GSM基本原理
- 格式:ppt
- 大小:259.50 KB
- 文档页数:31
gsm通信原理GSM通信是一种使用数字技术的无线通信系统,它采用全球标准的移动通信技术,提供了语音和数据传输的能力。
以下是GSM通信原理的详细介绍。
GSM通信系统中,通信被分成了不同的时隙,每个时隙的持续时间为577微秒。
这些时隙构成了一个帧,每个帧包含了8个时隙。
一般来说,GSM系统中的频率被划分成了多个小区域,每个小区域都有自己的频率。
这些小区域被进一步划分为不同的扇区,每个扇区负责一个特定的区域。
在GSM系统中,通信是在两个设备之间建立的。
一个设备是移动台,也就是我们的手机,另一个设备则是基站,它是一个连接移动台和网络的设备。
基站负责接收移动台发送的信号,并将其转发到网络中。
移动台和基站之间的通信是双向的,也就是说,移动台发送的信号会被基站接收并转发到网络,反过来,网络发送的信号也会被基站接收并转发到移动台。
在通信过程中,移动台和基站之间会进行一系列的协商和认证工作,以确保通信的安全性和有效性。
移动台首先与网络进行鉴权和加密,然后与基站进行通信。
当通信建立时,移动台会发送信号到基站,基站会接收并对其进行处理。
接着,基站将信号转发到网络中,网络对信号进行处理和转发。
在GSM通信中,语音信号和数据信号被编码和调制成数字信号,然后通过无线传输到基站和网络中。
在基站和网络之间,信号会进行一系列的处理和转换,以提供更高的通信质量和传输速率。
信号在传输过程中可能会受到干扰和衰减,因此系统采用了一些技术来提高信号的可靠性和鲁棒性。
总的来说,GSM通信采用了数字技术,通过移动台和基站之间的无线通信实现语音和数据的传输。
通过协商、认证和信号处理等步骤,确保了通信的安全性和有效性。
这些特点使GSM成为了全球范围内最常用的移动通信系统之一。
GSM通信原理基础理论
GSM通信系统使用了时分多址(TDMA)技术,它将频谱划分为时间片,每个时间片中可以为多个用户提供时间资源。
通信的基本单元是一个帧,
每个帧包含8个时间槽。
在一个时间槽中,可以进行数据传输或语音通话。
使用TDMA技术可以同时支持多个用户进行通信,提高频谱的利用率。
GSM通信中的频率分为上行频率(移动台到基站)和下行频率(基站
到移动台)。
在每个基站的覆盖范围内,频率由BTS控制,并与相邻基站
的频率进行协调,以避免互相干扰。
频率的分配和管理是由BSC和MSC进
行协调的。
GSM通信中的信号传输是通过无线电波进行的。
移动台和基站之间的
通信采用的是二进制相移键控(GMSK)调制方式,它可以将数字数据转换
为连续的无限电波。
GSM通信系统中的通信距离通常由基站的输出功率和
天线的高度决定,一般情况下,基站的通信距离为几公里到几十公里。
GSM通信系统还支持一些额外的功能,如短信(SMS)和数据传输(GPRS)。
短信功能允许用户发送和接收短文本消息,它可以通过控制信
道上的空闲时间槽来实现。
GPRS是GSM网络中的数据传输技术,它可以
提供更高的速度和更灵活的数据传输能力,使用户可以通过移动设备访问
互联网和其他数据服务。
总结起来,GSM通信系统是一种基于数字信号处理和频分多址技术的
移动通信系统,它采用时分多址技术来提高频谱利用率,支持语音通话、
短信和数据传输等功能。
GSM通信系统在全球范围内得到了广泛应用,成
为2G移动通信的标准。
GSM 工作原理简介GSM是采用FDMA〔频分〕与TDMA〔时分〕制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。
在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。
而CDMA 是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。
FDMA、TDMA及CDMA 的比拟一、GSM的理论根底.GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又参加了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐具有GSM900MHz及DCS1800MHz两个频段自动切换的功能.初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后参加了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。
GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道〔EGSM参加了975~1023共49个信道〕;因此E-GSM共有174个信道。
DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道〔512至885〕。
PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。
每信道分成8个时隙(半速率是有16个),每个时隙信道速率是22.8kb/s,信道总传输速率270.83Kb/s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳频217次,交错信道编码,自适应均衡.现在GSM 向前开展开发了GPRS业务,作为2G向3G的过渡方式。
gsm模块的工作原理
GSM(Global System for Mobile Communications)模块是一种能够在移动通信网络中实现无线通信的设备。
它是将通信功能集成在一块小型的电路板上,包含有手机通信所需的所有相关硬件和软件。
GSM模块的工作原理可简单分为以下几个步骤:
1. 接收和发送信号:GSM模块首先从天线接收到来自基站的无线信号。
这些信号经过一个收发器进行放大和滤波,并转化为数字信号。
2. 分离信号:经过放大和滤波后,数字信号被GSM模块内部的解调器分离成音频和数据信号。
3. 处理数据:GSM模块将从基站接收到的数据进行解码和处理,确保数据的完整性和准确性。
4. 用户交互:GSM模块配备有一个输入输出接口,可以通过该接口与外部设备(例如微控制器、计算机)进行通信。
用户可以通过输入接口发送指令或数据到模块,同时模块也可以通过输出接口将数据发送到外部设备。
5. 数据传输:GSM模块使用GSM网络传输数据。
数据可以是短信、语音、图片或其他多媒体形式。
6. 与基站通信:GSM模块通过GSM网络与基站进行通信。
它
可以发送和接收数据,同时也可以参与到移动通话中。
总的来说,GSM模块就是通过接收、处理和发送信号来实现无线通信的设备。
它可以将用户发送的数据通过GSM网络传输到接收方,并能从基站接收来自其他设备的数据。
gsm的工作原理GSM(Global System for Mobile Communications)是一种基于数字技术的移动通信标准。
其工作原理可以分为以下几个方面:1. 频率分配:GSM网络将可用的无线频谱分为不同的频道,每个频道可以同时支持多个用户进行通信。
频谱分配由基站控制器(BSC)进行管理,它根据网络负载和通信需求动态地分配频率资源。
2. 信号传输:GSM系统使用时分多址(TDMA)技术,将每个频道划分为多个时隙,每个时隙可用于传输不同用户的信息。
通过这种方式,多个用户可以在同一个频道上同时进行通信,提高了系统的容量和效率。
3. 基站系统:GSM网络由许多基站组成,每个基站负责覆盖特定范围内的用户。
基站由基站控制器进行管理,它与移动设备进行无线通信,将用户的语音和数据信息转发到目标位置。
4. 用户鉴权:当移动设备尝试接入GSM网络时,网络会对用户进行鉴权,确保其合法性和身份。
这涉及到与用户SIM卡中的密钥进行比对,以验证用户的身份。
5. 话音编码:GSM系统使用全球通用的话音编码标准(GSM-FR),将用户的语音信号进行数字化和编码,以便在网络中传输。
这种编码可以减小语音数据量,提高传输效率。
6. 数据传输:除了语音通信外,GSM系统还支持数据传输,例如短消息服务(SMS)、多媒体消息服务(MMS)和互联网接入。
这些数据会被编码和打包,并通过GSM网络传输到目标设备。
总的来说,GSM的工作原理是通过频率分配、时分多址技术、基站系统、用户鉴权、话音编码和数据传输等关键技术,实现移动设备之间的语音和数据通信。
这种标准化的通信方式使得全球范围内的移动通信变得更加便捷和高效。
GSM移动通信及协议栈移动通信是指通过无线电技术实现移动设备之间的通信。
GSM (Global System for Mobile Communications)是一种数字移动通信标准,被广泛用于全球范围内的手机通信。
本文将介绍GSM移动通信的原理及其协议栈的组成以及各层的功能与作用。
一、GSM移动通信原理GSM移动通信采用时分多址(TDMA)技术进行信道复用,这意味着每个时间片都可以分配给不同的用户进行通信。
该技术的使用可以提高频谱利用效率,允许同时传输多个用户的信息。
GSM移动通信系统由多个基站组成,每个基站都可以覆盖一个特定的区域,称为小区。
当用户使用手机进行通话时,手机会与基站进行连接,基站负责提供信号传输和接收。
二、GSM协议栈的组成GSM协议栈由多个层级组成,每个层级都有相应的功能和作用。
1. 物理层(Physical Layer)物理层是GSM协议栈的最底层,负责无线电信号传输和接收。
它规定了信号的调制与解调方式,包括信道编码、信号传输速率等。
2. 数据链路层(Data Link Layer)数据链路层负责将物理层传输的比特流转换为帧的形式,以及进行差错检测和纠正。
这一层还负责多路复用和信道管理,确保数据的可靠传输。
3. 网络层(Network Layer)网络层负责路由选择和移动性管理。
它负责处理与用户终端的连接,并将数据包传输到目标终端。
4. 传输层(Transport Layer)传输层主要负责数据的分段和重新组装,确保数据的可靠性和完整性。
它还提供了流量控制和拥塞控制机制。
5. 会话层(Session Layer)会话层负责建立、管理和终止通信会话。
它定义了不同通信实体之间如何开始、结束和保持会话。
6. 表示层(Presentation Layer)表示层负责数据的格式转换和加密解密。
它确保数据在通信实体之间的交换时能够被正确理解。
7. 应用层(Application Layer)应用层提供了将数据传输到具体应用程序的接口。
gsm技术原理
GSM(全球系统移动通信)是一种数字移动通信技术,它基
于分时复用和频分复用的原理,允许手机用户通过无线信道进行语音和数据的传输。
在GSM系统中,一个城市或地区被分为多个小区,每个小区
都有一个基站,负责接收和发送移动设备的信号。
每个基站都有一个覆盖范围,称为小区覆盖范围。
GSM系统使用频分复用的原理来同时支持多个用户进行通信。
为了实现这一点,GSM的频谱被划分为多个频道,每个频道
都有一定的带宽。
每个小区都被分配了一组频道,其中包括用于语音通信的常用控制信道和数据通信的用户信道。
在GSM系统中,数据和语音信号被数字化并使用时间分多路
复用技术进行传输。
这意味着每个用户在不同的时间段占用同一个频道进行通信。
这种时间分多路复用技术允许多个用户同时使用同一个频道进行通信,提高了频谱的利用率。
GSM系统还使用了TDMA(时分多路复用)技术,将每个时
间周期划分为多个时隙,每个时隙被分配给一个用户进行通信。
这种分时复用技术允许多个用户同时在同一个频率上进行通信,每个用户在自己的时隙内传输数据。
此外,GSM系统还采用了一些技术来增强通信的可靠性和质量。
其中包括错误检测和纠正编码、功率控制、信道编码等。
这些技术能够降低通信中的误码率,提高通信的质量和可靠性。
总而言之,GSM技术基于分时复用和频分复用的原理,通过数字化、时间分多路复用和时分多路复用技术,允许多个用户同时在同一个频道进行通信。
通过使用一系列的增强技术,GSM系统能够提供可靠的语音和数据传输服务。
gsm的工作原理
GSM(Global System for Mobile Communications)是一种数字
移动通信标准,它使用时分多址(TDMA)技术实现语音和数据传输。
GSM的工作原理可以简要概括为以下几个步骤:
1. 基站搜索与选择:移动设备通过扫描周围的基站信号,选择信号质量最好的基站进行连接。
2. 建立连接:移动设备发送一个呼叫请求给基站,并提供相关信息,如接收者的手机号码或设备ID。
基站将该呼叫请求传
输到移动交换中心(Mobile Switching Center,MSC)。
3. 鉴权和身份验证:MSC通过向Home Location Register (HLR)发送请求来鉴权和身份验证移动设备。
HLR是一个
存储用户订阅信息、位置信息等的数据库。
4. 寻呼和移动绑定:一旦鉴权和身份验证通过,MSC将通过
广播方式通知指定基站的呼叫请求。
移动设备接收到呼叫请求后,将发送一个响应给MSC,并且与基站建立连接。
5. 语音和数据传输:一旦连接建立,移动设备和基站之间可以进行语音和数据传输。
语音数据经过编码和解码,然后通过无线信道传输。
数据传输可以通过GPRS或EDGE等技术进行。
6. 呼叫结束和断开连接:当通话结束或移动设备离开基站的范
围时,连接将被断开。
MSC将收到断开连接的通知,并更新用户的位置信息。
以上是简要描述了GSM的工作原理。
通过这个过程,GSM网络可以实现移动设备之间的语音和数据通信。