最新数据分析同步练习含答案
- 格式:doc
- 大小:375.50 KB
- 文档页数:22
中考数学复习《数据的分析》专项练习题-附带有答案一、单选题1.为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位: °C ):-1,-3,-1,5.下列结论错误的是( ) A .平均数是0B .中位数是-1C .众数是-1D .方差是62.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为 S 甲2=0.56, S 乙2 =0.60, S 丙2 =0.50, S 丁2 =0.44,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.在一次古诗词诵读比赛中,五位评委给某选手打分,得到互不相等的五个分数,若去掉一个最高分,平均分为a ;若去掉一个最低分,平均分为c ;同时去掉一个最高分和一个最低分,平均分为m .则a ,c ,m 的大小关系正确的是( ) A .c >m >aB .a >m >cC .c >a >mD .m >c >a4.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次) 12 11 10 9 人数(名)1342关于这组数据的结论错误的是( ) A .中位数是10.5 B .平均数是10.3 C .众数是10D .方差是0.815.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )成绩 6 7 8 910 人数正 一正 正 一正 正正A .8,8B .8,8.5C .9,8D .9,8.56.为了推进“科学防疫,佩戴口罩”,某中学向学生发放口罩,如图为七年级五个班级上报的学生人数,统计条不小心被撕掉了一块,已知这组数据的平均数为30,则这组数据的中位数为( )A.28 B.29 C.30 D.317.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分96 95 97方差0.4 2 2丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁二、填空题9.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.10.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个²。
七年级数学上册数据分析题专项练习含答
案
本文档将为七年级学生提供一些数据分析题的专项练,以帮助学生巩固和提高在数学上册数据分析方面的能力。
练题包含试题和答案,供学生自行练和检查答案。
1. 数据的收集和整理
练题将包括一些实际情境,要求学生收集和整理相关的数据。
学生可以根据给定情境,收集适当的数据,并按照一定的方式进行整理。
2. 数据的表达和分析
练题将要求学生使用适当的图表或图形来表达和分析收集到的数据。
学生需要选择合适的图表,并根据数据的特点进行分析,从图表中得出相关结论。
3. 核对答案
每个练题都会提供答案,供学生核对结果。
学生可以先自行完成题目,然后对照答案进行核对,找出自己的错误并进行纠正。
4. 反思和巩固
练题综合了数据收集、整理、表达和分析的能力,学生在练过程中不仅可以提升自己的数学能力,还可以培养自己的思考和分析问题的能力。
学生在解析答案时应反思自己的错误,并巩固掌握的知识。
5. 附加资源
除了练题和答案外,本文档还提供一些附加资源,包括数学数据分析的相关书籍推荐和在线研究平台推荐。
学生可以进一步扩展和深化自己的数学数据分析能力。
希望这份练题可以帮助七年级学生提高在数学上册数据分析方面的能力。
祝学生们研究顺利,取得好成绩!
参考资料:
- 高中数学数据分析教材。
北师大版八年级数学上册《第六章数据的分析》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________时间:60分钟满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数分别为6,10,5,3,4,8,4,这组数据的中位数是()A.4B.7C.5D.32.(2022·广东深圳龙华区期末)某运动品牌旗舰店统计了某款运动服11月份的销售情况,绘制成了如图所示的统计图,经过分析,该店店长决定12月份采购该款式更多的蓝色型号运动服,这一决定主要依据销售数据中的()A.众数B.方差C.中位数D.平均数3.(2022·山东济南莱芜区期末)某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差s2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()甲乙丙丁x6776s211.111.6A.甲B.乙C.丙D.丁4.甲、乙、丙三种糖果售价分别为每千克10元、16元、18元,若将甲种糖果3 千克、乙种糖果5千克、丙种糖果2 千克混在一起,则售价应定为每千克() A.14.2元 B.14.5元C.14.6元D.14.8元5.(2022·河北邯郸永年区期末)小明在计算一组数据的方差时,列出的算式如[2(7-x)2+3(8-x)2+(9-x)2],根据算式信息,这组数据的众数是() 下:s2=16A.3B.6C.7D.86.(2022·四川成都成华区期末)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如下表,则这些被调查学生睡眠时间的众数和中位数分别是()睡眠时间/时78910人数69114A.9,8.5B.9,9C.10,9D.11,8.57.(2022·江苏苏州工业园区期中)某篮球队5名场上队员的身高(单位:cm)是184,188,190,190,194.现用两名身高分别为185 cm和188 cm的队员换下场上身高为184 cm和190 cm的队员.与换人前相比,场上队员的身高()A.平均数变小,众数变小B.平均数变小,众数变大C.平均数变大,众数变小D.平均数变大,众数变大8.为了解八(1)班学生的体温情况,小明对这个班所有学生测量了一次体温(单位:℃),并将测量结果绘制成统计表和如图所示的扇形统计图.体温/℃36.136.236.336.436.536.6人数48810x2下列说法错误的是()A.这些体温的众数是36.5 ℃B.这些体温的中位数是36.35 ℃C.这个班有40人D.x=89.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表.星期日一二三四五六个数11121312其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据的唯一众数是13,平均数是12,那么这组数据的方差是()A.107B.97C.87D.110.(2022·山东曲阜期末)有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数.下列说法:①两组样本数据的样本平均数相同;②两组样本数据的样本中位数相同;③两组样本数据的样本方差相同;④两组样本数据的样本极差相同.正确说法的序号是()A.①②B.③④C.②④D.①③二、填空题(共5小题,每小题4分,共20分)11.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是.(填“甲”或“乙”)12.(2022·辽宁沈阳期末改编)北京冬奥会的开幕式惊艳了世界,在这背后离不开志愿者们的默默奉献.某高校为积极响应号召,组织了志愿者选拔活动,并规定总成绩由面试、体能测试和专业技能三部分成绩组成,各部分所占比例如图所示.若某位志愿者的面试、体能测试和专业技能三项成绩得分依次为88分,80分,85分,则这位志愿者的总成绩是分.[(6-7)2+(10-7)2+(a-7)2+(b-13.(2022·山东烟台期中)已知一组数据的方差s2=1n7)2+(8-7)2](a,b为常数),则a+b的值为.14.(2021·山东枣庄台儿庄区期末)已知3,a,b,5与a,4,2b的平均数都是3,若将这两组数据合并为一组新数据,则这组新数据的众数为.15.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.三、解答题(共4小题,共50分)16.(11分)(2022·山东济南济阳区期末改编)甲、乙两名运动员参加射击训练,他们射击10次的成绩情况统计如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环方差甲8.5b0.85乙a8.5c(1)求出表格中a,b,c的值;(2)分别运用表中的三个统计量,简要分析这两名运动员的射击训练成绩,若选派其中一名参赛,你认为应选哪名运动员?17.(12分)(2022·山东寿光期末)青年歌手大奖赛的决赛在甲、乙两名歌手之间进行,9位评委的评分(10分为满分)情况如下表所示(单位:分).评委编号123456789甲的得分8.89.58.69.67.28.98.88.88.8乙的得分8.59.18.59.19.98.59.28.68.3(1)分别求出甲、乙两名歌手得分的平均数(精确到0.01)、中位数和众数;(2)由(1)的结果,分析甲、乙两名歌手中谁的演唱水平较高;(3)如果以平均分为标准区分比赛的名次,那么制订怎样的计分规则比较合理?18.(13分)(2021·江苏南京期末)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中队和高中队进行复赛,两个队学生的复赛成绩如图所示.(1)根据图示填表:平均数中位数众数方差初中队8.5分0.7高中队8.5分10分(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.19.(14分)(2021·重庆沙坪坝区期末)为贯彻《关于全面加强新时代大中小学劳动教育的意见》的方针政策,各学校都在深入开展劳动教育.某校为了解七、八年级学生一学期参加课外劳动时间(单位:时)的情况,从该校七、八年级中随机各抽查了20名学生进行问卷调查,并将调查结果进行整理、描述和分析(A:0≤t<20,B:20≤t<40,C:40≤t<60,D:60≤t<80,E:80≤t<100),下面给出了部分信息.七年级抽取的学生在C组的课外劳动时间为40,40,50,55.八年级抽取的20名学生的课外劳动时间为10,15,20,25,30,35,40,40,45,50,50,50,55,60,60,75,75,80,90,95.七年级抽取的学生的课外劳动时间的扇形统计图如图所示.七、八年级抽取的学生的课外劳动时间的统计量如下表.平均数众数中位数方差七年级5035a580八年级50b50560根据以上信息,解答下列问题:(1)直接写出a,b,m的值.(2)根据以上数据,在该校七、八年级中,你认为哪个年级参加课外劳动的情况较好?请说明理由(一条即可).(3)若该校七、八年级分别有学生400人,试估计该校七、八年级学生一学期参加课外劳动时间不少于60小时的人数之和.参考答案12345678910C A C CD A A A C B11.乙12.8413.1114.315.4.8或5或5.21.C2.A在决定下个月进该型号运动服时多进一些蓝色的,主要考虑的是各色运动服的销量,而且蓝色上周销量最大.由于众数是数据中出现次数最多的数,因此考虑的是各色运动服的销量的众数.3.C 因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.4.C 根据题意售价应定为10×3+16×5+18×23+5+2=14.6(元/千克).5.D ∵在这6个数中,8出现了3次,出现的次数最多,∴这组数据的众数是8.6.A 被调查学生的人数为6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时.将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5小时.7.A 原数据的平均数为15×(184+188+190+190+194)=189.2,众数是190;新数据的平均数为15×(185+188+188+190+194)=189,众数是188.∵189<189.2,188<190,∴平均数变小,众数变小.8.A 由题中扇形统计图可知,体温为36.1 ℃的学生人数所占的百分比为36360×100%=10%,则八(1)班学生总数为410%=40(人),故C 中说法正确;x=40-(4+8+8+10+2)=8,故D 中说法正确;由题中表格可知这些体温的众数是36.4 ℃,故A 中说法错误;由题中表格可知这些体温的中位数是36.3+36.42=36.35(℃),故B中说法正确.故选A.9.C ∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖的三天的个数的和=84-(11+12+13+12)=36.∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为10,13,13,∴s 2=17[(11-12)2+(12-12)2+(10-12)2+(13-12)2+(13-12)2+(13-12)2+(12-12)2]=87.10.B 对于①,两组数据的平均数的差为c ,故①错误;对于②,两组样本数据的样本中位数的差是c ,故②错误;对于③,∵方差s 2(y i )=s 2(x i +c )=s 2(x i ),∴两组样本数据的样本方差相同,故③正确;对于④,∵y i =x i +c (i=1,2,…,n ),c 为非零常数,x 的极差为x max -x min ,y 的极差为(x max +c )-(x min +c )=x max -x min ,∴两组样本数据的样本极差相同,故④正确.故选B .11.乙 观察题中日平均气温统计图可知,乙地的日平均气温波动较小,比较稳定,则乙地的日平均气温的方差较小,即日平均气温的方差较小的是乙. 12.84 这位志愿者的总成绩是88×25%+80×35%+85×40%=84(分). 13.11 根据题意知,数据6,10,a ,b ,8的平均数为7,∴a+b=7×5-(6+10+8)=11.14.3 由题意得{3+a +b +5=3×4,a +4+2b =3×3,解得{a =3,b =1,所以这两组数据为3,3,1,5和3,4,2,将这两组数据合并成一组新数据,在这组新数据中,出现次数最多的是3,因此这组新数据的众数是3.15.4.8或5或5.2 (分类讨论思想)∵数据1,3,5,12,a 的中位数是整数a ,∴a=3或a=4或a=5.当a=3时,这组数据的平均数为1+3+3+5+125=4.8;当a=4时,这组数据的平均数为1+3+4+5+125=5;当a=5时,这组数据的平均数为1+3+5+5+125=5.2.故该组数据的平均数是4.8或5或5.2.16.【参考答案】(1)乙的平均成绩a=(8+9+7+8+10+7+9+10+7+10)÷10=8.5 将甲的射击成绩按从小到大的顺序排列为7,7,8,8,9,9,9,9,9,10,所以甲的射击成绩的中位数b=(9+9)÷2=9乙的射击成绩的方差为c=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45. 故a=8.5,b=9,c=1.45.(6分) (2)从平均成绩看,甲、乙两人的平均成绩相等,均为8.5环.从中位数看,甲的中位数大于乙的中位数.从方差看,甲的成绩比乙的成绩稳定. (9分) 综合以上因素,若选派一名运动员参加比赛,应选甲参赛. (11分)(答案合理即可)17.【参考答案】(1)将甲歌手的得分按从小到大的顺序排列为7.2,8.6,8.8,8.8,8.8,8.8,8.9,9.5,9.6,甲歌手得分的平均数为(7.2+8.6+8.8×4+8.9+9.5+9.6)÷9≈8.78(分),中位数是8.8分,众数是8.8分. (3分) 将乙歌手的得分按从小到大的顺序排列为8.3,8.5,8.5,8.5,8.6,9.1,9.1,9.2,9.9 乙歌手得分的平均数为(8.3+8.5×3+8.6+9.1×2+9.2+9.9)÷9≈8.86(分),中位数是8.6分,众数是8.5分.(6分)(2)由(1)的结果可知,甲、乙两名歌手中甲的演唱水平较高.理由:虽然甲歌手得分的平均数比乙低,但是甲的中位数、众数均比乙的高,所以甲的演唱水平较高.(9分) (3)比赛规则为9位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数,即为选手的最后得分,这样的计分规则比较合理. (12分)18.【参考答案】(1)补全表格如下.平均数 中位数 众数 方差初中队 8.5分 8.5分 8.5分 0.7高中队8.5分8分10分1.6(4分) 解法提示:由题中条形统计图知,初中队成绩数据为7.5,8,8.5,8.5,10高中队成绩数据为7,7.5,8,10,10所以初中队成绩的平均数为7.5+8+8.5+8.5+10=8.5(分),众数为8.5分;5×[(7-8.5)2+(7.5-8.5)2+(8-8.5)2+2×(10-高中队成绩的中位数为8分,方差为158.5)2]=1.6.(2)小明是初中队的学生.(6分) 理由:根据(1)可知,初中、高中队成绩的中位数分别为8.5分和8分因为8<8.5所以小明是初中队的学生.(8分) (3)初中队的成绩好些.(10分) 因为两个队成绩的平均数相同,初中队成绩的中位数高,而且初中队成绩的方差小于高中队成绩的方差所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.(13分) 19.【参考答案】(1)455030 (6分) 解法提示:七年级B组所占百分比为1-10%-20%-25%-15%=30%,所以m=30.根据题中扇形统计图可知,七年级A组有2人,B组有6人,C组有4人,D组有5人,E 组有3人,中位数是第10个和第11个数据的平均数,第10个数据是40,第11个数据是50,则中位数是(40+50)÷2=45,所以a=45.八年级数据中,50出现了3次,出现的次数最多,所以b=50.(2)八年级学生参加课外劳动的情况较好,理由如下:因为七、八年级被抽取的学生的课外劳动时间的平均数都是50,而八年级学生的课外劳动时间的中位数50高于七年级学生的课外劳动时间的中位数45,所以八年级学生参加课外劳动的情况较好.(用数据说明,合理即可)(10分)=300(人).(13分) (3)400×(15%+25%)+400×720答:估计该校七、八年级学生一学期参加课外劳动时间不少于60小时的人数之和为300人.(14分)。
[必刷题]2024七年级数学下册数据分析专项专题训练(含答案)试题部分一、选择题:1. 下列数据中,众数是8的是()A. 2, 3, 5, 7, 8, 8, 9B. 1, 2, 3, 4, 5, 6, 7C. 6, 7, 8, 9, 10, 11, 12D. 4, 5, 6, 7, 8, 9, 102. 以下哪个统计量能够反映一组数据的波动大小?()A. 平均数B. 中位数C. 众数D. 方差3. 在一组数据中,若中位数是50,那么这组数据中至少有()个数据不小于50。
A. 1B. 2C. 50D. 无法确定4. 下列关于平均数、中位数和众数的关系,错误的是()A. 平均数、中位数和众数可以相等B. 平均数受极端值影响较大C. 中位数不受极端值影响D. 众数只能有一个5. 有一组数据:3, 5, 7, 9, 11, 13, x,若这组数据的平均数为8,那么x的值为()A. 7B. 9C. 11D. 136. 下列关于方差的说法,正确的是()A. 方差越大,数据分布越集中B. 方差越小,数据分布越分散C. 方差等于各数据与平均数的差的平方和的平均数D. 方差可以为负数7. 下列数据中,哪一个不是有效数据?()A. 2.5B. 0C. 3D. 无8. 下列关于频数分布表的说法,错误的是()A. 频数分布表可以直观地展示数据的分布情况B. 频数是指某个数据出现的次数C. 频率是指某个数据出现的次数与总次数的比值D. 频率之和必须等于19. 在一组数据中,若众数是50,那么这组数据中至少有()个数据等于50。
A. 1B. 2C. 50D. 无法确定10. 下列关于极差的说法,正确的是()A. 极差越大,数据分布越集中B. 极差越小,数据分布越分散C. 极差等于最大值与最小值的差D. 极差可以为负数二、判断题:1. 平均数、中位数和众数都是描述数据集中趋势的统计量。
()2. 在一组数据中,平均数一定大于等于中位数。
浙教版八年级数学下册《第3章数据分析初步》同步练习题(附答案)一.选择题1.气象局调查了甲、乙、丙、丁四个城市连续四年的降水量,它们的平均降水量都是320毫米,方差分别是S=3.2,S=5.2,S=7.3,S=3.1,则这四个城市年降水量最稳定的是()A.甲B.乙C.丙D.丁2.甲、乙两队参加中国汉字听写大会比赛,两队各10人,比赛成绩总分10分)统计如表:甲89710710910109乙871089101091010根据表格中的信息,判断下列结论正确的是()A.甲队成绩的中位数是9.5分B.乙队成绩的众数是10分C.甲队的成绩比较稳定D.乙队的平均成绩是9分3.一个样本的每一个数据都减少3,其统计量不变的是()A.平均数B.中位数C.众数D.方差4.在一次献爱心的捐款活动中,八(2)班50名同学捐款金额如图所示,则在这次捐款活动中,该班同学捐款金额的众数和中位数分别是()A.20,10B.10,20C.10,10D.10,155.下表中记录了甲、乙、丙、丁四名同学参加金钥匙选拔赛成绩的平均分和方差.要从中选择一名成绩较好且发挥稳定的同学去海安市参加决赛,最合适的同学是()甲乙丙丁平均分90879087方差S212.513.5 1.4 1.4 A.甲B.乙C.丙D.丁6.某单位招聘一名员工,从专业知识、工作业绩、面试成绩三个方面进行考核(考核的满分均为100分),三个方面的权重比依次为2:4:4.小明经过考核后所得的分数依次为90,85,80分,那么小明考核的最后得分是()A.80B.84C.87D.907.小天计算一组数据92,90,94,86,100,88的方差为S02,则数据46,45,47,43,50,44的方差为()A.B.C.D.8.中考体育测试前,某校为了了解选报引体向上的九年级男生的成绩情况,随机抽测了部分九年级男生引体向上的成绩,并将测试的成绩制成了如下的统计表:个数13141516人数3511依据如表提供的信息,下列判断正确的是()A.众数是5B.中位数是14.5C.平均数是14D.方差是8二.填空题9.一组数据4,3,6,x的平均数是4,则这组数据的方差是.10.在5个正整数a、b、c、d、e中,中位数是4,唯一的众数是6,则这5个数的和最大值是.11.已知一组数据x1,x2,x3,方差是2,那么另一组数据2x1﹣4,2x2﹣4,2x3﹣4的方差是.12.每千克x元的糖果a千克和每千克y元的糖果b千克混合后,要求总价额不变,那么混合糖果的售价定为每千克元.13.为了落实教育部提出的“双减政策”,历下区各学校积极研发个性化、可选择的数学作业.一天,小明对他学习小组其他三位同学完成数学作业的时间进行了调查,得到的结果分别为:18分钟,20分钟,25分钟.然后他告诉大家说,我们四个人完成数学作业的平均时间是21分钟.请问小明同学完成数学作业的时间是分钟.14.在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则加入的这个数为,x的值为.15.一次测试,某6人小组有一人得85分,有两人得88分,有三人得91分,则这个小组学生的平均得分是.16.已知1,2,3,4,5的方差为2,则2021,2022,2023,2024,2025的方差为.三.解答题17.某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955根据上面的信息,解答下列问题:(1)甲组的平均成绩为分,m=,甲组成绩的中位数是,乙组成绩的众数是;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?18.某校对初一年级三个班级的教室卫生情况进行如下考核:黑板、门窗、桌椅、地面.这一周三个班的各项卫生成绩(单位:分)分别如下表:黑板门窗桌椅地面(1)班95909595(2)班90928590(3)班85909090总评时将黑板、门窗、桌椅、地面这四项得分按15%,10%,35%,40%的比例计算各班的卫生成绩,哪个班的成绩最高?19.为提高中学生网络安全意识,我县某中学特举办“网络安全知识答题竞赛”,八年级(1)、(2)班根据初赛成绩各选出5名选手代表各班参加学校决赛,两个班各选出的5名选手的决赛成绩(单位:分)如下:八年级(1)班:75 80 85 85 100八年级(2)班:70 100 100 75 80分析数据如下表所示:平均数(分)中位数(分)众数(分)方差(分2)八年级(1)班a85b70八年级(2)班85c100160(1)上表中的a,b,c分别是多少?(2)分析两个班的平均数和方差,你认为哪个班的决赛成绩较好?为什么?20.近年来网约车给人们的出行带来了便利,小明和数学兴趣小组的同学对甲、乙两家约车公司司机月收入进行了抽样调查,两家公司分别抽取的10名司机月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:平均月收入/千元中位数众数方差甲公司a6c d乙公司6b47.6(1)填空:a=;b=;c=;d=.(2)小明的叔叔计划从两家公司中选择一家做网约车司机,如果你是小明,你建议他选哪家公司?请说明理由.21.某校八年级(1)班的学生利用春节寒假期间参加社会实践活动,到“山东惠民鑫诚农业科技园”了解大棚热带水果的生长情况.他们分两组对柠檬树的长势进行观察测量,分别收集到10株柠檬树的高度,记录如下(单位:厘米):第一组:132,139,145,155,160,154,160,128,156,141;第二组:151,156,144,146,140,153,137,147,150,146.根据以上数据,回答下列问题:(1)第一组这10株柠檬树高度的平均数是;中位数是,众数是;(2)小明同学计算出第一组的方差为s12=122.2,请你计算第二组的方差,并说明哪一组柠檬树长势比较整齐.参考答案一.选择题1.解:∵S=3.2,S=5.2,S=7.3,S=3.1,∴S<S<S<S,∴这四个城市年降水量最稳定的是丁,故选:D.2.解:A.甲队数据重新排列为7、7、8、9、9、9、10、10、10、10,所以甲队数据的中位数是=9(分),此选项错误;B.乙队成绩的众数是10分,此选项正确;C.∵==8.9,==9.1,∴=×[2×(7﹣8.9)2+(8﹣8.9)2+3×(9﹣8.9)2+4×(10﹣8.9)2]=1.29,=×[(7﹣9.1)2+2×(8﹣9.1)2+2×(9﹣9.1)2+5×(10﹣9.1)2]=1.09,∴<,∴乙队的成绩比较稳定,此选项错误;D.由C选项知乙队的平均成绩是9.1分,此选项错误;故选:B.3.解:∵一个样本的每一个数据都减少3,样本数据的波动幅度不会发生变化,∴统计量不变的是方差,故选:D.4.解:这组数据的中位数是第25、26个数据的平均数,由条形统计图知第25、26个数据分别为10、10,所以这组数据的中位数为=10(元),这组数据中出现次数最多的是10元,有20次,所以这组数据的众数为10元,故选:C.5.解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛.故选:C.6.解:小明考核的最后得分为=84(分),故选:B.7.解:原数据重新排列为86,88,90,92,94,100,新数据重新排列为43,44,45,46,47,50,所以新数据是将原数据分别乘所得,∵原数据的方差为S02,∴新数据的方差为()2×S02=S02,故选:C.8.解:这组数据中出现次数最多的是14,出现5次,所以这组数据的众数是14,故A选项错误;中位数是=14(个),故B选项错误;平均数为=14(个),故C选项正确;方差为×[3×(13﹣14)2+5×(14﹣14)2+(15﹣14)2+(16﹣14)2]=0.8,故D选项错误;故选:C.二.填空题9.解:因为数据4,3,6,x的平均数是4,所以=4,解得:x=3,方差为:×[(4−4)2+(3−4)2+(6−4)2+(3−4)2]=,故答案为:.10.解:设五个数从小到大为a1,a2,a3,a4,a5,依题意得a3=4,a4=a5=6,a1,a2是1,2,3中两个不同的数,符合题意的五个数可能有三种情形:“1,2,4,6,6”,“1,3,4,6,6”,“2,3,4,6,6”,1+2+4+6+6=19,1+3+4+6+6=20,2+3+4+6+6=21,则这5个数的和最大值是21.故答案为21.11.解:∵数据x1,x2,x3,方差是2,∴数据2x1﹣4,2x2﹣4,2x3﹣4的方差22×2=8.故答案为:8.12.解:∵每千克x元的糖果a千克,每千克y元的糖果b千克,∴混合后共有(a+b)千克,混合糖果共售(ax+by)元,∴混合糖果的售价定为每千克元.故答案为:.13.解:设小明同学完成数学作业的时间是x分钟,根据题意,得:=21,解得x=21,∴小明同学完成数学作业的时间是21分钟,故答案为:21.14.解:从小到大排列的五个数x,3,6,8,12的中位数是6,∵再加入一个数,这六个数的中位数与原来五个数的中位数相等,∴加入的一个数是6,∵这六个数的平均数与原来五个数的平均数相等,∴(x+3+6+8+12)=(x+3+6+6+8+12),解得x=1.所以加入的数为6,x=1.故答案为:6,1.15.解:这个小组学生的平均得分==89(分),故答案为:89分.16.解:∵1,2,3,4,5的方差为2,∴2021,2022,2023,2024,2025的方差为2,故答案为:2.三.解答题17.解:(1)甲组的平均成绩为×(7×1+8×9+9×5+10×5)=8.7,由题意可得:1+9+5+5+2+9+6+m=40,解得m=3,甲组成绩一共有20个,从小到大最中间为8和9,则中位数为=8.5,乙组成绩中最多的为8,则众数为8,故答案为:8.7、3、8.5、8;(2)==8.5,==0.75,∵<,∴乙组的成绩更加稳定.18.解:(1)班的加权平均成绩是:95×15%+90×10%+95×35%+95×40%=94.5(分),(2)班的加权平均成绩是:90×15%+92×10%+85×35%+90×40%=88.45(分),(3)班的加权平均成绩是:85×15%+90×10%+90×35%+90×40%=89.25(分),∵94.5>89.25>88.45,∴(1)班的成绩高.19.解:(1)八年级(1)班成绩的平均数a==85,众数b=85;将八年级(2)班成绩重新排列为70、75、80、100、100,∴八年级(1)班成绩的中位数c=80;(2)八年级(1)班的成绩好.因为两个班的平均分都是85分,不分上下,而八年级(1)班的方差70小于八年级(2)班的方差160,方差越小越稳定.所以八年级(1)班的成绩好.20.解:(1)∵“6千元”对应的百分比为1﹣(10%+20%+10%+20%)=40%,∴甲公司平均月收入a=4×10%+5×20%+6×40%+7×20%+8×10%=6,众数c=6,方差d=[(4﹣6)2+2×(5﹣6)2+4×(6﹣6)2+2×(7﹣6)2+(8﹣6)2]=1.2;乙公司中位数b==4.5,故答案为:6;4.5;6;1.2;(2)选甲公司,理由如下:因为平均数相同,中位数、众数甲公司均大于乙公司,且甲公司方差小,更稳定,所以选甲公司.21.解:(1)第一组这10株柠檬树高度的平均数是(132+139+145+155+160+154+160+128+156+141)÷10=147(厘米).把这些数据从小到大排列为128、132、139、141、145、154、155、156、160、160,最中间的两个数是145和154,则中位数是(145+154)÷2=149.5(厘米).160出现了2次,出现的次数最多,则众数是160厘米.故答案为:147厘米,149.5厘米,160厘米;(2)∵第二组这10株柠檬树高度的平均数是(151+156+144+146+140+153+137+147+150+146)÷10=147,∴S22=×[(151﹣147)2+(156﹣147)2+(144﹣147)2+(146﹣147)2+(140﹣147)2+(153﹣147)2+(137﹣147)2+(147﹣147)2+(150﹣147)2+(146﹣147)2]=30.2,∵S12=122.2>S22,∴第二组柠檬树长势比较整齐.。
八年级数学下册《第二十章 数据的分析》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点一、平均数1、平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次…k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x kk ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2、平均数的计算方法 (1)定义法当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++= (2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。
(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11'与a x x -=22'…ax x n n -=')'''(1'21n x x x nx +++=是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
二、众数、中位数 1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
人教版八年级数学下册第二十章-数据的分析同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在爱心一日捐活动中,我校初三部50名教师参与献爱心,以下是捐款统计表,则该校初三教师捐款金额的中位数,众数分别是()A.100,100 B.100,150 C.150,100 D.150,1502、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,33、学校快餐店有12元,13元,14元三种价格的饭菜供师生选择(每人限购一份).下图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是()A.12.95元,13元 B.13元,13元C.13元,14元D.12.95元,14元4、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的()A.最高分B.中位数C.极差D.平均分5、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.91 D.926、一组数据:1,3,3,4,5,它们的极差是()A.2 B.3 C.4 D.57、已知一组数据:2,0,1-,4,2,3-.这组数据的众数和中位数分别是()A.2,1.5 B.2,-1 C.2,1 D.2,28、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定9、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是()A.60,30 B.30,30 C.25,45 D.60,4510、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.对于小强做引体向上的个数,下列说法错误的是()A.平均数是12 B.众数是13C.中位数是12.5 D.方差是8 7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为庆祝中国共产党建党一百周年,某单位党支部开展“学史明理,学史增信,学史崇德,学史力行”读书活动,学习小组抽取了七名党员5天的学史的时间(单位:h)分别为:4,3,3,5,6,5,5,这组数据的众数是________.2、据统计,某车间10名员工每人日平均生产零件个数为6,方差为2.5,引入新技术后,每名员工每日都比原先多生产1个零件,则现在日平均生产零件个数为 ___,方差为 ___.3、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.4、一组数据25,29,20,x,14,它的中位数是23,则这组数据的平均数为______.a的方差是_____5三、解答题(5小题,每小题10分,共计50分)1、为了让青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼.我校启动了“学生阳光体育短跑运动”,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格:(2)请写出小明的成绩的中位数和众数,小亮成绩的中位数;(3)分别计算他们成绩的平均数和方差,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?2、5,16,16,28,32,51,51的众数是什么?3、某超市招聘收银员一名.对三名申请人进行了三项素质测试.三名候选人的素质测试成绩如右表.公司根据实际需要,对计算机、语言、商品知识三项测试成绩分别赋予权4,3,2,这三人中谁将被录用?4、甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,8,9,10,6,5,4,7;乙:7,9,8,5,6,7,7,6,7,8.(1)分别计算以上两组数据的方差;(2)根据计算结果,评价一下两名战士的射击情况.5、第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.为了考查学生对冬奥知识的了解程度,某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动.为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整:(收集数据)从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲:40,60,60,70,60,80,40,90,100,60,60,100,80,60,70,60,60,90,60,60乙:70,90,40,60,80,75,90,100,75,50,80,70,70,70,70,60,80,50,70,80(整理、描述数据)按如表分数段整理、描述这两组样本数据:(说明:成绩中优秀为80≤x≤100,良好为60≤x<80,合格为40≤x<60)(分析数据)两组样本数据的平均分、中位数、众数如表所示:(得出结论)(1)(分析数据)中,乙学校的众数a=.(2)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是校的学生;(填“甲”或“乙”)(3)根据抽样调查结果,请估计乙校学生在这次竞赛中的成绩是优秀的人数;(4)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(从平均分、中位数、众数中至少选两个不同的角度说明推断的合理性)---------参考答案-----------一、单选题1、C【解析】【分析】根据中位数和众数的定义:一组数据中,出现次数最多的数就叫这组数据的众数。
北师大版八年级数学上册第6章《数据的分析》同步练习及答案—6.3从统计图分析数据的集中趋势一、选择题1.如图是小敏同学6次数学测验的成绩统计表,则该同学6次成绩的中位数是()A. 60分B. 70分C.75分D. 80分2.上海“世界博览会”某展厅志愿者的年龄分布如图5,这些志愿者年龄的众数是()A.19岁B.20岁C.21岁D.22岁3.一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是()A.4 B.5 C.6 D.74.“一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款捐物献爱心活捐款金额(元)10 15 20 30 50 60 70 80 90 100 捐款人数(人) 3 10 10 15 5 2 1 1 1 2根据表中所提供的信息,这50名同学捐款金额的众数是()A.15 B.30 C.50 D.205.一组正整数数据3、5、6、x、8它的中位数是6,则x的值是有()A. 1个B.2个C.3个D. 非上述答案二、填空题6.某校九年级(2)班(1)组女生的体重(单位:kg)为:38,40,35,36,65,42,42,则这组数据的中位数是.7.数据-1,0,2,-1,3的众数为.8.已知数据1,3,2,x,2的平均数是3,则这组数据的众数是.9.小强同学投掷30成绩/m 8 9 10 11 12频数 1 6 9 10 4由上表可知小强同学投掷30次实心球成绩的众数是,中位数是.10.如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是.三、解答题11.若数据8,9,7,8,x,3的平均数是7,求这组数据的众数.12.数学老师布置10道选择题作为课堂练习,学习委员将全班同学的答题情况绘制成条形统计图,根据图中信息,求全班每位同学答对题数的中位数.13.下表是某校八年级(1)班20名学生某次数学测验的成绩统计表.(1)若这20名学生成绩的平均分数为80分,求x、y的值.(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a、•b的值.14.已知一组数据10,10,x,8的中位数与平均数相等,求x值及这组数据的中位数.成绩(分)60 70 80 90 100人数(人) 1 5 x y 215.今年端午节,某乡镇成立一支龙舟队,共30名队员,他们的身高情况如下表:身高(cm)165 166 169 170 172 174人数 3 2 6 7 8 4根据表中的信息回答以下问题:(1)龙舟队员身高的众数是______,中位数是______.(2)这30名队员平均身高是多少cm?身高大于平均身高的队员占全队的百分之几?参考答案1.C2.【分析】由图中给出的数据可知,20岁的志愿者人数最多,为8人,所以这些志愿者年龄的众数是20岁.【答案】B3.【分析】由于3+4+x +6+8=5×5,解得x =4,所以这组数据的中位数是462+=5.【答案】B 4.【分析】一组数据中出现次数最多的数据,叫做这组数据的众数.【答案】B 5.D 6. 40 7.-18.由方程3)2231(51=++++x ,解得7=x ,所以这组数据的众数是29.11,10 10.2611.由8+9+7+8+x +3=7×6,得x =7,所以这组数据的众数是7,8.12.由条形图可知,答对7题有4人,答对8题有20人,答对9题有18人,答对10题有8人,故全班有50人,答对题数从小到大排在25、26位置的数是9,因此答对题数的中位数是9. 13.(1)1260705809010028020x y x y +=⎧⎨+⨯+++⨯=⨯⎩,解得,93x y =⎧⎨=⎩(2)a=80,b=80 14.该组数据的平均数是101082844x x++++=.本题应分三种情况: (1)当x ≤8时,原数据按从小到大的顺序排列是x ,8,10,10,其中位数为81092+=,所以有2894x+=,解得x =8; (2)当8<x ≤10时,原数据按从小到大的顺序排列是8, x ,10,10,其中位数为102x +,所以有281022x x ++=,解得x =8;但x =8不在8<x ≤10的范围内,故这种情况不存在; (3)当x ≥10时,原数据按从小到大的顺序排列是8,10,10,x ,其中位数为1010102+=,所以有28104x +=,解得x =12.综上所述,当x =8时,中位数为9;当x =12时,中位数为10.15.(1)172cm ,170cm ;(2)x -=165×3+166×2+169×6+170×7+172×8+174×430 =170.1.由表可知,身高大于平均身高的队员共有12人,占全队的百分比为1230×100%=40%.。
新版北师大版八年级数学上册第6章《数据的分析》同步练习及答案—6.4数据的离散程度(2)一、填空题1、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13x =甲,13x =乙,2 3.6S =甲,215.8S =乙,则小麦长势比较整齐的试验田是 .2、样本数据3,6,a ,4,2的平均数是3,则这个样本的方差是 .3、 数据1x , 2x ,3x ,4x 的平均数为m ,标准差为5,那么各个数据与m 之差的平方和为_________.4、 已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_________ ,标准差为_______ 。
5、已知一组数据-1、x 、0、1、-2的平均数为0,那么这组数据的方差是 。
6、若一组数据的方差是1,则这组数据的标准差是 。
若另一组数据的标准差是2,则方差是 。
7、一组数据的方差是0,这组数据的特点是 ;方差能为负数吗?二、选择题8、甲乙两人在相同的条件下各射靶10次,他们的环数的方差是2 2.4S =甲,2 3.2S =乙•,则射击稳定性是( )A .甲高B .乙高C .两人一样多D .不能确定9、若一组数据1a ,2a ,…,n a 的方差是5,则一组新数据12a ,22a ,…,n a 2的方差是( )A .5B .10C .20D .5010、 在统计中,样本的标准差可以反映这组数据的 ( )A .平均状态B .分布规律C .离散程度D .数值大小11、已知甲、乙两组数据的平均数分别是80x =甲,90x =乙,方差分别是210S =甲,25S =乙,比较这两组数据,下列说法正确的是( )A .甲组数据较好B .乙组数据较好C .甲组数据的极差较大D .乙组数据的波动较小 12、下列说法正确的是 ( )A .两组数据的极差相等,则方差也相等B .数据的方差越大,说明数据的波动越小C .数据的标准差越小,说明数据越稳定D .数据的平均数越大,则数据的方差越大13、对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得;x x =乙甲,20.025S =甲,20.026S =乙,下列说法正确的 ( )A 、甲短跑成绩比乙好B 、乙短跑成绩比甲好C 、甲比乙短跑成绩稳定D 、乙比甲短跑成绩稳定 14、数据70、71、72、73、74的标准差是 ( )A B 、2C D 、54三、解答题15、若一组数据1x , 2x ,… , n x 的平均数是2,方差为9,则数据321-x ,322-x ,…,32-n x 的平均数和标准差各是多少?16、某校初三年级甲、乙两班举行电脑汉字输入比赛,两个班能参加比赛的学生每分钟输入有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班同学比赛成绩的波动比乙班学生比赛成绩的波动大. 上述结论正确的是17、从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm )甲:9、10、11、12、7、13、10、8、12、8; 乙:8、13、12、11、10、12、7、7、9、11; 问:(1)哪种农作物的苗长的比较高? (2)哪种农作物的苗长得比较整齐?18、在一次投篮比赛中,甲、乙两人共进行五轮比赛,每轮各投10个球,他们每轮投中的(1)甲在五轮比赛中投中球数的平均数是 ,方差是 ; (2)乙在五轮比赛中投中球数的平均数是 ,方差是 ; (3)通过以上计算,你认为在比赛中甲、乙两人谁的发挥更稳定些?参考答案一.填空题1. 乙2. 43. 25m4.2,5.26.1,47.相等、不能二选择题8.A9. C10. C11. D12. C13. C14. A15.1,616. ①②③17.(1)甲;(2)甲18.甲平均数为7,方差为2乙平均数为7,方差为0.4因为甲的方差大于乙的方差,所以乙的发挥更稳定些。
第二十章数据的分析
测试1 平均数(一)
学习要求
了解加权平均数的意义和求法,会求实际问题中一组数据的平均数.
课堂学习检测
一、填空题
1.一组数据中有3个7,4个11和3个9,那么它们的平均数是______.
2.某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为______次,在平均成绩之上的有______人.3.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,
9.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,
则8年级(1)班最后得分是______分.
二、选择题
4.如果数据2,3,x,4的平均数是3,那么x等于( ).
(A)2 (B)3 (C)3.5 (D)4
5.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).
(A)41度(B)42度(C)45.5度(D)46度
三、解答题
6.甲、乙两支仪仗队队员的身高(单位:厘米)如下:
甲队:178 177 179 178 177 178 177 179 178 179;
乙队:178 179 176 178 180 178 176 178 177 180.
(1)
(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;
(3)你认为哪支仪仗队更为整齐?简要说明理由.
7
假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?
综合、运用、诊断
一、填空题
8.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100
人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.
9.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.
10.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论
测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大. 二、选择题 11.为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中
的用水情况,其中用水15吨的有3家,用水20吨的有5家,用水30吨的有7家,那么平均每家企业1个月用水( ). (A)23.7吨 (B)21.6吨 (C)20吨 (D)5.416吨 12.m 个x 1,n 个x 2和r 个x 3,由这些数据组成一组数据的平均数是( ).
(A)
3
3
21x x x ++
(B)
3
r n m ++ (C ) 33
21rx nx mx ++ (D)r n m rx nx mx ++++321 三、解答题
13
小明的父亲买了一张面值600元的天然气使用卡,已知天然气每立方米1.70元,请估计这张卡是否够小明家用一个月(按30天计算),将结果填在后面的横线上.(只填“够”或“不够”)结果为:______.并说明为什么.
14.四川汶川大地震发生后,某中学八年级(1)班共有40名同学参加了“我为灾区献爱心”
的活动.活动结束后,生活委员小林将捐款情况进行了统计,并绘制成如右的统计图.
(1)求这40名同学捐款的平均数;
(2)该校共有学生1200名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?
15.某地为了解从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区
1000名初中学习能力优秀的学生.调查时,每名学生可在动手能力、表达能力、创造能力、解题技巧、阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:
(1)学生获得优秀人数最多的一项和最有待加强的一项各是什么?
(2)这1000名学生平均每人获得几个项目优秀?
(3)若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?。