北师大版初二数学期末测试题
- 格式:doc
- 大小:246.50 KB
- 文档页数:3
北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。
) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。
2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。
)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。
初二上学期期末考试数学试卷选择题(每小题3分,共30分)1.下列各数:1.414,2,31-,0,其中是无理数的为( ) A. 1.414 B. 2 C. 31- D. 0 2.下列二次根式中,不是最简二次根式的是( ) A.10 B.8 C.6 D.23.今年5月1日~7日,威海地区每天最高温度(单位:℃)情况如图1所示,则表示最高温度的这组数据的中位数是( )A. 24B. 25C. 26D. 27① ②图1 图2 图34. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( )A. ∠A =30°,∠B =40°B. ∠A =30°,∠B =110°C. ∠A =30°,∠B =70°D. ∠A =30°,∠B =90°5.如图2,给出下列条件:①∠3=∠4;②∠1=∠2;③EF ∥CD ,且∠D =∠4;④∠3+∠5=180°. 其中,能推出AD ∥BC 的条件为( )A. ①②③B. ①②④C. ①③④D. ②③④6.小亮解方程组651x y x y -=∙⎧⎨+=-⎩,的解为1x y =-⎧⎨=*⎩,,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.设0<k <2,关于x 的一次函数y =kx +2(1-x ),当1≤x≤2时的最大值是( )A. 2k -2B. k -1C. kD. k +18. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分和4分四个等级,将调查结果绘制成条形统计图(如图3-①)和扇形统计图(如图3-②).根据图中信息,这些学生的平均分数是( )A. 2.25B. 2.5C. 2.95D. 39.若一次函数y 1=k 1x +b 1与y 2=k 2x +b 2,满足b 1<b 2,且已知21k k 没有意义,则能大致表示这两个函数图象的是( )最高温度日期A B C D 图410.如图4,在长方形纸片ABCD中,AB=5 cm,BC=10 cm,CD上有一点E ,ED=2 cm,AD上有一点P,PD=3 cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是()A.134cm B. 3 cm C. 2 cm D.72cm二、填空题(每小题4分,共32分)11. 如图5,点A表示的实数是____________.图5 图6 图7 图812.已知函数23(1)my m x-=+是正比例函数,且图象在第二、四象限内,则m的值是.13.如图6,在方格纸中有三个点A,B,C,若点A的位置记为(0,1),点B的位置记为(2,-1),则点C 的位置应记为________________.14.方程组4123x yy x-=⎧⎨=+⎩,的解是____________,则一次函数y=4x-1与y=2x+3的图象的交点坐标为________________.15.一副三角尺如图7所示叠放在一起,则图中∠α的度数是___________.16.(2016年大庆)甲、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_______________.(填“甲”或“乙”)17.如图8,已知A点坐标为(2,0),点B在直线y=x上运动,当线段AB长度最短时,直线AB的表达式为_____________.18.如图9,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,…若∠A1=α,则∠A2016的度数为.图9三、解答题(共58分)19.(每小题5分,共10分)计算:(1()20161-;(2)()()()2227373-++-.y=x20.(8分)一次函数y=kx+b的图象经过点A(-1,3),B(2,-3).(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产A,B 两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶添加2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?22.(10分)某中学举行“中国梦·校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛. 两个队各选出的5名选手的决赛成绩(满分100分)如图10所示:(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.图1023.(10分)在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3.(1)求点A,B的坐标;(2)已知点C(-2,2),求△BOC的面积;(3)若P是第一象限角平分线上一点,且S△ABP=332,求点P的坐标.100 95 90 85 80 75 70O24.(12分)平面内不重合的两条直线有相交和平行两种位置关系.(1)如图12-①,若AB∥CD,点P在AB,CD的同侧,则有∠B=∠BOD,∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB,CD的异侧,如图12-②,结论∠BPD=∠B-∠D是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图12-②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图12-③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?并证明你的猜想;(3)设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为_____________度,∠A比∠F大_______________度.①②③图12期末模拟测试题 参考答案一、1. B 2. B 3. B 4. C 5. C 6. B 7. C 8. C 9. D 10. A二、11.5 12. -2 13. (-3,-2) 14. 2,7x y =⎧⎨=⎩ (2,7) 15. 75° 16. 甲 17. y =-x +2 18. 20152α 三、19. 解:(1)原式=-3+21-1=-72. (2)原式=9-7+22-2=2+22-2=22.20. 解:(1)依题意,得323k b k b -+=⎧⎨+=-⎩,,解得21.k b =-⎧⎨=⎩,所以所求一次函数的表达式是y=-2x+1. (2)令x=0,由y=-2x+1,得y=1;令y=0,由y=-2x+1,得x=21. 所以直线AB 与坐标轴的交点坐标分别是(0,1)和(21,0).所以围成的三角形的面积为21×21×1=14. 21. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶.根据题意,得方程组10023270.x y x y +=⎧⎨+=⎩,解得3070.x y =⎧⎨=⎩,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.22. 解:(1)初中部决赛成绩的平均数为15(75+80+85+85+100)=85(分),众数85分,高中部决赛成绩的中位数80分.(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)因为2s 初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,2s 高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,所以2s初<2s 高. 所以初中代表队选手的成绩较为稳定.23.解:(1)由OB=OA=3,A ,B 两点分别在x 轴、y 轴的正半轴上,得A (3,0),B (0,3).(2)画图形如图1所示,知点C 到OB 的距离为点C 的横坐标的绝对值,则S △BOC =2321⨯⨯=3.(3)由点P 在第一象限的角平分线上,可设P 的坐标为(a ,a ).由S △AOB =12OA·OB=92<S △ABP ,知点P 在AB 的右侧,则S △ABP =S △PAO +S △PBO -S △AOB=12×3a+12×3a-12×3×3,即12×3a+12×3a-12×3×3=233. 整理,得293-a =233,解得7=a .所以P 的坐标为(7,7). 24. 解:(1)不成立.应为∠BPD=∠B+∠D.证明:如图2,延长BP 交CD 于点E.∵AB ∥CD ,∴∠B=∠BED. 又∵∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D.(2)∠BPD=∠BQD+∠B+∠D.证明:如图3所示,连接QP 并延长.利用“三角形的一个外角等于和它不相邻的两个内角的和”,得∠BPD=(∠BQP+∠B )+(∠DQP+∠D )=∠BQD+∠B+∠D .(3)75 65提示:由(2)的结论,得∠ENF=∠B+∠E+∠F ,∠AMB=∠B+∠E+∠A.因为∠ANF=105°,所以∠B+∠E+∠F=180°-∠ANF=180°-105°=75°.因为∠A=∠AMB-∠B-∠E ,∠F=∠ENF-∠B-∠E ,所以∠A-∠F=∠AMB-∠ENF=140°-75°=65°.图2 图3北师大版八年级上学期期末测试题数学一、选择题(每小题3分,共30分)1.下列四组线段中,能构成直角三角形的是( )A .1,2,3B .13 C .2,3,4 D .1,12.下列计算正确的是( )A5 B12= C=1D3.一组数据2,7,6,3,4,7的众数和中位数分别是( )A .7,4.5B .4,6C .7,4D .7,54.如图1,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax b y kx=+⎧⎨=⎩,的解是( ) A .31x y =⎧⎨=-⎩, B .31x y =-⎧⎨=-⎩, C .31x y =-⎧⎨=⎩, D .31x y =⎧⎨=⎩,图1 图2 图3 图4 5.一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6. 点M 关于y 轴对称的点为M 1(3,–5),则点M 关于x 轴对称的点M 2的坐标为( )A .(–3,5)B .(–3,–5)C .(3,5)D .(3,–5)7.如图2,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE8=0,则x 2015+y 2016的值为( )A .0B .1C .﹣1D .29.图3所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°10. 甲、乙两车从A 地匀速驶向B 地,甲车比乙车早出发2 h ,并且甲车图中休息了0.5 h 后仍以原速度驶向B 地,图4所示是甲、乙两车行驶的路程y (km )与行驶的时间x (h )之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40 km/h ,乙车的速度是80 km/h ;③当甲车距离A 地260 km 时,甲车所用的时间为7 h ;④当两车相距20 km 时,则乙车行驶了3 h 或4 h.其中正确的个数是( )32 1A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.已知正比例函数y=kx (k≠0)的图象经过点(1,﹣2),则正比例函数的表达式为 .12.若7在两个连续整数a ,b 之间,即a <7<b ,则=+b a .13.若一组数据2,4,x ,6,8的平均数是6,则这组数据的极差为 ,方差为 .14.若点P 的坐标为(a 2+1,–6+2),则点P 在第_________象限.15. 如图5,点D ,B ,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则∠1的度数是_______________.图5 图6 图7 图816.若m ,n 为实数,且,则(m+n )2017的值为____________.17.在Rt △ABC 中,∠C=90°,AB=AC+BC=6,则△ABC 的面积为 .18.如图6,直线y=x+1分别与x 轴、y 轴相交于点A ,B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线y=x+1于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,…,按此作法进行下去,则点A 8的坐标是 .三、解答题(共58分)19. (每小题6分,共12分)(1) 计算:2+(2)解方程组:230311.x y x y +=⎧⎨-=⎩, 20. (6分) 如图7,AB ∥CD ,∠A=75°,∠C=30°,求∠E 的度数.21. (8分)目前节能灯在城市已基本普及,今年广东省面向农村地区推广,为响应号召,某商场计划用3800元购进节能灯120个,这两种节能灯的进价、售价如下表:进价(元/个) 售价(元/个)甲 型25 30 乙 型45 60 (1)求甲、乙两种节能灯各购进多少个?(2)全部售完120个节能灯后,该商场获利润多少元?22. (10分)如图8,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (﹣1,4),C (﹣3,1).(1)在图中作△A′B′C′与△ABC 关于x 轴对称;(2)写出点A′,B′,C′的坐标.23.(10分)甲、乙两人参加理化实验操作测试,学校进行了6次模拟测试,成绩如表所示:第1次第2次第3次第4次第5次第6次平均数众数甲7 9 9 9 10 10 9 9乙7 8 9 10 10 10 _______ _______(1)根据图表信息,补全表格;(2)已知甲的成绩的方差等于1,请计算乙的成绩的方差;(3)从平均数和方差相结合看,分析谁的成绩好些?24.(12分)甲、乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象(如图9所示).请根据图象所提供的信息,解答下列问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?图9期末测试题参考答案一、1. D 2. C 3. D 4. C 5. D 6. A 7. D 8. D 9. D 10. C二、11. y=﹣2x 12. 5 13. 8 8 14. 四15. 30°16. -1 17. 4 18.(15,0)三、19. (1) 原式=2+3﹣.(2)方程组230 311x yx y+=⎧⎨-=⎩,②,①②×3+①,得11x=33,解得x=3.把x=3代入②,得y=﹣2.则原方程组的解是32. xy=⎧⎨=-⎩,20. 解:如图1所示.∵AB∥CD,∠A=75°,∴∠1=∠A=75°. ∵∠C=30°,∴∠E=∠1-∠C=75°-30°=45°.图1 图2 图321. 解:(1)设商场购进甲型节能灯x个,则购进乙型节能灯y个.由题意,得25453800120.x yx y+=⎧⎨+=⎩,解得8040.xy=⎧⎨=⎩,答:甲型节能灯购进80个,乙型节能灯购进40个.(2)由题意,得80×5+40×15=1000(元).答:全部售完120个节能灯后,该商场获利润1000元.22. 解:(1)如图所示.(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).23. 解:(1)乙的平均数是(7+8+9+10+10+10)÷6=9;因为10出现了3次,出现的次数最多,所以乙的众数是10.(2)乙的方差是16[(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=43.(3)甲的成绩好些,因为两个人的平均成绩都是9分,但甲的方差小,所以成绩更稳定.24. 解:(1)设甲登山的路程y与登山时间x之间的函数表达式为y=kx.∵点C(30,600)在函数y=kx的图象上,∴30k=600,解得k=20.∴y=20x(0≤x≤30).(2)设乙在AB段登山的路程y与登山时间x之间的函数表达式为y=ax+b(8≤x≤20).将点A(8,120),B(20,600)代入,得812020600a ba b+=⎧⎨+=⎩,.解得40200.ab=⎧⎨=-⎩,所以y=40x﹣200.联立方程,得2040200.y xy x=⎧⎨=-⎩,解得10200.xy=⎧⎨=⎩,故乙出发后10分钟追上甲,此时乙所走的路程是200米.北师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共30分。
北师大版八年级下册数学《期末》考试及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、13、如果两个角互为对顶角,那么这两个角相等4、a+c5、36、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、11a-,1.3、(1)略(2)1或24、(1)略;(2)4.5、CD的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
度北师大版初二数学下学期期末试卷(附答案)(考试时间:120分钟. 总分数:100分)学校________ 班级________ 姓名________ 分数________一、选择题。
(每小题3分,共24分)1.下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+B 、mn m 2052-C 、22y x -- D 、92+-x 2. 若a<0,则下列不等式不成立的是 ( ) A . a+5<a+7 B .5a >7a C .5-a <7-a D .75a a > 3.分式x y x y+-有意义,则必须满足条件( ) A 、x =y ≠0 B 、x ≠y C 、x ≠0 D 、y ≠04. -3x<-1的解集是 ( )A 、x<31B 、x<-31C 、x>31D 、x>-31 5、如图,OE 是∠AOB 的平分线,CD ∥OB 交OA 于点C ,交OE 于点D, ∠ ACD=50°,则∠CDE 的度数是 ( )A. 125°B. 130°C.140°D.155°6、如图,在□ABCD 中,E 为BC 的中点,F 为DC 的中点,则△CEF 与□ABCD的面积之比为( )A 、1:2B 、1:4C 、1:8D 、1:167.方程12+=x m x 的解为增根,则增根可能是( ) A .x=2 B .x=0 C .x=-1 D .x=0 或x=-18、不等式组 ⎪⎩⎪⎨⎧≥<212x x 的解集在数轴上应表示为 ( )二、填空题。
(每小题3分,共21分)a =8,ab=15,则a2b+ab2的值为。
9.如果b10.如图,在△中,∠,是△的角平分线,于点,.则∠等于______.11.分解因式:__________.12.若□的周长是30,相交于点,且△的周长比△的周长大,则= .13. 若分式方程的解为正数,则的取值范围是 .14.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长度到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为________.15.如图(1),平行四边形纸片的面积为,,.沿两条对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图(2)所示,则图形戊的两条对角线长度之和是 ___ .16.(7分)解方程:23--x x +1=x -2317.(7分)解不等式212-<-x x ,并把解集在数轴上表示出来.18.(7分)解分式方程32121---=-xx x .19.(8分)如图,EF 是Rt ∆ABC 的中位线,D 是BC 延长线上的一点,∠DEC=∠A 求证:四边形EDCF 是平行四边形.20.(8分)甲、乙两地相距,骑自行车从甲地到乙地,出发后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.21.(9分)如图,在ABC ∆中,BC DE //,DE 交AC 于E 点,DE 交AB 于D 点, 若5=AE ,2=CE ,3=DE .求BC 的长.22.(9分)某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x 人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.(1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式;(2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?。
北师大版八年级(上)数学期末测试试题及答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014422.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0)B.(2,0)C.(﹣8,0)D.(2,0)或(﹣8,0)3.(3分)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包4.(3分)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A.23cm B.24cm C.25cm D.26cm5.(3分)解方程组的下列解法中,不正确的是()A.代入法消去a,由②得a=b+2B.代入法消去b,由①得b=7﹣2aC .加减法消去a ,①﹣②×2得2b =3D .加减法消去b ,①+②得3a =96.(3分)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其常绕着附近的树干沿最短路线盘旋而上.现有一段葛藤绕树干盘旋2圈升高为2.4m ,如果把树干看成圆柱体,其底面周长是0.5m ,如图是葛藤盘旋1圈的示意图,则这段葛藤的长是( )m .A .1.3B .2.5C .2.6D .2.87.(3分)对于一次函数y =﹣x +5,下列结论正确的是( ) A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 2 8.(3分)已知,都是关于x ,y 的方程y =﹣3x +c 的一个解,则下列对于a ,b 的关系判断正确的是( ) A .a ﹣b =3B .a ﹣b =﹣3.C .a +b =3D .a +b =﹣39.(3分)定理:三角形的一个外角等于和它不相邻的两个内角的和.下面给出该定理的两种证法. 已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B . 证法1:如图,∵∠A +∠B +∠ACB =180(三角形内角和定理), 又∵∠ACD +∠ACB =180°(平角定义),∴∠ACD +∠ACB =∠A +∠B +∠ACB (等量代换).∴∠ACD =∠A +∠B (等式性质). 证法2:如图,∵∠A =76°,∠B =59°,且∠ACD =135°(量角器测量所得),又∵135°=76°+59°(计算所得), ∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法2只要测量够一百个三角形进行验证,就能证明该定理C.证法2用特殊到一般法证明了该定理D.证法1用严谨的推理证明了该定理10.(3分)描述一组数据的离散程度,我们还可以用“平均差”.在一组数x1、x2、x3、…、x n中,各数据与它们的平均数x的差的绝对值的平均数,即T=(|x1﹣x|+|x2﹣x|+…+|x n﹣x|)叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是()甲121311151314乙10161018177A.甲、乙两组数据的平均数相同B.乙组数据的平均差为4C.甲组数据的平均差是2D.甲组数据更加稳定二、填空题(每小题3分,共15分)11.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是cm.12.(3分)在我国新冠疫情虽然得到了有效的控制,但防范意识仍不能松懈,小丽去药店购买口罩和酒精消毒湿巾,若买150只一次性口罩和10包酒精消毒湿巾,需付75元;若买200只一次性口罩和12包酒精消毒湿巾,需付96元.设一只一次性医用口罩x元,一包酒精消毒湿巾y元,根据题意可列二元一次方程组:.13.(3分)一次考试中,某题的得分情况如下表所示,则该题的平均分是.得分01234百分率15%10%25%40%10%14.(3分)某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得元.15.(3分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减少度.三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算与化简:()()+6﹣(﹣2)2.(2)解方程组:.17.(9分)“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位km),观测者能看到的最远距离为d(单位km),则d≈,其中R是地球半径,通常取6400km.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度h为20m,她观测到远处一艘船刚露出海平面,求此时d的值.(2)判断下面说法是否正确,并说明理由;泰山海拔约为1500m,泰山到海边的最小距离约230km,天气晴朗时站在泰山之巅可以看到大海.18.(9分)“三等分一个任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规和直尺是不可能作出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,并且∠BAE=∠BEA,∠EBF=∠EFB,请你证明∠F AN=∠MAN.19.(9分)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.x<1,B.1≤x<1.5,C.1.5≤x<2,D.x≥2),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%八年级 1.3b 1.00.23m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).20.(9分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在x轴上是否存在一点P,使得△POC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.21.(9分)张氏包装厂承接了一批纸盒加工任务,用如图1所示的长方形和正方形纸板作侧面和底面,做成如图2所示的竖式与横式两种无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需要正方形纸板张,长方形纸板张.(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(3)该厂某一天使用的材料清单上显示,这天一共使用正方形纸板162张,长方形纸板a张,全部加工成上述两种纸盒,且290<a<310.试求在这一天加工两种纸盒时,a的所有可能值.22.(10分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C (10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]23.(10分)已知AB∥CD,点P在直线AB、CD之间,连接AP、CP.(1)探究发现:(填空)填空:如图1,过P作PQ∥AB,∴∠A+∠1=°()∵AB∥CD(已知)∴PQ∥CD()∴∠C+∠2=180°结论:∠A+∠C+∠APC=°;(2)解决问题:①如图2,延长PC至点E,AF、CF分别平分∠P AB、∠DCE,试判断∠P与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=100°,分别作BN∥AP,DN∥PC,AM、DM分别平分∠P AB,∠CDN,则∠M的度数为(直接写出结果).参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
北师大版数学八年级下册期末测试卷(含答案) 八年级数学下册期末测试卷 第I 卷(选择题共48分) 一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只 有一项是符合题目要求的. ) 1.下列方程中是一元二次方程的是 A.2x+1=0 B.x 2+y=1 C. x 2+2=0 D.112=+x x 2.不等式x+1<0的解集在数轴上表示正确的是( )
3.在平面直角坐标系中,点(-2,-a 2 -3)一定在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列各曲线中不能表示y 是x 函数的是 A. 5.将直线y=2x-3向右平移2个单位。再向上平移2个单位后,得到直线y=kx+b.则下列 关于直线y=kx+b 的说法正确的是 A.与y 轴交于(0,-5) B.与x 轴交于(2,0) C.y 随x 的增大而减小 D. 经过第一、二、四象限 6.关于x 的方程x 2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC 的两边长,则△ABC 的腰长为( ) A.3 B.6 C.6或9 D.3或6 7.如图,四边形ABCD 为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间 的关系为 A. β= 180-α B. β=180°- α21 C. β=90°-α D.β=90°-α2 1 8.如图,在△ABC 中, AB=3, BC=4, AC=5,点D 在边BC 上,以AC 为对角线的所有平行 四边形ADCE 中,DE 的最小值是( ) A. 2 B.3 C.4 D.5 9如图,在平面直角坐标系中,已知点A (1, 3), B(n, 3), 若直线y=2x 与线段AB 有公共点,则n 的值不可能是( )
A.1.4 B. 1.5 C. 1.6 D.1.7 10.如图,在△ABC 中,∠C=90° , AC=8,BC=6, 点P 为斜边AB 上一动点,过点P 作PE ⊥AC 于E, PF ⊥BC 于点F ,连结EF ,则线段EF 的最小值为( ) A.2.4 B. 3.6 C.4.8 D.5
2022-2023学年八年级数学上册期末测试卷(附答案)一、选择题:(共24分)1.的平方根是()A.2B.﹣2C.±2D.±42.下列实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有()A.1个B.2个C.3个D.4个3.已知△ABC中,∠A=50°,则图中∠1+∠2的度数为()A.180°B.220°C.230°D.240°4.下列说法中正确的有()A.(﹣1,﹣x2)位于第三象限B.点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5C.点N(1,n)到x轴的距离为nD.平面内,过一点有且只有一条直线与已知直线平行5.在解关于x,y的方程组时,小明由于将方程①的“﹣”,看成了“+”,因而得到的解为,则原方程组的解为()A.B.C.D.6.将一副三角板按如图所示的位置摆放,∠C=∠EDF=90°,∠E=45°,∠B=60°,点D在边BC上,边DE,AB交于点G.若EF∥AB,则∠CDE的度数为()A.105°B.100°C.95°D.75°7.如图,在Rt△ABC中,∠ACB=90°,AB=6,若以AC边和BC边向外作等腰直角三角形AFC和等腰直角三角形BEC.若△BEC的面积为S1,△AFC的面积为S2,则S1+S2=()A.36B.18C.9D.48.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是()A.B.C.D.二、填空题:(共18分)9.将一根长9m的铁丝截成2m和1m两种长度的铁丝(两种都有)如果没有剩余,那么截法有种.10.一次函数y1=k1x+b和y2=k2x的图象上一部分点的坐标见表:则方程组的解为x=,y=.x……210﹣1……y1……0369……y2……630﹣3……11.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,当n为11时h的值是.12.如图,已知圆柱底面的周长为8dm,圆柱高为4dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值的平方为dm.13.如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=29°,∠BDA'=90°,则∠A'EC的大小为.14.如图,∠ABC=∠ACB,△ABC的内角∠ABC的角平分线BD与∠ACB的外角平分线交于点D,△ABC的外角∠MBC的角平分线与CD的反向延长线交于点E,以下结论:①AD∥BC;②DB⊥BE;③∠BDC+∠ABC=90°;④BD平分∠ADC;⑤∠BAC+2∠BEC=180°.其中正确的结论有.(填序号)三、作图题:(本题6分)15.如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(﹣4,4),(﹣1,3),并写出点B的坐标为;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.四、解答题:(共72分)16.计算(1);(2).17.解方程组.(1).(2).18.为了解八年级学生的体质健康状况,某校对八年级(10)班43名同学进行了体质检测(满分10分,最低5分),并按照男女把成绩整理如图:八年级(10)班体质检测成绩分析表平均数中位数众数方差男生7.488c 1.99女生a b7 1.74(1)求八年级(10)班的女生人数;(2)根据统计图可知,a=,b=,c=;(3)若该校八年级一共有430人,则估计得分在8分及8分以上的人数共有多少人?19.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又,∵∠1=∠B(已知)∴(同位角相等,两直线平行)∴∠AFB=∠AOE()∴∠AFB=90°()又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴AB∥CD.(内错角相等,两直线平行)20.如图,已知:点A、B、C在一条直线上.(1)请从三个论断①AD∥BE;②∠1=∠2;③∠A=∠E中,选两个作为条件,另一个作为结论构成一个真命题:条件:.结论:.(2)证明你所构建的是真命题.21.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y 2(km ),慢车离乙地的距离为y 1(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y 2与x 的函数关系图象如图1所示,S 与x 的函数关系图象如图2所示.请根据条件解答以下问题:(1)图中的a = ,C 点坐标为 ; (2)当x 何值时两车相遇? (3)当x 何值时两车相距200千米?22.已知:现有A 型车和B 型车载满货物一次可运货情况如表:A 型车(辆)B 型车(辆) 共运货(吨) 3 2 17 2318某物流公司现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金300元/次,B 型车每辆需租金320元/次,请选出最省钱的租车方案,并求出最少租车费.23.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)直接写出点A,B,C的坐标;(2)设OD的长度为m,求m的值和直线CD的解析式;(3)直线AB与直线CD相交于点E,求△ADE的面积.24.【数学模型】如图(1),AD,BC交于O点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC=∠AOB;②∠D+∠C=∠A+∠B.【提出问题】分别作出∠BAD和∠BCD的平分线,两条角平分线交于点E,如图(2),∠E与∠D、∠B之间是否存在某种数量关系呢?【解决问题】为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD的平分线与∠BCD 的平分线交于点E.(1)如图(3),若AB∥CD,∠D=30°,∠B=40°,则∠E=.(2)如图(4),若AB不平行CD,∠D=30°,∠B=50°,则∠E的度数是多少呢?易证∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,请你完成接下来的推理过程:∴∠D+∠1+∠B+∠4=,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=,又∵∠D=30°,∠B=50°,∴∠E=度.(3)在总结前两问的基础上,借助图(2),直接写出∠E与∠D、∠B之间的数量关系是:.【类比应用】如图(5),∠BAD的平分线AE与∠BCD的平分线CE交于点E.已知:∠D=α、∠B=β,(α<β)则∠E=(用α、β表示).参考答案一、选择题:(共24分)1.解:∵=4,∴的平方根是±=±2.故选:C.2.解:是分数,属于有理数;|﹣3|=3,=2,=﹣2,是整数,属于有理数;0.4040404…(每相邻两个4之间一个0)是循环小数,属于有理数;故在实数﹣,,|﹣3|,,,,0.4040404…(每相邻两个4之间一个0)中,无理数有﹣,,共2个.故选:B.3.解:∵∠A=50°,∴∠B+∠C=130°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故选:C.4.解:A、(﹣1,﹣x2)当x≠0时位于第三象限,原说法错误,不符合题意;B、点A(2,a)和点B(b,﹣3)关于x轴对称,则b=2,a=3,,则a+b的值为5,符合题意;C、点N(1,n)到x轴的距离为|n|,原说法错误,不符合题意;D、平面内,过直线外一点有且只有一条直线与已知直线平行,原说法错误,不符合题意.故选:B.5.解:把代入中可得:,解得:,把代入中可得,,解得:,故选:C.6.解:∵EF∥AB,∠E=45°,∴∠BGD=∠E=45°,∵∠CDE是△BDG的外角,∠B=60°,∴∠CDE=∠B+∠BGD=105°.故选:A.7.解:在Rt△ABC中,由勾股定理得:AC2+BC2=AB2=36,∵△AFC和△CBE是等腰直角三角形,∴S1+S2=AC2+BC2=(AC2+BC2)=×36=18,故选:B.8.解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.二、填空题:(共18分)9.解:设截成2m的有x段,1m的有y段,且x≠0,y≠0,根据题意可列方程得:2x+y=9,则y=9﹣2x,∵x、y均为正整数,∴当x=1时,y=7;当x=2时,y=5;当x=3时,y=3;当x=4时,y=1;∴方程的正整数解有4组,即截法有4种,故答案为:4.10.解:由表中数据得到x=1时,y1=y2=3,所以一次函数y1=k1x+b的图象和y2=k2x的图象的交点坐标为(1,3),所以方程组的解为x=1,y=3.故答案为:1,3.11.解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则n个纸杯叠放在一起时的高度为:(n﹣1)x+y=n﹣1+7=(n+6)cm,当n=11时,其高度为:11+6=17(cm).故答案为:17cm.12.解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为8dm,圆柱高为4dm,∴AB=4dm,BC=BC′=4dm,∴AC2=42+42=32,∴AC=4.∴这圈金属丝的周长最小为2AC=8(dm),则这圈金属丝的周长的最小值的平方为128dm.故答案为:128.13.解:如图,∵∠BDA'=90°,∴∠ADA'=90°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=45°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=29°+45°=74°,∴∠AED=106°,∴∠A′ED=106°,∴∠A′EC=∠A′ED﹣∠CED=106°﹣74°=32°.故答案为32°.14.解:如图,过点D作DG⊥BF于G,DH⊥AB交BA的延长线于点H,DP⊥AC于P,过点A作AQ⊥BC于Q,∵BD是∠ABC的平分线,∴DH=DG,∵CD是∠ACF的平分线,∴DG=DP,∴DH=DP,∴AD是∠CAH的平分线,即∠CAD=∠HAD=∠CAH,∵AB=AC,∴∠ABC=∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∠CAD+∠HAD+∠BAC=180°,∴∠CAD=∠ACB,∴AD∥BC,因此①正确;∵BE平分∠CBM,BD平分∠ABC,∠CBM+∠ABC=180°,∴∠DBE=∠ABC+∠CBM=×180°=90°,即BD⊥BE,因此②正确;∵BD是∠ABC的平分线,∴∠ABD=∠DBC,∵CD是∠ACF的平分线,∴∠ACD=∠FCD,∵∠ACF=∠BAC+∠ABC,∠DCF=∠BDC+∠DBC,∴∠BDC=∠BAC,∵AQ⊥BC,AB=AC,∴∠BAQ=∠CAQ=∠BAC,∵∠BAQ+∠ABC=90°,∴∠BDC+∠ABC=90°,因此③正确;∵∠ADB=∠ABC=×()=45,而∠BAC ∴∠ADB与∠BDC不一定相等,因此④不正确;∵BE⊥BD,∴∠E+∠BDC=90°,∵∠BDC=∠BAC,∴∠E+∠BAC=90°,∴2∠E+∠ABC=180°,因此⑤正确;综上所述,正确的结论有:①②③⑤,故答案为:①②③⑤.三、作图题:(本题6分)15.解:(1)所作图形如图所示:B(﹣2,1);(2)所作图形如图所示:B1(2,1);(3)所作的点如图所示,P(0,2).故答案为:(﹣2,1).四、解答题:(共72分)16.解:(1)原式=﹣3+4+12=﹣3+16;(2)原式=﹣=3﹣=3﹣=.17.解:(1),①×2,得2x﹣2y=8③,③+②,得6x=7,解得x=,将x=代入①,得y=﹣,∴方程组的解为;(2),①﹣②得,y=3,解得,y=9,将y=9代入①,得x=6,∴方程组的解为.18.解:(1)∵八年级(10)班男生人数为2+4+6+5+4+2=23(人),∴女生人数为43﹣23=20(人);(2)由条形统计图知,男生体质监测成绩的众数c=7,女生体质监测成绩的平均数a=5×5%+6×15%+7×30%+8×25%+9×15%+10×10%=7.6,中位数b==7.5,故答案为:7.6、7.5、7;(3)430×=210(人),答:得分在8分及8分以上的人数共有210人.19.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.20.解:(1)条件:①AD∥BE;②∠1=∠2;结论:③∠A=∠E,故答案为:①AD∥BE,②∠1=∠2;③∠A=∠E;(2)证明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥BC,∴∠E=∠EBC,∴∠A=∠E.21.解:(1)由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,∴快车的速度为300÷3=100(km/h),由图可得,慢车5h行驶300km,∴慢车的速度为300÷5=60(km/h),∵3×60=180(km),∴快车到达乙地时,慢车行驶了180km,即两车相距180km,∴C(3,180),故答案为:3,(3,180);(2)由(1)可知,快车的速度为100km/h,慢车的速度为60km/h,∴两车相遇所需时间为300÷(100+60)=(h),∴当x为时两车相遇;(3)①当两车行驶的路程之和为300﹣200=100(km)时,两车相距200km,此时x=100÷(100+60)=;②当两车行驶的路程和为300+200=500(km)时,两车相距200km,∵x=3时,快车到达乙地,即快车行驶了300km,∴当慢车行驶200km时,两车相距200km,此时x=200÷60=,综上所述,x为或时,两车相距200km.22.解:(1)设l辆A型车载满货物一次可运货x吨,l辆B型车载满货物一次可运货y吨,依题意得:,解得:.答:l辆A型车载满货物一次可运货3吨,l辆B型车载满货物一次可运货4吨.(2)依题意得:3a+4b=35,∴b=,又∵a,b均为自然数,∴或或,∴共有3种租车方案,方案1:租用A型车1辆,B型车8辆;方案2:租用A型车5辆,B型车5辆;方案3:租用A型车9辆,B型车2辆.(3)选择方案1所需租车费为1×300+8×320=2860(元);选择方案2所需租车费为5×300+5×320=3100(元);选择方案3所需租车费为9×300+2×320=3340(元).∵2860<3100<3340,∴最省钱的租车方案是方案1:租用A型车1辆,B型车8辆,最少租车费为2860元.23.解:(1)在直线y=﹣x+8中,令x=0,则y=8;令y=0,则x=6,∴A(6,0),B(0,8),∴AO=6,BO=8,∴AB=10=AC,∴OC=6+10=16,即C(16,0);(2)∵A(6,0),B(0,8),C(16,0),∴OB=8,OC=16,∵OD=m,∴BD=8+m,∵将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,∴DC=BD=8+m,在Rt△ODC中,m2+162=(m+8)2,解得m=12,∴D(0,﹣12),设CD的解析式为y=kx+b,则,解得,∴CD的解析式为y=x﹣12;(3)由方程组,解得,∴点E坐标为(,﹣),∴S△ADE=×10×12﹣×10×=36.24.解:【解决问题】(1)如图3,∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=∴∠E=(30°+40°)=×70°=35°;故答案为:35°;(2)如图(4),∠D+∠1=∠E+∠3,∠B+∠4=∠E+∠2,∴∠D+∠1+∠B+∠4=2∠E+∠3+∠2,∵CE、AE分别是∠BCD、∠BAD的平分线,∴∠1=∠2,∠3=∠4.∴2∠E=∠D+∠B,∴∠E=,又∵∠D=30°,∠B=50°,∴∠E=40度.故答案为:2∠E+∠3+∠2,∠D+∠B,40°;(3)由(1)和(2)得:∠E=,故答案为:∠E=;【类比应用】如图(5),延长BC交AD于F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣∠BCD=∠B+∠BAE﹣(∠B+∠BAD+∠D)=(∠B﹣∠D),∵∠D=α°、∠B=β°,即∠E=(β﹣α)°.。
北师大版八年级上册数学期末考试试题一、单选题1.下列各组数,是勾股数的是()A .13,14,15B .0.3,0.4,0.5C .6,7,8D .5,12,132.下列说法:①-27的立方根是3;②36的算数平方根是6±;③18的立方根是12平方根是3±.其中正确说法的个数是()A .1B .2C .3D .43.点(),A x y 在第四象限,则点(),2B x y --在第几象限()A .第一象限B .第二象限C .第三象限D .第四象限4最接近的数是()A .2B .3C .4D .55.在 1.414-,π,12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为()个.A .5B .2C .3D .46.下列命题中,是真命题的是()A .同位角相等B .同旁内角相等,两直线平行C .平行于同一直线的两直线平行D .相等的角是对顶角7.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是()A .乙同学的成绩更稳定B .甲同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定哪位同学的成绩更稳定8.正比例函数()0y kx k =-≠的函数值y 随x 的增大而减小,则一次函数y kx k =-的图象大致是()A .B .C .D .9.《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为x 人,牛价为y 钱,根据题意,可列方程组为()A .64084y x y x =+⎧⎨=+⎩B .64084y x y x =+⎧⎨=-⎩C .64084y x y x =-⎧⎨=-⎩D .64084y x y x =-⎧⎨=+⎩10.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离()km y 与行驶时间()h t 的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ;②乙车用了5h 到达B 城;③甲车出发4h 时,乙车追上甲车A .0个B .1个C .2个D .3个二、填空题11.已知点()1,3P m m ++在x 轴上,则m =________;点P 的坐标为________.12有意义,则x 的取值范围是___.13.若函数()231m y m x-=+是正比例函数,且图像在一、三象限,则m =_________.14.若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.15.已知一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,则1y _______2y (填“>”“<”或“=”)16.如图,已知函数y ax b =+和y kx =的图象交于点P ,关于,x y 的方程组0y ax b kx y -=⎧⎨-=⎩的解是____.17.如图,ABC 中,90A ∠=︒,点D 在AC 边上,∥DE BC ,若1145∠=︒,则B ∠的度数为_______.18.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_________dm .三、解答题19.计算(1)2(23)(33)(33)+-+(2)20223125272---20.用适当的方法解下列方程组(1)231951x y x y +=-⎧⎨+=⎩(2)237324x y x y +=⎧⎨-=⎩21.中考体育测试前,我区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)扇形统计图中a =%,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.如图所示,折叠长方形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知6AB =,8BF =,求CE 的长.23.已知一次函数y kx b =+的图象经过点()1,5--,且与正比例函数2y x =的图象相交于点()2,A m .求:(1)m 的值;(2)k ,b 的值;(3)这两个函数图象与y 轴所围成的三角形的面积.24.如图,Rt △ABC 中,∠BAC =90°,AC =9,AB =12.按如图所示方式折叠,使点B 、C 重合,折痕为DE ,连接AE .求AE 与CD 的长.25.某商场去年的利润为10万元,今年的总收入比去年增加10%,总支出比去年减少了5%,今年的利润为30万元.求去年的总收入和总支出?26.已知一次函数y =kx ﹣3的图象与正比例函数y=12x 的图象相交于点(2,a ).(1)求a 的值.(2)求一次函数的表达式.(3)在同一坐标系中,画出这两个函数的图象.27.如图1,在平面直角坐标系中,(),0A m,(),4C n ,且满足()240m +=,过C 作CB x ⊥轴于B .(1)求m ,n 的值;(2)在x 轴上是否存在点P ,使得ABC 和OCP △的面积相等,若存在,求出点P 坐标,若不存在,试说明理由.(3)若过B 作BD AC ∥交y 轴于D ,且AE ,DE 分别平分CAB ∠,ODB ∠,如图2,图3,①求:CAB ODB ∠+∠的度数;②求:AED ∠的度数.参考答案1.D【分析】根据能够成为直角三角形三条边长的三个正整数,称为勾股数,即可求解【详解】解:A、不是正整数,则不是勾股数,故本选项不符合题意;B、不是正整数,则不是勾股数,故本选项不符合题意;C、222678+≠,则不是勾股数,故本选项不符合题意;D、2225+12=13,是勾股数,故本选项符合题意;故选:D【点睛】本题主要考查了勾股数的定义,熟练掌握能够成为直角三角形三条边长的三个正整数,称为勾股数是解题的关键.2.A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.【详解】解:①-27的立方根是-3,错误;②36的算数平方根是6,错误;③18的立方根是12,正确;∴正确的说法有1个,故选:A.【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.3.C【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B10,距离10最近的完全平方数是9和16,通过比较可知10距离9比较近,由此即可求解.解答:解:∵32=9,42=16,又∵11-9=2<16-9=5∴与最接近的数是3.故选B.5.D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.-是有限小数,是有理数,【详解】 1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.6.C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B 、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C 、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D 、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.7.A【分析】根据方差的定义逐项排查即可.【详解】解:∵甲同学成绩的方差2>乙同学成绩的方差1.8,且平均成绩一样∴乙同学的成绩更稳定.故选A .【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定.8.C【分析】因为正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,可以判断0k >;再根据0k >判断出y kx k =-的图象的大致位置.【详解】解: 正比例函数(0)y kx k =-≠的函数值y 随x 的增大而减小,0k ∴>,∴一次函数y kx k =-的图象经过一、三、四象限.故选C .【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当0k >,0b >时,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <时,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k<,0b <时,函数y kx b =+的图象经过第二、三、四象限.9.B【分析】设合伙人数为x 人,牛价为y 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.【详解】解:设合伙人数为x 人,牛价为y 钱,根据题意得:64084y x y x =+⎧⎨=-⎩.故选:B【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.10.C【分析】求出正比函数的解析式,k 值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx ,∴6k=300,解得k=50,∴y 甲=50x ,∴甲车的速度为50km/h ,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h )到达B 城,∴②错误;设y =mx b +乙,∴2m =05m 300b b +⎧⎨+=⎩,∴m 100200b =⎧⎨=-⎩,∴y =100x-200乙,∵=50100200y x y x ⎧⎨=-⎩,∴x 4200y =⎧⎨=⎩,即甲行驶4小时,乙追上甲,∴③正确;故选C .11.3-()2,0-【分析】根据x 轴上的点,纵坐标为0,求出m 值即可.【详解】解:∵点()1,3P m m ++在x 轴上,∴30m +=,解得,3m =-,则1312m +=-+=-;点P 的坐标为(-2,0);故答案为:-3,(-2,0).【点睛】本题考查了坐标轴上点的坐标特征,解题关键是明确x 轴上的点,纵坐标为0.12.2x ≥有意义,即x ﹣2≥0,解得:x≥2.故答案为:x≥2.13.2【分析】根据自变量的次数等于1,系数大于0列式求解即可.【详解】解:由题意得m+1>0,m 2-3=1,解得m=2.故答案为:2.14.89【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x 1,x 2,…xn 的平均数是2,∴数据3x 1+2,3x 2+2,…+3xn+2的平均数是3×2+2=8;∵数据x 1,x 2,…xn 的方差为1,∴数据3x 1,3x 2,3x 3,……,3xn 的方差是1×32=9,∴数据3x 1+2,3x 2+2,…+3xn+2的方差是9.故答案为:8、9.15.>【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小,判断即可.【详解】∵一次函数y x b =-+的图象经过点()12,A y -和()23,B y ,且k <0,∴k <0,∵-2<3,∴1y >2y ,故答案为:>.16.4,2x y =-⎧⎨=-⎩【分析】根据函数与方程组的关系结合交点坐标即可求得方程组的解.【详解】解:∵一次函数y=ax+b (a≠0)和y=kx (k≠0)的图象交于点P (-4,-2),∴二元一次方程组0y ax b kx y -=⎧⎨-=⎩的解是42x y =-⎧⎨=-⎩,故答案为:42x y =-⎧⎨=-⎩.17.55︒【分析】先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.【详解】解:∵∠1=145°,∴∠EDC=35°,∵DE ∥BC ,∴∠C=∠EDC=35°,又∵∠A=90°,∴∠B=90°-∠C=55°,故答案为:55°.18.25【分析】把立体几何图展开得到平面几何图,如图,然后利用勾股定理计算AB ,则根据两点之间线段最短得到蚂蚁所走的最短路线长度.【详解】解:展开图为:则AC=20dm,BC=3×3+2×3=15(dm ),在Rt △ABC 中,25AB ===(dm ).所以蚂蚁所走的最短路线长度为25dm.故答案为:25.19.(1)1+;(2)9-【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算.【详解】(1)2(2(3-=43(93)+--=1+(2)20221--+-=153---=9-20.(1)143x y =-⎧⎨=⎩;(2)21x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)231951x y x y +=-⎧⎨+=⎩①②②×2-①得:7y=21,解得:y=3,把y=3代入②中,解得:x=−14,∴方程组的解为:143x y =-⎧⎨=⎩;(2)237324x y x y +=⎧⎨-=⎩①②①×2-②×3得:13x=26,解得:x=2,把x=2代入①中,解得:y=1,∴方程组的解为:21x y =⎧⎨=⎩.21.(1)25,图见解析(2)5,5(3)810名【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.(1)解:扇形统计图中a=1-30%-15%-10%-20%=25%,设引体向上6个的学生有x 人,由题意得20,25%10%x =,解得x=50.条形统计图补充如下:故答案为:5;(2)解:由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5.故答案为:5,5.(3)解:50401800810200+⨯=(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.22.83【分析】由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,由勾股定理,可得10AF ==,从而得到2FC =,然后设CE x =,6EF DE x ==-,在Rt ECF △中,由勾股定理,即可求解.【详解】解:由翻折的性质可得:AD AF BC ==,DE EF =,在Rt ABF 中,10AF ==,∴2FC BC BF =-=,设CE x =,6EF DE x ==-,在Rt ECF △中,222EF EC CF =+,即()2246x x +=-,解得83x =,∴CE 的长为83.23.(1)4m =;(2)3k =,2b =-;(3)2【分析】(1)把(2,m )代入正比例函数解析式即可得到m 的值;(2)把(-1,-5)、(2,4)代入y=kx+b 中可得关于k 、b 的方程组,然后解方程组求出k 、b 即可;(3)先利用描点法画出图象,再求出两直线与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)将()2,m 代入2y x =得,4m =.(2)由(1)得,交点坐标为()2,4,将()1,5--,()2,4代入y kx b =+中,得524k b k b -+=-⎧⎨+=⎩,解得32k b =⎧⎨=-⎩,∴3k =,2b =-.(3)由(2)得,直线的表达式为32y x =-,令0x =,则2y =-,所以直线32y x =-与y 轴的交点坐标问为()0,2-,又∵两直线的交点坐标为()2,4,∴12222s =⨯⨯=.【点睛】本题考查了一次函数的综合题:用待定系数法求一次函数的解析式,一次函数与坐标轴的交点问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.24.AE =7.5,CD =758【分析】在Rt △ABC 中由于∠BAC =90°,AC =9,AB =12,所以根据勾股定理可求出BC 的长,由折叠可知,ED 垂直平分BC ,E 为BC 中点,BD =CD ,根据直角三角形斜边上的中线等于斜边的一半可求出AE 的长,设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中由AD 2+AC 2=CD 2即可求出x 的值,故可得出结论.【详解】解:在Rt △ABC 中,∠BAC =90°,AC =9,AB =12,由勾股定理得:AB 2+AC 2=BC 2.∴BC 2=92+122=81+144=225=152,∴BC =15∵由折叠可知,ED 垂直平分BC ,∴E 为BC 中点,BD =CD∴AE =12BC =7.5(直角三角形斜边上的中线等于斜边的一半).设BD =CD =x ,则AD =12﹣x .在Rt △ADC 中,∴AD 2+AC 2=CD 2(勾股定理).即92+(12﹣x )2=x 2,解得x =758,∴CD =758.【点睛】本题考查的是图形折叠的性质,熟知图形折叠不变性的性质及勾股定理是解答此题的关键.25.去年的总收入为4103元,总支出为3803元【分析】设去年的总收入为x 万元,总支出为y 万元,根据利润=总收入-总支出,列出方程,构成方程组求解.【详解】解:设去年的总收入为x 万元,总支出为y 万元,依题意得:x-1000(1+10)(1-5)=3000y x y =⎧⎪⎨-⎪⎩,解得410x=3380=3y ⎧⎪⎪⎨⎪⎪⎩,答:去年的总收入为4103元,总支出为3803元.【点睛】本题考查了二元一次方程组的应用题,根据利润=总收入-总支出,列出符合题意的方程是解题的关键.26.(1)a =1;(2)y =2x ﹣3;(3)详见解析.【分析】(1)直接把点(2,a )代入正比例函数的解析式y =12x 可求出a ;(2)将求得的交点坐标代入到直线y =kx ﹣3中即可求得其表达式;(3)利用与坐标轴的交点及两图像交点即可确定两条直线的解析式.【详解】(1)∵正比例函数y =12x 的图象过点(2,a ),∴a =1;(2)∵一次函数y =kx ﹣3的图象经过点(2,1)∴1=2k ﹣3,∴k =2,∴y =2x ﹣3;(3)函数图象如下图:【点睛】本题考查了两条直线相交或平行问题:若直线y =k 1x+b 1与直线y =k 2x+b 2相交,则交点坐标同时满足两个解析式.也考查了待定系数法求函数解析式.27.(1)4m =-,4n =;(2)存在,()8,0N 或()8,0-;(3)①90︒;②45︒【分析】(1)根据非负数的和为零,则每一个数为零,列等式计算即可;(2)设点P 的坐标为(n ,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;②作EM AC ∥,利用平行线的性质,角的平分线的定义,计算即可.【详解】解:(1)∵()240m +=,∴m+4=0,n-4=0,∴4m =-,4n =.(2)存在,设点P 的坐标为(n ,0),则OP=|n|,∵A (-4,0),C (4,4),∴B (4,0),AB=4-(-4)=8,∵12ABCS AB CB = ,12OCP CB OP = △S ,且ABC 和OCP △的面积相等,∴12AB CB 12CB OP = ,∴OP=AB=8,∴|n|=8,∴n=8或n=-8,∴()8,0P 或()8,0P -;(3)①∵AC BD ∥,∴CAB OBD ∠=∠,又∵90OBD ODB ∠+∠=︒,∴90CAB ODB ∠+∠=︒.②作EM AC ∥,如图,∵AC BD ∥,∴AC EM BD ∥∥,∴CAE AEM ∠=∠,BDE DEM ∠=∠,∴AED CAE BDE ∠=∠+∠,∵AE ,DE 分别平分CAB ∠,ODB ∠,∴12CAE CAB ∠=∠,12BDE ODB ∠=∠,∴11()904522AED AEM DEM CAB ODB ∠=∠+∠=∠+∠=⨯︒=︒,即45AED ∠=︒.。
优秀学习资料 欢迎下载
2009-2010 八年级(下)数学期末测试卷
一、选择题
(每小题3分,共30分)
1、若2y-7x=0,则x∶y等于( )
A.2∶7 B. 4∶7 C. 7∶2 D. 7∶4
2、下列多项式能因式分解的是( )
A.x2-y B.x2+1 C.x2+xy+y2 D.x2-4x+4
3、化简yxyx22的结果( )
A.x+y B.x- y C.y- x D.- x- y 4、已知:如图,下列条件中不能判断直线l1∥l2的是( ) A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 5、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有( ) A.1个 B.2个 C.3个 D.4个 6、如图,在△ABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为( ) A.415 B.7 C.215 D.524 (第4题图) (第6题图) 7、下列各命题中,属于假命题的是( ) A.若a-b=0,则a=b=0 B.若a-b>0,则a>b C.若a-b<0,则a<b D.若a-b≠0,则a≠b 8、如果关于x的不等式(a+1)x>a+1的解集为x<1,则a的取值范围是( ) A.a<0 B.a<-1 C.a>1 D.a>-1 9、在梯形ABCD中,AD∥BC,AC与BD相交于O,如果AD∶BC=1∶3,那么下列结论正确的是( ) A.S△COD=9S△AOD B.S△ABC=9S△ACD C.S△BOC=9S△AOD D.S△DBC=9S△AOD 10、某班学生在颁奖大会上得知该班获得奖励的情况如下表: 已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( ) A.3项 B.4项 C.5项 D.6项 二、填空题(每小题3分,共24分) 11、不等式组0102xx的解集是 ; 12、若代数式22xx的值等于零,则x= 13、分解因式:2244baba= 14、如图,A、B两点被池塘隔开,在 AB外选一点 C,连结 AC和 BC,并分别找出它们的中点 M、N.若测得MN=15m,则A、B两点的距离为
(第14题图) (第15题图) (第17题图) (第18题图)
15、如图,在□ABCD中,E为CD中点,AE与BD相交于点O,S△DOE=12cm2,则S△AOB等于 cm2.
16、一次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进行计算,李华说:
我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩人的说法都是正确的,
②至少有一人说错了.真命题是 (填写序号).
17、如图,下列结论:①∠A >∠ACD;②∠B+∠ACB=180°-∠A;③∠B+∠ACB<180°; ④∠HEC>∠B。其
中正确的是 (填上你认为正确的所有序号).
18、如图,在四个正方形拼接成的图形中,以1A、2A、3A、…、10A这十个点中任意三点为顶点,共能组成________
个等腰直角三角形.你愿意把得到上述结论的探究方法与他人交流吗?若愿意,请在下方简要写出你的探究过程(结
论正确且所写的过程敏捷合理可另加2分,但全卷总分不超过100分):
______________________________________________
_______________________________________________________________________________
______________________________________________________________________________.
三、
(每小题6分,共18分)
19、解不等式组.3)4(21,012<+>-xx并把解集在数轴上表示出来.
优秀学习资料 欢迎下载
20、已知x=13,y=13,求2222xyyxyx的值.
21、解方程:114112xxx
四、
(每小题6分,共12分)
22、为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。 (1)第四小组的频率是__________ (2)参加这次测试的学生是_________人 (3)成绩落在哪组数据范围内的人数最多?是多少? (4)求成绩在100次以上(包括100次)的学生占测试 人数的百分率. 23、已知:如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1. (1)求∠2、∠3的度数; (2)求长方形纸片ABCD的面积S. 五、(每小题8分,共16分) 24、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?
25、某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,
餐椅报价每把均为50元.中商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五
折销售.那么,什么情况下到甲商场购买更优惠?
99.5 49.5 74.5
124.5
149.5
次数
人数
优秀学习资料 欢迎下载
参考答案:
一、ADABB CABCB
二、11、空集(无解) 12、2 13、(a+2b)2 14、30m 15、48cm2 16、② 17、②③④
18、30 设小正方形的边长为1,则等腰直角三角形有以下三种情形: (1)直角边长为1的等腰直角三角形有4
×4+2=18个;(2)直角边长为2的等腰直角三角形有2×5=10个;(3)直角边长为2的等腰直角三角形有2个。
所以等腰直角三角形共有18+10+2=30个.
三、19、21
∠1=∠2=60° (2)S=33
五、24、解:设“青年突击队”原计划每小时清运x吨垃圾,根据题意,得
42100100
xx
解得x=12.5
经检验:x=12.5是原方程的解
答:略
25、解:设学校购买12张餐桌和x把餐椅,到购买甲商场的费用为y1元,到乙商场购买的费用为y2元,则有
y1=200×12+50(x-12)=50x+1800
y2=85%×(200×12+50x)=42.5x+2040
y1-y2=7.5x-240
当7.5x-240<0,即x<32时,y1