6小时和4小时,用随机模拟法估算有一辆货车停靠站台时必须等待一段时间的概率.解析:设事件A:“有一辆货车停靠站台时必须等待一段时间”.(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩变换,x=x1*24,y=y1*24得到两组[0,24]上的均匀随机数.(3)统计出试验总次数N和满足条件-4≤x-y≤6的点(x,y)的个数N1.(4)计算频率fn(A)=,即为概率P(A)的近似值.12.如右图,在长为4宽为2的矩形中有一以矩形的长为直径的半圆,试用随机模拟法近似计算半圆面积,并估计π值.解析:设事件A:“随机向矩形内投点,所投的点落在半圆内”.(1)利用计算机或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*4-2,y=y1*2.(3)统计出试验总数N和满足条件x2+y2<4的点(x,y)的个数N1.(4)计算频率fn(A)=,即为概率P(A)的近似值.半圆的面积为S1=2π,矩形的面积为S=8.由几何概型概率公式得P(A)=,所以=.所以即为π的近似值.13.利用随机模拟法近似计算右图中阴影部分(曲线y=log3x与x=3及x轴围成的图形)的面积.解析:设事件A:“随机向矩形内投点,所投的点落在阴影部分”.(1)利用计算器或计算机产生两组0到1之间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*3,y=y1*3.得到两组[0,3]的均匀随机数.(3)统计出试验总次数N和满足条件y<log3x的点(x,y)的个数N1.(4)计算频率fn(B)=,即为频率P(A)的近似值.设阴影部分的面积为S,正方形的面积为9,由几何概率公式得P(A)=.所以=,故S=即为阴影部分面积的近似值.。
高中数学学习材料 (灿若寒星 精心整理制作)3.3.1 几何概型课时目标 1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.1.几何概型的概念事件A 理解为区域Ω的某一子区域A ,如图,A 的概率只与子区域A 的____________(长度、面积或体积)成________,而与A 的________和________无关.满足以上条件的试验称为____________. 2.几何概型的概率计算公式在几何概型中,事件A 的概率定义为:______________________,其中,μΩ表示______________,μA 表示__________________.一、选择题1.用力将一个长为三米的米尺拉断,假设该米尺在任何一个部位被拉断是等可能的,则米尺的断裂处恰在米尺的1米到2米刻度处的概率为( ) A .23 B .13 C .16 D .142.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是( )A .π4B .4πC .4-π4D .4-ππ3.在1 L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL ,则含有麦锈病种子的概率是( )A .11 000B .1900C .910D .11004.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A .π4 B .1-π4 C .π8 D .1-π85.在区间[-1,1]上任取两数x 和y ,组成有序实数对(x ,y),记事件A 为“x 2+y 2<1”,则P(A)为( ) A .π4 B .π2 C .π D .2π6.有四个游戏盘,如下图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为( )题 号1 2 3 4 5 6 答 案二、填空题7.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看到的是绿灯的概率是________.8.在区间[-1,2]上随机取一个数x ,则x ∈[0,1]的概率为________.9.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为________. 三、解答题10.过等腰Rt △ABC 的直角顶点C 在∠ACB 内部随机作一条射线,设射线与AB 相交于点D ,求AD<AC 的概率.11.如图,在墙上挂着一块边长为16 cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为2 cm ,4 cm,6 cm ,某人站在3 m 之外向此板投镖,设投镖击中线上或没有投中木板时都不算(可重投),问: (1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少? (3)投中大圆之外的概率是多少?能力提升12.函数f(x)=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f(x 0)≤0的概率为( )A .1B .23C .310D .2513.在转盘游戏中,假设有三种颜色红、绿、蓝.在转盘停止时,如果指针指向红色为赢,绿色为平,蓝色为输,问若每种颜色被平均分成四块,不同颜色相间排列,要使赢的概率为15,输的概率为13,则每个绿色扇形的圆心角为多少度?(假设转盘停止位置都是等可能的)处理几何概型问题就要先计算基本事件总体与事件A 包含的基本事件对应的区域的长度(角度、面积或体积),而这往往会遇到计算困难,这是本节难点之一.实际上本节的重点不在于计算,而在于如何利用几何概型把问题转化为各种几何概率问题.为此可参考如下办法:(1)选择适当的观察角度;(2)把基本事件转化为与之对应的几何区域; (3)把随机事件A 转化为与之对应的几何区域; (4)利用概率公式计算;(5)如果事件A 对应的区域不好处理,可以用对立事件概率公式逆向思维.同时要注意判断基本事件的等可能性,这需要严谨的思维,切忌想当然,需要从问题的实际背景出发去判断.§3.3 随机数的含义与应用3.3.1 几何概型知识梳理1.几何度量 正比 位置 形状 几何概型2.P(A)=μAμΩ区域Ω的几何度量 子区域A 的几何度量作业设计1.B [P =2-13=13.]2.A [由题意,P =S 圆S 正方形=π×122×2=π4.]3.D [取出10 mL 麦种,其中“含有病种子”这一事件记为A ,则P(A)=取出种子的体积所有种子的体积=101 000=1100.]4.B [当以O 为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O 的距离小于或等于1,故所求事件的概率为P(A)=S 长方形-S 半圆S 长方形=1-π4.]5.A[如图,集合S ={(x ,y)|-1≤x ≤1,-1≤y ≤1},则S 中每个元素与随机事件的结果一一对应,而事件A 所对应的事件(x ,y)与圆面x 2+y 2<1内的点一一对应,∴P(A)=π4.]6.A [A 中P 1=38,B 中P 2=26=13,C 中设正方形边长2,则P 3=4-π×124=4-π4,D 中设圆直径为2,则P 4=12×2×1π=1π.在P 1,P 2,P 3,P 4中,P 1最大.]7.815解析 P(A)=4030+5+40=815.8.13解析 由几何概型知所求的P =1-02-(-1)=13.9.334π解析 设圆面半径为R ,如图所示△ABC 的面积S △ABC =3·S △AOC =3·12AC·OD =3·CD·OD=3·R sin 60°·R cos 60°=33R 24,∴P =S △ABC πR 2=33R 24πR 2=334π.10.解 在AB 上取一点E ,使AE =AC ,连接CE(如图),则当射线CD 落在∠ACE 内部时,AD<AC.易知∠ACE =67.5°,∴AD<AC 的概率P =67.5°90°=0.75.11.解 整个正方形木板的面积,即基本事件所占的区域总面积为S =16×16=256 (cm 2).记“投中大圆内”为事件A ,“投中小圆与中圆形成的圆环”为事件B ,“投中大圆之外”为事件C ,则事件A 所占区域面积为S A =π×62=36π(cm 2);事件B 所占区域面积为S B =π×42-π×22=12π(cm 2);事件C 所占区域面积为S C =(256-36π)cm 2.由几何概型的概率公式,得(1)P(A)=S A S =964π;(2)P(B)=S B S =364π;(3)P(C)=S C S =1-964π.12.C [令x 2-x -2=0,得x 1=-1,x 2=2,f(x)的图象是开口向上的抛物线,与x 轴的交点为(-1,0),(2,0),图象在x 轴下方,即f(x 0)≤0的x 0的取值范围为x 0∈[-1,2],∴P =2-(-1)5-(-5)=310.]13.解 由于转盘旋转停止位置都是等可能的,并且位置是无限多的,所以符合几何概型的特点,问题转化为求圆盘角度或周长问题.因为赢的概率为15,所以红色所占角度为周角的15,即α1=360°5=72°.同理,蓝色占周角的13,即α2=360°3=120°,所以绿色所占角度α3=360°-120°-72°=168°. 将α3分成四等份, 得α3÷4=168°÷4=42°.即每个绿色扇形的圆心角为42°.。
3.3.1 几何概型
[课时作业] [A 组 学业水平达标]
1.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为( ) A.1
2 B.32
C.13
D.14
解析:如图,当AA ′的长度等于半径长度时,∠AOA ′=π
3,由圆的
对称性及几何概型得P =2π32π=1
3.故选C.
答案:C
2.如图所示,以边长为1的正方形ABCD 的一边AB 为直径在其内部作一半圆.若在正方形中任取一点P ,则点P 恰好取自半圆部分的概率为( ) A.π2 B.12 C.π4 D.π8
解析:所求概率P =12×π×⎝ ⎛⎭⎪⎫122
1×1=π
8.故选D.
答案:D
3.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( ) A.110 B.1
9 C.111 D.18
解析:总的时间段长为10 min ,在车站停1 min , ∴P =110.
答案:A
4.已知点P ,Q 为圆C :x 2
+y 2
=25上的任意两点,且|PQ |<6,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为
(
)
A.35
B.925
C.1625
D.25
解析:PQ 中点组成的区域M 如图阴影部分所示,那么在C 内部任取一点落在M 内的概率为25π-16π25π=925,故选B.
答案:B
5.在区间[0,2]上随机地取一个数x ,则事件“-1 (x +1
2
)≤1”
发生的概率为( ) A.34 B.2
3 C.13 D. 1
4 解析:由-1≤
(x +1
2
)≤1得,
≤log 12(x +12
)≤
12,12≤x +12≤2,0≤x ≤3
2
,所以由几何概型概率的计算公式得,P =32-02-0=3
4,故选A.
答案:A
6.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧 的长
度小于1的概率为________.
解析:如图可设与
的长度等于1,则由几何概型可知其整体事件是其周长3,则
其概率是2
3.
答案:23
7.广告法对插播广告时间有规定,某人对某台的电视节目作了长期的统计后得出结论,他任意时间打开电视机看该台节目,看不到广告的概率约为9
10
,那么该台每小时约有
________
分钟广告.
解析:这是一个与时间长度有关的几何概型,这人看不到广告的概率为9
10,则看到广告的概
率约为110,故60×1
10=6.
答案:6
8.已知线段AC =16 cm ,先截取AB =4 cm 作为长方体的高,再将线段BC 任意分成两段作为长方体的长和宽,则长方体的体积超过128 cm 3
的概率为________.
解析:依题意,设长方体的长为x cm ,则相应的宽为(12-x )cm ,由4x (12-x )>128得x 2
-12x +32<0,4<x <8,因此所求的概率等于8-412=13.
答案:1
3
9.一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少? (1)红灯亮;(2)黄灯亮;(3)不是红灯亮.
解析:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25;
(2)P =黄灯亮的时间全部时间=575=1
15
;
(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间
全部时间
=4575=3
5
. 10.在正方体ABCD A 1B 1C 1D 1中,棱长为1,在正方体内随机取一点M ,求使M ABCD 的体积小于1
6
的概率. 解析:设点M 到面ABCD 的距离为h , 则V M ABCD =13S 底ABCD ·h =16,即h =1
2
.
所以只要点M 到面ABCD 的距离小于1
2
时,即满足条件.
所有满足点M 到面ABCD 的距离小于12的点组成以面ABCD 为底,高为12的长方体,其体积为1
2.
又因为正方体体积为1,
所以使四棱锥M ABCD 的体积小于1
6的概率为P =121=12
.
[B 组 应考能力提升]
1.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a
2,高为b .向该矩形内随机地投一点,则所投的点落在
梯形内部的概率为( ) A.112 B.14 C.512 D.712
解析:两“几何度量”即为两面积,直接套用几何概型的概率公式.S 矩形=ab ,S 梯形=12(13a
+12a )·b =512ab ,所以所投的点落在梯形内部的概率为S 梯形S 矩形=512ab
ab =512. 答案:C
2.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数f (x )=
⎩⎪⎨⎪⎧
x +1,x ≥0-1
2
x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率
等于( )
A.16
B.14
C.38
D.12
解析:由已知得B (1,0),C (1,2),D (-2,2),F (0,1),则矩形ABCD 的面积为3×2=6,阴影部分的面积为12×3×1=3
2,故该点取自阴影部分的概率等于3
26=14.
答案:
B
3.如图,在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠
AOC 和∠BOC 都不小于30°的概率是________.
解析:将圆心角为90°的扇形等分成三部分:
当射线OC 位于中间一部分时,使得∠AOC 和∠BOC 都不小于30°, ∴使得∠AOC 和∠BOC 都不小于30°的概率为:
P =中间部分的圆心角大小÷整个扇形的圆心角的大小=30°÷90°=13
,故使得∠AOC 和∠BOC 都不小于30°的概率为13
.
答案:13
4.如图所示,墙上挂着一块边长为16 cm 的正方形木板,上面画了大、
中、小三个同心圆,半径分别为6 cm ,4 cm ,2 cm.某人站在3 m 之外向此
板投镖,设投镖击中线上或没有击中木板时都不算,可重投,问: (1)投中大圆内的概率是多少?
(2)投中小圆与中圆形成的圆环的概率是多少? (3)投中大圆之外的概率是多少?
解析:整个正方形木板的面积,即基本事件所占的区域总面积D =16×16=256(cm 2
). 设“投中大圆内”为事件A ,“投中小圆与中圆形成的圆环”为事件B ,“投中大圆之外”为事件C ,则
事件A 所占区域面积为d A =π×62
=36π(cm 2
); 事件B 所占区域面积为
d B =π×42-π×22=16π-4π=12π(cm 2);
事件C 所占区域面积为
d C =D -d A =(256-36π)(cm 2).
由几何概型的概率公式,得
(1)P (A )=d A D =36π256=9
64
π,
即投中大圆内的概率为9
64
π.
(2)P (B )=d B D =12π256=3
64
π,
即投中小圆与中圆形成的圆环的概率为3
64
π.
(3)P (C )=d C D =256-36π256=1-9
64
π,
即投中大圆之外的概率为1-9
64
π.
5.设关于x 的一元二次方程x 2
+2ax +b 2
=0.
(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求上述方程有实根的概率.
解析:设事件A 为“方程x 2
+2ax +b 2
=0有实根”,当a ≥0,b ≥0时,此方程有实根的条件是(2a )2
-4b 2
≥0,即a ≥b .
(1)基本事件共有12个,分别是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中括号内第一个数表示a 的取值,第二个数表示b 的取值.
事件A 中包含9个基本事件,故事件A 发生的概率为P (A )=912=34.
(2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},而构成
事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },即如图所示的阴影部分,所以P (A )=3×2-12×2
2
3×2=2
3
.。