初中数学初三月考考试卷全真模拟考试卷考点.doc
- 格式:doc
- 大小:130.50 KB
- 文档页数:7
初中数学初三月考考试卷模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题评卷人得分3.在直角三角形中,任意给出两条边的长可以求第三边的长17.计算:17.如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?22.如图,在边长为1的正方形组成的网格中,⊿AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).⊿AOB绕点O逆时针旋转90°后得到⊿A1OB1。
(1)点A关于点O中心对称的点的坐标为___________;(2)画出⊿AOB绕点O逆时针旋转90°后得到⊿A1OB1,并写出点B1的坐标;(3)在旋转过程中,点B经过的路径为弧BB1,求弧BB1的长。
23.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.14.如图,在正方形ABCD中AC与BD交于点O,形外有一点E,使∠AED=90°,且DE=3,OE=,则AE=______________.17.计算:(-)-1+(π-)0-3tan30°+|-|19.如图,△ABC内接于⊙O,AB为直径,E为AB延长线上的点,作OD∥BC交EC的延长线于点D,连接AD.(1)求证:AD=CD;(2)若DE是⊙O的切线,CD=3,CE=2,求tanE和cos∠ABC的值.19.计算:.13.如图,AB、AC与⊙O相切于点B、C,∠A=50°,P为⊙O上异于B、C的一个动点,则∠BPC的度数为__________.14.如图,已知反比例函数(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k=_____.11.如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6米,则斜坡上相邻两树间的坡面距离是______________米(结果保留根号).13.要使二次根式有意义,字母x必须满足的条件是________9.分解因式:ab﹣b2=_____.19.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.20.解方程和不等式组:⑴ ⑵23.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿AC以1cm/s的速度向点C移动;同时,点Q从点C出发沿CB以2cm/s的速度向点B移动.当Q运动到B点时,P,Q停止运动.设点P运动的时间为ts.(1)CQ=______________cm,CP=______________cm;(用含t的代数式表示)(2)t为何值时,△PCQ的面积等于5cm2.25.如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B、C重合),过M作MN//y轴交抛物线于N,若点M的横坐标为m,请用m 的代数式表示MN的长;(3)在(2)的条件下,是否存在m,使MN的长度最大?若存在,求m的值,幷求出此时点M和N的坐标;若不存在,说明理由.2.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为()A.1B.C.2D.+14.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )A.AB.BC.CD.D3.方程的根是()A.B.C.,D.,5.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A. 100°B. 90°C. 80°D. 70°10.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)2.一元二次方程x2﹣3x+2=“0” 的两根分别是x1、x2,则x1+x2的值是()A.3B.2C.﹣3D.﹣21.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A.必然事件B.随机事件C.确定事件D.不可能事件11.如果函数是关于x的二次函数,那么k的值是()A.1或2B.0或2C.2D.014.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是( )A. (A)B. (B)C. (C)D. (D)5.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形。
初中数学初三中考真卷全真模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________一、判断题2.当x与y乘积一定时,y就是x的反比例函数,x也是y的反比例函数20.射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099______________乙107101098______________9.5(1)完成表中填空①______________;②______________;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩的方差为,你认为推荐谁参加比赛更合适,请说明理由.(注:方差公式.)14.解方程:19.计算:22.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表处理方式直接丢弃直接做垃圾袋再次购物使用其它选该项的人数占总人数的百分比5%35%49%11%请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.17.计算:-(3.14-)0+(1-cos30°)×()-225.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断与AC·CD 的大小关系;(2)求∠ABD 的度数.15.计算:.22.解方程时,我们可以将看成一个整体,设=,则原方程可化为,解得.当=1时,=1,解得x=0,当=2时,=2,解得x=1,所以原方程的解为.请利用这种方法解方程:.20.黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?8.请你画出把下列矩形的面积两等分的直线,并且根据你所画的直线回答下列问题.⑴在一个矩形中,把此矩形面积两等分的直线最多有多少条?它们必须都经过哪个点?⑵你认为还有具有这个性质的四边形吗?如果有,请你找出来.⑶你认为具有此性质的四边形应该具有什么特征的四边形呢?24.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.12.用适当的方法解下列方程:(1)(x+1)(x﹣2)=x+1;(2)14.如图所示,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为______________.15.已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为_____.10.如图,一个长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5cm,容积是500cm2的无盖长方体容器,那么这块铁皮的长为______________,宽为 _____.8.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )A.B.C.D.7.如图所示,该几何体的俯视图是( )A.AB.BC.CD.D15.我们知道方程的解是,,现给出另一个方程,它的解是A.,B.,C.,D.,1.下面轴对称图形中对称轴最多的是A.矩形B.圆C.等边三角形D.正六边形6.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C 的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为()A.B.C.D.3.如图,△ABC绕点C按顺时针旋转15°到△DEC,若点A恰好在DE上,AC⊥DE,则∠BAE的度数为()A.150B.550C.650D.7l日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6。
初中数学初三月考考试卷模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题16.(7分)计算:.20.(8分)某学校体育看台的侧面如图中阴影部分所示,看台有四级高度相等的小台阶,已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长度均为0.8米的不锈钢架杆AD和8C(杆子的底端分别为D、C),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度(即AD+AB+BC的长).17.计算:.19.计算:.20.东营市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.评卷人得分(1)这次统计共抽取_____本书籍,扇形统计图中的m=______,∠α的度数是_____(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.20.解方程: .21.某商店将每件进价为元的商品按每件元售出,每天可售出件,后来经过市场调查发现,这种商品每件的销售价每降低元其销售量就增加件,则应将每件降价为多少元时,才能使每天利润为元.24.如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于的一元二次方程的两个根,且OA>OB(1)求cos∠ABC的值。
(2)若E为轴上的点,且,求出点E的坐标,并判断△AOE与△DAO是否相似?请说明理由。
19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.10.如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为________.15.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.16.已知点(x1,y1)(x2,y2)(x3,y3)都在函数y=3x-7的图像上,若数据x1、x2、x3的方差为3,则另一组数据y1、y2、y3的方差为________.19.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长都是1).△A1B1C1是以B为位似中心的△ABC的位似图形,且△A1B1C1与△ABC位似比为2,则点C1的坐标是_______,△A1B1C1的面积是_________.10.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为___________7.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求函数y=和y=kx+b的解析式;(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.21.某校对学生课外数阅读状况进行了一次问卷调查,并根据调查结果绘制了中学生每学期阅读课外书籍数量的统计图(不完整).设表示阅读书籍的数量(为正整数,单位:本),其中A:1≤≤2;B:3≤≤4;C:5≤≤6;D:≥7.请你根据两幅图提供的信息解答下列问题:⑴ 本次共调查了多少名学生?⑵ 补全条形统计图,并判断中位数在哪一组;⑶ 计算扇形统计图中扇形D的圆心角的度数.20.有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E (其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是______________人,扇形统计图中“骑自行车”所在扇形的圆心角度数是______________度,请补全条形统计图;(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.13.正方形ABCD中,点P是AD上的一动点(与点D、点A不重合),DE⊥CP,垂足为E,EF⊥BE与DC交于点F.【小题1】求证:△DEF∽△CEB;【小题2】当点P运动到DA的中点时,求证:点F为DC的中点.3.关于x的方程3x2-2x+m=0的一个根是﹣1,则m的值为().A.5B.﹣5C.1D.﹣14.如图所示,四边形ABCD内接于⊙O,F是弧CD上一点,且弧DF=弧BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A. 45°B. 50°C. 55°D. 60°2.将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2-13B.y=(x-5)2-3C.y=(x-5)2-13D.y=(x+1)2-312.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④4.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20°B.30°C.40°D.60°4.读大学的小慧准备网购一双鞋子,在登录支付宝的时候忘记了自己的密码,她只记得密码的前五位,后三位由5,1,2这三个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A.B.C.D.13.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为( )A.πB.2πC.D.4π1.抛物线y=-x2的图象一定经过( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限12.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A.B.C.D.1.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1。
初中数学初三月考考试卷模拟考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题17.解方程:20.如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=(k≠0)的图象于点C,连接BC.(1)求反比例函数的表达式.(2)求△ABC的面积.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是______________.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)16.(1)计算:(3﹣π)0﹣2﹣2+2sin30°;(2)计算:.18.画出下面立体图的三视图评卷人得分20.已知:如图,在△ABC中,AB=AC=13,BC=24,点P、D分别在边BC、AC上,AP2=AD•AB,(1)∽;(2)求∠APD的正弦值.19.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?16.先化简,然后从的范围内选一个合适的整数作为的值代入求值。
16.计算(1)(2)18.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为________尺.9.一组数据85,80,x,90,它的平均数是85,x的值是_____ .16.如图,AC与AB切⊙O于C、B两点,过BC弧上一点D作⊙O切线交AC于E,交AB于F,若EF⊥AB,AE=5,EF=4,则BF =___________.4.关于x的一元二次方程(a-1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是___ 9.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为______________.10.如图所示的四个图形为两个圆或相似的正多边形,其中是位似图形的个数为( )A.1个B.2个C.3个D.4个1.方程的二次项系数和一次项系数分别为( )A.3和4B.3和-4C.3和-1D.3和15.下列各组线段的长度成比例的是()A.6cm、2cm、1cm、4cmB.4cm、5cm、6cm、7cmC.3cm、4cm、5cm、6cmD.6cm、3cm、8cm、4cm3.若是关于的一元二次方程的一个根,则的值是()A.B.C.D.无法确定10.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6C.a7÷a5=a2D.(a2b)3=a5b36.估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.已知△ABC∽△A′B′C′且,则S△A′B′C′∶S△ABC为( )A.1∶2B.2∶1C.1∶4D.4∶12.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E 处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.210..已知一个多边形的内角和是900°,则这个多边形是( )A.五边形B.六边形C.七边形D.八边形22.已知,如图,点B、C、D在⊙O上,四边形OCBD是平行四边形.(1)求证:;(2)若⊙O的半径为2,求的长.23.如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB, CD【小题1】求作此残片所在的圆(不写作法,保留作图痕迹)【小题2】求(1)中所作圆的半径7.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物是否需要挪走,并说明理由.21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.。
初中数学初三月考考试卷模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题17.在同一平面内,到三角形三边所在直线距离相等的点只有一个19.(1)计算:.(2)先化简,再求值:,其中m是二次函数顶点的纵坐标.21.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C 点作CF⊥BE,垂足为F.线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=______.15.已知,求的值.18.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.25.已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC (或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.评卷人得分19.计算:19.计算:(1)(﹣2)2﹣+(﹣3)0(2)4(x2+2)﹣4(x+1)(x﹣1)19.解方程(1)x2+3=3(x+1);(2)x2+3x-4=0.24.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.5.如图,抛物线经过A(-1,0),B(5,0),C(0,-) 三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.20.如图,直线l经过点A(0,-1),且与双曲线y=交于点B(2,1).(1)求双曲线及直线 l的解析式;(2)已知P(a-1,a)在双曲线上,求P点的坐标.7.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.11.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).12.正五边形的有______条对称轴,每一个内角是________°.10.一个袋中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是,则袋中有______________个白球.17.甲、乙两车在依次连通A、B、C三地的公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车人B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶.在两车行驶的过程中,甲、乙两车与B地的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,所用时间为_____小时.8.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是_______9.如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )A.B.C.D.5.如图,直线,被直线所截,,,若,则∠1等于()A.80°B.70°C.60°D.50°2.一元二次方程x2-x+4=“0” 的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是()A.B.C.D.10.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.9.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.35°B.55°C.65°D.70°2.已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.随的增大而减少C.图象在第一、三象限内D.若>1,则<24.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.38.在平面直角坐标系中,将抛物线y=x2向右平移4个单位长度,则得到的抛物线表达式为( ) A.y=(x+4)2B.y=x2+4C.y=(x-4)2D.y=x2-4。
初中数学初三月考考试卷全真模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题评卷人得分17.计算:18.计算:19.(2015秋•盐城校级月考)(1)解方程:x2+4x﹣1=0(2)计算:6tan230°﹣sin60°﹣sin45°.19.计算:.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),B点坐标为(5,0)点C(0,5),M为它的顶点.(1)求抛物线的解析式;(2)求△MAB的面积。
19.计算:-tan60°+4sin30°×cos245°27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.18.计算下列各式的值:(1)(2),17.计算:(-)-1+tan30°-sin245°+(2 016-cos60°)0.13.在半径为5cm的⊙O中,45°的圆心角所对的弧长为______________cm.17.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP’重合,若PB = 3,则PP’ =_________13.一元二次方程的解为_____.29.如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,则经过A,B,C三点的抛物线的表达式为________.15.如图是一个拦水大坝的横断面图,AD∥BC,如果背水坡AB的坡度为1:,则坡角∠B=______________.24.某市建设地铁2号线,有一项工程原计划由甲工程队独立完成需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天完成任务.求:⑴ 乙工程队独立完成这项工程需要的时间;⑵ 甲、乙两工程队分别完成这项工程工作量的比.24.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?26.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为(m2),种草所需费用1(元)与(m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+30000(0≤≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.17.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1 、B1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中线段CC2所扫过的面积(结果保留根号和π).5.在平面直角坐标系中,⊙P的圆心坐标为(4,8),半径为5,那么x轴与⊙P的位置关系是()A.相交B.相离C.相切D.以上都不是3.2015年我市全年房地产投资约为317亿元,这个数据用科学l3.已知一组数据:15,13,15,16,17,16,14,15,则极差与众数分别是()A.4,15B.3,15C.4,16D.3,165.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个3.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为【】.A.y=3(x+2)2—1B.y=3(x-2)2+1C.y=3(x-2)2—1D.y=3(x+2)2+l10.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.6.如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为,则坡面AC的长度为()m.A.10B.8C.6D.65.如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBC=,则AD的长为( )A.2B.4C.D.。
初中数学初三月考考试卷测试考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题评卷人得分19.等腰三角形底边中点到两腰的距离相等20.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m ),B(-3,﹣2)两点.(1)求m的值;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1>y2,求实数p的取值范围.19.抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.(1)求出m的值和抛物线与x轴的交点。
(2)x取什么值时,y的值随x的增大而减小?(3)x取什么值时,y>0?22.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)当四边形ABCD是______________形时,四边形OBEC是正方形23.一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上.(1)求证AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.17.(8分)计算:2sin 300+(-1)2-.17.(本题满分6分)计算19.(1);(2)化简:.18.计算:.12.如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y= (x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为________.6.已知一个斜坡的坡度i=1∶,那么该斜坡的坡角的度数是________.11.正六边形的每个外角是______度.17.分解因式:a3b﹣9ab= .10.计算:2(x﹣y)+3y=_____.15.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.26.(1)在图①中,已知点A、B和直线l1,在直线l1上作点P,使得∠APB=90°;(2)在图②中,已知点C、D和直线l2,在直线l2上作点Q,使得∠CQD=45°.(用直尺和圆规作图,保留作图痕迹,不写作法)7.(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)5.解方程:(1)x2+4x﹣1=0;(2)x2﹣2x=4.(用配方法)13.关于x的一元二次方程 kx2+2x-1=0有两个不相等实数根,则k取值范围是()A.B.C.D.且7.如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>25.(2016·兰州中考)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y32.下列函数是二次函数的是( )A.y=2x-3B.y=x-1+1C.y=x2D.y=+13.已知⊙O的面积为9π cm2,若点O到直线l的距离为π cm,则直线l与⊙O的位置关系是( ) A.相交B.相切C.相离D.无法确定14.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③ b=“960;” ④ a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④2.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.众数C.中位数D.方差4.如图,lC.3D.2。
初中数学广西初三月考考试卷模拟考题考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题2.锐角三角形的外心在三角形的内部.( )24.如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.(1)点F在边BC上.①如图1,连接DE,AF,若DE⊥AF,求t的值;②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.25.如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值,如果是,请求出此定值,如果不是,请说明理由;(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P的个数.19.(1)解方程:x2+4x﹣1=0.(2)计算:﹣(﹣1)0+()﹣2﹣4sin45°.评卷人得分21.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍画出图形。
(2)写出B、C两点的对应点B´、C´的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M´的坐标。
初中数学初三月考考试卷精品考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题18.计算:-22++(π-3.14159)0-|2-3|20.计算(1)(2).17.(1)计算:(2)化简:.18.计算:19.(1)计算:;(2)计算:.17.解方程(1)(2)22.如图,A,B,C,D,P是⊙O上的五个点,且∠APB=∠CPD.与的大小有什么关系?为什么?评卷人得分18.为创建“绿色学校”,绿化校园环境,我校计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.共花费265元(两次购进同种花草价格相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共30棵,且B种花草的数量不少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.13.(1)计算:(2)求满足的x、y的正整数解。
10.如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=________°.8.一元二次方程2x2+3x+1=0的两个根之和为__________.12.已知二次函数的最小值为,则的值为________.18.如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为______________.14.如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)△ABF可以由△ADE绕旋转中心________点,按顺时针旋转________度得到;(3)若BC=8,DE=6,求△AEF的面积.17.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x 轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的解析式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.17.关于x的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.21.如图,已知AB、AD是⊙O的弦,点C是DO的延长线与弦AB的交点,∠ABO=30°,OB=2.(1)求弦AB的长;(2)若∠D=20°,求∠BOD的度数.7.如图所示,该几何体的俯视图是( )A.AB.BC.CD.D13.关于x的一元二次方程 kx2+2x-1=0有两个不相等实数根,则k取值范围是()A.B.C.D.且13.方程经过配方法化为的形式,正确的是A.B.C.D.5.在同一平面上,点A到⊙O的圆心距离为2,⊙O的半径为1,点A与⊙O的位置关系是( ) A.点在圆外B.点在圆上C.点在圆内D.无法确定1.函数y=中自变量x的取值范围是()A.x>2B.x≤2C.x≥2D.x≠210.三角形两边长分别是8和6,第三边长是一元二次方程x2-16x+60=0一个实数根,则该三角形的面积是()A.24B.48C.24或8D.87.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.9B.12C.15D.182.在△ABC中,AB=5,BC=6,B为锐角且sinB=,则∠C的正弦值等于()A.B.C.D.7.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c2.2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105B.9.68×106C.9.68×107D.0.968×108。
初中数学初三月考考试卷测试考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题1.如果一个命题正确,那么它的逆命题也正确22.( 本小题满分10分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:⑴△AEH≌△CGF;⑵四边形EFGH是菱形.22.如图,抛物线与轴交于点,顶点为,动点在抛物线对称轴上,点在对称轴右侧抛物线上,点在轴正半轴上,且,连接得四边形.(1)求点坐标;(2)当时,显然满足条件的四边形有两个,求出相应的点的坐标;(3)当时,对于每一个确定的值,满足条件的四边形有两个,当这两个四边形的面积之比为1:2时,求.20.在形状、大小、质量完全相同且不透明的四张卡片中,分别写有数2、3、5、6,随机抽取一张卡片记下数字后放回,洗匀后,再抽取一张卡片记下数字.评卷人得分(1)请用列表或树状图的方法表示可能出现的所有结果;(2)设第一次取出的数字记为,第二次取出的数字记为,求两次抽到数字组成的点(x,y)在直线上的概率。
23.一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上.(1)求证AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.22.(2015秋•鞍山期末)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连结OD,AC.(1)求证:∠B=∠DCA;(2)若tanB=,OD=,求⊙O的半径长.22.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为______________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.26.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?17.2cos 30°+tan 45- 4sin260°8.已知四个点的坐标分别是(-1,1),(2,2),,,从中随机选取一个点,在反比例函数y=图象上的概率是________.11.分解因式:=__________.12.如图,将△ABC绕其中一个顶点逆时针连续旋转、、后所得到的三角形和△ABC的对称关系是____________.13.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°.若点E在上,则∠E=______________°.13.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.2.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______________.18.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD、CE.(1)求证:△ACD≌△EDC;(2)若点D是BC中点,说明四边形ADCE是矩形.27.在学习《2.1圆》时,小明遇到了这样一个问题:如图(1)、(2)所示,△ABC和△DBC中,∠A=∠D=90°.试证明A、B、C、D四点在同一圆上.小明想到了如下证法:在图(1)、(2)中取BC中点M,连结AM、DM.则有AM=BM=CM及DM=BM=CM,即AM=BM=CM=DM,所以A、B、C、D四点在以M为圆心,MB为半径的圆上.根据以上探究问题得出的结论,解决下列问题:(1)如图(3),在△ABC中,三条高AD、BE、CF相交于点H,连结DE、DF,若∠BAC=64°,则∠EDF=__________°.(2)如图(4),已知AB是⊙O的直径,CD是⊙O的弦,G为CD的中点,CE⊥AB于E,DF⊥AB于F(E、F不重合).若∠EGF=60°,求证:CD=AB.13.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且(0,3)、(﹣4,0).(1)求经过点的反比例函数的解析式;(2)设是(1)中所求函数图象上一点,以顶点的三角形的面积与△COD的面积相等.求点P的坐标.23.某校计划成立学生社团,要求每一位学生都选择一个社团,为了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”“科学社团”“书画社团”“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.请解答下列问题:(1)a=,b=;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.7.下列方程中没有实数根的是( )A.x2-x-1=0B.x2+3x+2=0C.3x2+2x-2=0D.x2+x+2=05.在同一平面上,点A到⊙O的圆心距离为2,⊙O的半径为1,点A与⊙O的位置关系是( ) A.点在圆外B.点在圆上C.点在圆内D.无法确定3.若关于x的一元二次方程k+2x﹣1=0有实数根,则k的取值范围是().A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠04.下列运算正确的是()A.3x2﹣2x2=x2B.(﹣2a)2=﹣2a2C.(a+b)2=a2+b2D.﹣2(a﹣1)=﹣2a﹣14.如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( ).A.5mB.mC.4mD.2m2.图中的三角形是有规律地从里到外逐层排列的。
初中数学初三月考考试卷测试考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题评卷人得分17.计算:-23÷|-2|×cos45°;17.计算:.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.20.我市某养殖场计划购买甲、乙两种鱼苗700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元.(1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾?(2)购买甲种鱼苗不超过280尾,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.22.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.18.( 本小题满分10分)⑴解方程:;⑵解不等式组:.19.抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.(1)求出m的值和抛物线与x轴的交点。
(2)x取什么值时,y的值随x的增大而减小?(3)x取什么值时,y>0?21.不透明袋子里装有红色、绿色小球各一个,除颜色外无其他差别。
随机摸出一个小球后,放回并摇匀,再随机摸出一个.求两次都摸到红色小球的概率.20.(1)解方程:x2-6x-6=0;(2)解不等式组:12.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠C=40°,则∠BAC=____°.13.在半径为5cm的⊙O中,45°的圆心角所对的弧长为______________cm.11.直角三角形两条直角边的长分别是一元二次方程的两个实数根,该三角形的面积为___________.15.圆的半径为3 cm,它的内接正三角形的边长为_________cm.17.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.17.在实数范围内因式分解(1)(2)11.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5B.8,9C.16,8.5D.8,8.519.(10分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=8,∠BCD=120°,求四边形AODE的面积.22.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?4.如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A.1个B.2个C.3个D.4个1.的相反数是()A.B.C.D.6.在反比例函数的图像上有两点(-1,y1),(,y2),则y1-y2的值是()A.负数B.非正数C.正数D.不能确定3.一元二次方程配方后化为()A.B.C.D.9.已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.3.气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是()A.本市明天将有80%的地区降水B.本市明天将有80%的时间降水C.明天肯定下雨D.明天降水的可能性比较大14.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为 -,其中正确的结论个数有_____________________(填序号)10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()A.②④B.①④C.②③D.①③3.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16B.(x+5)2=1C.(x+10)2=91D.(x+10)2=109。
初中数学初三月考考试卷模拟考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题评卷人得分1.如果y是x的反比例函数,那么当x增大时,y就减小20.如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连结AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF的长;22.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.(1)求证:BD=BC;(2)若BD=6cm,求AC的长.17.如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?19.如图,AB//ED,已知AC=BE,且点B、C、D三点共线,若,求证:BC=DE.24.(本题8分)如图1,平行四边形ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF//AB,GH//BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).21.计算:(1)(x+3)2+x(x﹣6)(2)÷(y+2﹣)17.(1)计算:|﹣1|﹣×﹣(5﹣π)0+4cos45° (2)化简:(﹣a+1)÷.17.计算:.8.已知一圆锥的侧面展开图的面积为15πcm2,母线长为5 cm,则圆锥的高为________cm.18.小明和小刚在直线跑道上匀速跑步,他们同起点、同方向跑600米,先到终点的人原地休息.已知小明先出发2秒.在跑步过程中,两人之间的距离(米)与小刚出发的时间(秒)之间的关系如图所示,则当=50秒时,=__________米.12.如图,将△ABC绕其中一个顶点逆时针连续旋转、、后所得到的三角形和△ABC的对称关系是____________.12.某城市2015年底已有绿化面积300公顷,经过两年绿化,到2017年底绿化面积为363公顷.设绿化面积平均每年的增长率为x,由题意所列方程是______.15.在一个不透明的盒子中装有16个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数为______.16.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?24.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?22.已知,如图,点B、C、D在⊙O上,四边形OCBD是平行四边形.(1)求证:;(2)若⊙O的半径为2,求的长.15.计算:(1)2x2﹣5x+1=0;(2)3x(x﹣2)=2(x﹣2).13.关于x的一元二次方程 kx2+2x-1=0有两个不相等实数根,则k取值范围是()A.B.C.D.且1.已知x=2是一元二次方程x2-mx+2=0的一个解,则m的值是()A.-3B.3C.0D.62.若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0B.﹣1C.2D.﹣310.⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.81.抛物线顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)8.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x个队,该小组共赛了90场,那么列出正确的方程是()A.B.x(x﹣1)=90C.D.x(x+1)=901.一元二次方程的根是( )A.y=1B.y=0C.y1=0,y2=D.y1=0,y2=17.函数y=kx+1与函数y=在同一坐标系中的大致图象是().A.B.C.D.10.如图,在长70m,宽40 m的矩形花园中,欲修宽度相等的观赏路(阴影部分),要使观赏路面积占总面积的,则路宽x应满足的方程是( )A.(40-x)(70-x)=350B.(40-2x)(70-3x)=2450C.(40-2x)(70-3x)=350D.(40-x)(70-x)=245012.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A.B.C.D.。
初三上册数学月考模拟卷一.试题(共12题,48分)1.下列方程是一元二次方程的是()A.x﹣1=1B.C.x(x+3)=x2D.x(x+3)=12.把方程x2﹣6x﹣1=0转化成(x+m)2=n的形式,则m、n的值是()A.3、8B.3、10C.﹣3、3D.﹣3、103.抛物线y=x2与抛物线y=﹣x2+2的相同点是()A.顶点相同B.对称轴相同C.开口方向相同D.顶点都在x轴上4.关于x的方程x2﹣2x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m≤﹣1C.m>﹣1D.m>15.一个等腰三角形两边的长分别等于一元二次方程x2﹣16x+55=0的两个实数根,则这个等腰三角形周长为()A.11B.27C.5或11D.21或276.已知抛物线y=ax2+bx+c(a、b、c为正数)经过A(1,4)、B(2,12)两点,则b2﹣4ac的值可能为()A.4B.0C.﹣15D.﹣7.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是()A.6.2(1+x)2=8.9B.8.9(1+x)2=6.2C.6.2(1+x2)=8.9D.6.2(1+x)+6.2(1+x)2=8.98.抛物线y=﹣5x2可由y=﹣5(x+2)2﹣6如何平移得到()A.先向右平移2个单位,再向下平移6个单位B.先向左平移2个单位,再向上平移6个单位C.先向左平移2个单位,再向下平移6个单位D.先向右平移2个单位,再向上平移6个单位9.如图,在宽为20m,长为38m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为xm,根据题意,所列方程正确的是()A.(20﹣x)(38﹣x)=540B.(20﹣x)(38﹣x)=38×20﹣540C.(20﹣2x)(38﹣2x)=540D.(20﹣2x)(38﹣2x)=38×20﹣54010.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=x2﹣2x+c上的三点,y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y211.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为()A.(﹣,)B.(﹣,)C.(﹣1,)D.(﹣1,)12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b>c.其中含所有正确结论的选项是()A.①③④B.①③⑤C.②④⑤D.①③④⑤二、填空题(共6题,24分)13.二次函数y=2(x﹣1)2+1的顶点坐标是.14.若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0的一个根,则2021﹣2a+2b的值等于.15.某种型号汽车在高速路上急刹车后滑行的距离S(米)与滑行的时间t(秒)的函数解析式是S =2t﹣0.25t2,则该种汽车刹车后滑行秒才能停下来,16.如果m,n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,那么代数式2m2+4n2﹣4n+1999=.17.给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x5,则有y′=5x4.已知函数y=x3,y′=12,则x的值是.18.将二次函数y=﹣x2+6x﹣5在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新的图象(实线部分),若直线y=m与这个图象恰好有3个公共点,则m的值为.三、解答题(8小题,共72分)19.解方程:(1)5x2﹣2x﹣1=0;(2)x2+10x+21=0.20.已知关于x的一元二次方程x2﹣(m+3)x+2(m+1)=0.(1)求证:不论m为何值,方程总有实数根;(2)若该方程有两根为x1,x2,且,求m的值.21.某地区2020年投入教育经费2500万元,2022年投入教育经费3025万元.(1)求2020年至2022年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2023年该地区将投入教育经费多少万元.22.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,P,Q分别从A,B同时出发,经过几秒,(1)PQ∥AC.(2)点P,Q之间的距离为cm?(3)△PBQ的面积等于8cm2?23.已知y1和y2均是以x为自变量的函数,y1=ax2+bx+c(a≠0),y2=mx+n,若y1和y2的图象经过y轴上同一点,且y1的顶点在y2上,则称函数y1和y2具有性质P.(1)已知y1=x2﹣4x+5与y2具有性质P,求y2的函数表达式.(2)若y1=x2﹣6x+c与y2=mx﹣3具有性质P,求m与c的值.24.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC 所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.25.某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如表:售价x(元/件)556575销售量y(件)150013001100(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利30000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w(元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?26.如图,在平面直角坐标系中,抛物线y=x2﹣2x+c与直线y=x+1交于点A、C,且点A的坐标为(﹣1,0).(1)求点C的坐标;(2)若点P是直线AC下方的抛物线上一动点,求点P到直线AC距离的最大值;(3)若点E是抛物线上一点,点F是抛物线对称轴上一点,是否存在点E使以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.参考答案与试题解析1.下列方程是一元二次方程的是()A.x﹣1=1B.C.x(x+3)=x2D.x(x+3)=1【解答】解:A.x﹣1=1是一元一次方程,不是一元二次方程,故本选项不合题意;B.该方程是分式方程,故本选项不合题意;C.该方程化简可得3x=0,是一元一次方程,不是一元二次方程,故本选项不合题意;D.x(x+3)=1是一元二次方程,故本选项符合题意.故选:D.2.把方程x2﹣6x﹣1=0转化成(x+m)2=n的形式,则m、n的值是()A.3、8B.3、10C.﹣3、3D.﹣3、10【解答】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,则x2﹣6x+9=1+9,即(x﹣3)2=10,∴m=﹣3,n=10,故选:D.3.抛物线y=x2与抛物线y=﹣x2+2的相同点是()A.顶点相同B.对称轴相同C.开口方向相同D.顶点都在x轴上【解答】解:抛物线y=x2的开口向上,对称轴为y轴,顶点坐标为(0,0),抛物线y=﹣x2+2的开口向下,对称轴为y轴,顶点坐标为(0,2),∴两条抛物线对称轴相同,故选:B.4.关于x的方程x2﹣2x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1B.m≤﹣1C.m>﹣1D.m>1【解答】解:∵关于x的方程x2﹣2x﹣m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4×1×(﹣m)=4+4m>0,解得:m>﹣1,故选:C.5.一个等腰三角形两边的长分别等于一元二次方程x2﹣16x+55=0的两个实数根,则这个等腰三角形周长为()A.11B.27C.5或11D.21或27【解答】解:x2﹣16x+55=0,解得:x1=11,x2=5,如果11是等腰三角形的底边,5为腰长,此时根据三角形三边关系,不合题意;如果11是等腰三角形的腰长,5为底边,则三角形的周长为27.故选:B.6.已知抛物线y=ax2+bx+c(a、b、c为正数)经过A(1,4)、B(2,12)两点,则b2﹣4ac的值可能为()A.4B.0C.﹣15D.﹣【解答】解:把A(1,4)、B(2,12)代入解析式得:,②﹣①得3a+b=8,∴b=8﹣3a,把b=8﹣3a代入①得a+8﹣3a+c=4,∴c=2a﹣4,∵a、b、c为正数∴2a﹣4>0且8﹣3a>0,解得2<a<,∵b2﹣4ac=(8﹣3a)2﹣4a(2a﹣4)=a2﹣32a+64=(a﹣16)2﹣192,∴当a=2时,b2﹣4ac=(2﹣16)2﹣192=﹣48,当a=时,b2﹣4ac=(﹣16)2﹣192=﹣,∵2<a<,∴﹣48<b2﹣4ac<﹣.故选:C.7.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格三月底是6.2元/升,五月底是8.9元/升.设该地92号汽油价格这两个月平均每月的增长率为x,根据题意列出方程,正确的是()A.6.2(1+x)2=8.9B.8.9(1+x)2=6.2C.6.2(1+x2)=8.9D.6.2(1+x)+6.2(1+x)2=8.9【解答】解:依题意得6.2(1+x)2=8.9,故选:A.8.抛物线y=﹣5x2可由y=﹣5(x+2)2﹣6如何平移得到()A.先向右平移2个单位,再向下平移6个单位B.先向左平移2个单位,再向上平移6个单位C.先向左平移2个单位,再向下平移6个单位D.先向右平移2个单位,再向上平移6个单位【解答】解:将抛物线y=﹣5(x+2)2﹣6先向右平移2个单位,再向上平移6个单位即可得到抛物线y=﹣5x2.故选:D.9.如图,在宽为20m,长为38m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为xm,根据题意,所列方程正确的是()A.(20﹣x)(38﹣x)=540B.(20﹣x)(38﹣x)=38×20﹣540C.(20﹣2x)(38﹣2x)=540D.(20﹣2x)(38﹣2x)=38×20﹣540【解答】解:∵小路宽为xm,∴种植草坪的部分可合成长为(38﹣x)m,宽为(20﹣x)m的矩形.依题意得:(20﹣x)(38﹣x)=540.故选:A.10.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=x2﹣2x+c上的三点,y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【解答】解:∵y=x2﹣2x+c,∴抛物线开口向上,对称轴为直线x=1,∵1﹣(﹣2)>2﹣1>1﹣1,∴y1>y3>y2.故选:B.11.二次函数y=2x2的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在函数图象上,四边形OBAC为菱形,且∠AOB=30°,则点C的坐标为()A.(﹣,)B.(﹣,)C.(﹣1,)D.(﹣1,)【解答】解:连接BC交OA于D,如图,∵四边形OBAC为菱形,∴BC⊥OA,∵∠AOB=30°,∴∠OBD=60°,∴OD=BD,设BD=t,则OD=t,∴B(t,t),把B(t,t)代入y=2x2得2t2=t,解得t1=0(舍去),t2=,∴BD=,OD=,故C点坐标为:(﹣,).故选:B.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④;⑤b>c.其中含所有正确结论的选项是()A.①③④B.①③⑤C.②④⑤D.①③④⑤【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧,∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②当x=2时,y=4a+2b+c<0,故②错误;③∵二次函数y=ax2+bx+c的图象与y轴的交点在(0,﹣1)的下方,对称轴在y轴右侧,a>0,∴<﹣1,∵a>0,∴4ac﹣b2<﹣4a<8a,∴③成立,④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1,∵x1x2=ca=﹣3,∴c=﹣3a,∴﹣2<﹣3a<﹣1,∴<a<;故④正确;⑤∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴a=b﹣c,∵a>0,∴b﹣c>0,即b>c;故⑤正确;综上所述,正确的有①③④⑤,故选:D.13.二次函数y=2(x﹣1)2+1的顶点坐标是(1,1).【解答】解:∵y=2(x﹣1)2+1,∴抛物线顶点坐标为(1,1),故答案为:(1,1).14.若x=﹣1是关于x的一元二次方程ax2+bx﹣2=0的一个根,则2021﹣2a+2b的值等于2017.【解答】解:把x=﹣1代入方程ax2+bx﹣2=0(a≠0)得a﹣b﹣2=0,∴a﹣b=2,∴2021﹣2a+2b=2021﹣2(a﹣b)=2021﹣2×2=2021﹣4=2017.故答案为:2017.15.某种型号汽车在高速路上急刹车后滑行的距离S(米)与滑行的时间t(秒)的函数解析式是S =2t﹣0.25t2,则该种汽车刹车后滑行4秒才能停下来,【解答】解:由题意得,S=﹣0.25t2+8t=﹣0.25(t2﹣8t+16﹣16)=﹣0.25(t﹣4)2+4,∵﹣0.25<0,∴t=4时,汽车滑行的距离最大,即当t=4秒时,汽车才能停下来.故答案为:4.16.如果m,n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,那么代数式2m2+4n2﹣4n+1999=2013.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2﹣2m=1,n2﹣2n=1,所以m,n是x2﹣2x﹣1=0两个不相等的实数根,则根据根与系数的关系可知:m+n=2,又m2=2m+1,n2=2n+1,则2m2+4n2﹣4n+1999=2(2m+1)+4(2n+1)﹣4n+1999=4m+2+8n+4﹣4n+1999=4(m+n)+2005=4×2+2005=2013.故填空答案:2013.17.给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x5,则有y′=5x4.已知函数y=x3,y′=12,则x的值是±2.【解答】解:∵y=x3,∴y′=3x2,∵y′=12,∴3x2=12,解得,x=±2,故答案为:±2.18.将二次函数y=﹣x2+6x﹣5在x轴下方的图象沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新的图象(实线部分),若直线y=m与这个图象恰好有3个公共点,则m的值为4.【解答】解:当y=0时,﹣x2+6x﹣5=0,解得x1=1,x2=5,∴二次函数y=﹣x2+6x﹣5与x轴的交点坐标为(1,0),(5,0),∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴二次函数y=﹣x2+6x﹣5的顶点坐标为(3,4),∵二次函数y=﹣x2+6x﹣5沿x轴翻折,∴二次函数y=﹣x2+6x﹣5关于x轴对称的二次函数解析式为y=(x﹣3)2﹣4,∴新的图象(实线部分)的解析式为y=﹣(x﹣3)2+4(1≤x≤5),y=(x﹣3)2﹣4(x<1或x >5),∵直线y=m与这个图象恰好有3个公共点,∴直线y=m经过点(3,4),即m=4.故答案为:4.19.解方程:(1)5x2﹣2x﹣1=0;(2)x2+10x+21=0.【解答】解:(1)5x2﹣2x﹣1=0,这里a=5,b=﹣2,c=﹣1,∴Δ=(﹣2)2﹣4×5×(﹣1)=24>0,∴x==,∴x1=,x2=;(2)x2+10x+21=0,(x+3)(x+7)=0,∴x+3=0或x+7=0,∴x1=﹣3,x2=﹣7.20.已知关于x的一元二次方程x2﹣(m+3)x+2(m+1)=0.(1)求证:不论m为何值,方程总有实数根;(2)若该方程有两根为x1,x2,且,求m的值.【解答】(1)证明:∵a=1,b=﹣(m+3),c=2(m+1),∴Δ=b2﹣4ac=[﹣(m+3)]2﹣4×1×2(m+1)=m2﹣2m+1=(m﹣1)2,∵(m﹣1)2≥0,即Δ≥0,∴不论m为何值,方程总有实数根.(2)解:∵x1,x2是关于x的一元二次方程x2﹣(m+3)x+2(m+1)=0的两个实数根,∴x1+x2=m+3,x1•x2=2(m+1),∵,即(x1+x2)2﹣2x1•x2=5,∴(m+3)2﹣2×2(m+1)=5,整理得:m2+2m=0,解得:m1=0,m2=﹣2,∴m的值为0或﹣2.21.某地区2020年投入教育经费2500万元,2022年投入教育经费3025万元.(1)求2020年至2022年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2023年该地区将投入教育经费多少万元.【解答】解:(1)设2020年至2022年该地区投入教育经费的年平均增长率为x,依题意得:2500(1+x)2=3025,解得:x1=0.1=10%,x2=﹣2.1(不符合题意,舍去).答:2020年至2022年该地区投入教育经费的年平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).答:预计2023年该地区将投入教育经费3327.5万元.22.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,P,Q分别从A,B同时出发,经过几秒,(1)PQ∥AC.(2)点P,Q之间的距离为cm?(3)△PBQ的面积等于8cm2?【解答】解:设点P,Q移动的时间为x秒,则0≤x≤4,∵AP=xcm,BQ=2xcm,∴PB=AB﹣AP=(6﹣x)cm.(1)∵PQ∥AC,∴=,即=,∴x=2.4.即2.4s后,PQ∥AC;(2)∵∠B=90°,∴PB2+BQ2=PQ2,即(6﹣x)2+(2x)2=()2,∴5x2﹣12x+30=0,Δ=(﹣12)2﹣4×5×30=144﹣600<0,∴方程无实数根,故点P,Q之间的距离不能为cm;(3)∵△PBQ的面积等于8cm2,∴(6﹣x)•2x=8,解得:x1=2,x2=4,经检验,x1,x2均符合题意,故经过2秒或4秒,△PBQ的面积等于8cm2.23.已知y1和y2均是以x为自变量的函数,y1=ax2+bx+c(a≠0),y2=mx+n,若y1和y2的图象经过y轴上同一点,且y1的顶点在y2上,则称函数y1和y2具有性质P.(1)已知y1=x2﹣4x+5与y2具有性质P,求y2的函数表达式.(2)若y1=x2﹣6x+c与y2=mx﹣3具有性质P,求m与c的值.【解答】解:(1)将x=0代入y1=x2﹣4x+5得y1=5,∴y1与y2经过(0,5),∵y1=x2﹣4x+5=(x﹣2)2+1,∴抛物线y1的顶点坐标为(2,1),将(0,5),(2,1)代入y2=mx+n中得,解得,∴y2=﹣2x+5.(2)将x=0代入y2=mx﹣3得y2=﹣3,∴y1和y2经过(0,﹣3),将(0,﹣3)代入y1=x2﹣6x+c得c=﹣3,∴y1=x2﹣6x﹣3=(x﹣3)2﹣12,∴抛物线y1顶点坐标为(3,﹣12),将(3,﹣12)代入y2=mx﹣3得﹣12=3m﹣3,解得m=﹣3.∴m=﹣3,c=﹣3.24.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC 所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【解答】解:(1)根据题意得:D(﹣2,0),C(2,0),E((0,1),设抛物线的解析式为y=ax2+1(a≠0),把D(﹣2,0)代入得:4a+1=0,解得a=﹣,∴抛物线的解析式为y=﹣x2+1;(2)在y=﹣x2+1中,令y=﹣3=得:=﹣x2+1,解得x=±,∴距离地面米高处,隧道的宽度是2m;(3)这辆货运卡车能通过该隧道,理由如下:在y=﹣x2+1中,令y=3.6﹣3=0.6得:0.6=﹣x2+1,解得x=±,∴|2x|=≈2.53(m),∵2.53>2.4,∴这辆货运卡车能通过该隧道.25.某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如表:售价x(元/件)556575销售量y(件)150013001100(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利30000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w(元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?【解答】解:(1)设y与x之间的函数关系式为y=kx+b,则,解得:,即y与x之间的函数表达式是y=﹣20x+2600;(2)(x﹣50)(﹣20x+2600)=30000,解得,x1=80,x2=100,∵尽量给客户优惠,∴这种衬衫定价为80元;(3)由题意可得,w=(x﹣50)(﹣20x+2600)=﹣20x2+3600x﹣130000=﹣20(x﹣90)2+32000,∵该衬衫的每件利润不允许高于进货价的50%,每件售价不低于进货价,∴,解得:50≤x≤75,∵a=﹣20<0,抛物线开口向下,∴当x=75时,w取得最大值,此时w=27500,∴售价定为75元时,可获得最大利润,最大利润是27500元.26.如图,在平面直角坐标系中,抛物线y=x2﹣2x+c与直线y=x+1交于点A、C,且点A的坐标为(﹣1,0).(1)求点C的坐标;(2)若点P是直线AC下方的抛物线上一动点,求点P到直线AC距离的最大值;(3)若点E是抛物线上一点,点F是抛物线对称轴上一点,是否存在点E使以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2﹣2x+c的图象上,∴0=1+2+c,∴c=﹣3,∴抛物线为y=x2﹣2x﹣3,联立直线y=x+1得,解得或,∴点C的坐标为(4,5);(2)过点P作PM⊥x轴交AC于点M,如图:设P(m,m2﹣2m﹣3)(﹣1<m<5),则M(m,m+1),∴PM=m+1﹣(m2﹣2m﹣3)=﹣m2+3m+4,=×5(﹣m2+3m+4)=﹣(m﹣)+,∴S△ACP最大为,∴当m=时,S△ACP∵点A(﹣1,0),点C(4,5),∴AC==5,设点P到直线AC的距离为h,=×5×h=,∴S△ACP∴h=,∴点P到直线AC距离的最大值为;(3)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,设点F的坐标为(1,n),点E的坐标为(x,x2﹣2x﹣3),分三种情况:①当AC为平行四边形的对角线时,﹣1+4=1+x,解得x=2,∴点E的坐标为(2,﹣3);②当AF为平行四边形的对角线时,﹣1+1=x+4,解得x=﹣4,∴点E的坐标为(﹣4,21);③当AE为平行四边形的对角线时,﹣1+x=4+1,解得x=6,∴点E的坐标为(6,21);综上,点E的坐标为(2,﹣3)或(﹣4,21)或(6,21).。
初中数学初三月考考试卷检测考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题评卷人得分17.计算:19.计算:17.计算:﹣|﹣2|+sin45°+(3.14﹣π)0﹣()-117.计算:.25.如图,操场上有一根旗杆AH,为测量它的高度,在点B和点D处各立一根高1.5米的标杆BC、DE,且BD=30米,测得视线AC与地面HG的交点为F,视线AE与地面HG的交点为G,且H、B、F、D、G都在同一直线上,测得BF=3米,DG=5米,求旗杆AH的高度.17.解方程(1)(2)20.在圣诞节前夕,几位同学到某文具店调查一种进价为2元的圣诞贺卡的销售情况,每张定价3元,每天能卖出500张,每张售价每上涨0.1元,其每天销售量就减少10个.另外,物价局规定,售价不得超过商品进价的240%.据此,请你解答下面问题:(1)要实现每天800元的利润,应如何定价?(2)800元的利润是否最大?如何定价,才能获得最大利润?19.计算:|﹣3|+20﹣.21.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点D在边BC上,BD=5CD,DE⊥AB,垂足为E.(1)求BE的长;(2)求∠BCE的正切值.12.如图,等边△OAB的边长为2,点B在x轴上,反比例函数的图象经过A点,将△OAB绕点O顺时针旋转α(0°<α<360°),使点A落在双曲线上,则α=________________.11.已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,则△AB C与△DEF对应边上的中线的比为________.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=_______.10.二次函数y=x2-4x-3的顶点坐标是_____________.11.在一次信息技术考试中,某兴趣小组7名同学的成绩分别是:7,10,9,8,7,9,9(单位:分),则这组数据的极差是______________.19.如图,平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.(1)求菱形ABCD的边长;(2)求双曲线的解析式.25.如图,AB是⊙O的弦,AB=2,点C在上运动,且∠ACB=30°.(1)求⊙O的半径;(2)设点C到直线AB的距离为x,图中阴影部分的面积为y,求y与x之间的函数关系,并写出自变量x 的取值范围.22.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.19.(10分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=8,∠BCD=120°,求四边形AODE的面积.6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.2.一元二次方程x2﹣x+1=0的根的情况是()A.有两个相等的实数根B.无实数根C.两个实数根的和与积都等于1D.有两个不相等的实数根8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.7.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cm或6.5 cmB.2.5cmC.6.5cmD.5cm或13cm10.如图,垂直于x轴的直线AB分别与抛物线:(x≥0)和抛物线:(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.16.已知,如图所示的一张三角形纸片ABC,边AB的长为20cm,AB边上的高为25cm,在三角形纸片ABC 中从下往上依次裁剪去宽为4cm的矩形纸条,若剪得的其中一张纸条是正方形,那么这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张6.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;lB.8C.6D.62.一元二次方程(x-9)2=0的解是A.x1=x2=9B.x1=x2=3C.x1=9,x2=-9D.x1=3,x2=-3。
初中数学初三月考考试卷模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题22.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.17.(6分)(2015•郴州)计算:()﹣1﹣20150+|﹣|﹣2sin60°.19.计算:.19.计算:.19.如图分别是某型号跑步机的实物图和示意图,已知踏板长为2米,支架长为0.8米,与地面的夹角为12°,,(AB‖ED),求手柄的一端A离地的高度.(精确到0.1米,参考数据:)13.(1)2x2+6x-3=0(2)(x+3)2-2x(x+3)=017.计算:评卷人得分17.解方程(1)(2)21.正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且∠EDF=45°。
将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=2时,求EF的长.11.双曲线y=在每个象限内,函数值y随x的增大而增大,则m的取值范围是__________.11.如图所示,在Rt△ABC中,∠B=________.12.直角三角形的两边的长分别为6和8,它的外接圆的半径是_______.13.关于x的一元二次方程(a-1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是___ 14.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____________,使△AEH≌△CEB.20.黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?15.如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.19.最简二次根式与是同类二次根式,求3a-b的值。
初中数学初三月考考试卷模拟考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分l(3)估计全校师生共捐赠了多少本文学类书籍.评卷人得分20.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.22.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)当四边形ABCD是______________形时,四边形OBEC是正方形19.计算:|﹣3|+20﹣.17.(本题满分8分)计算:(1);(2);22.解方程:2(x-3)=3x(x-3).17.计算:(﹣1)2016+|1﹣|﹣2cos45°.19.计算:(1)(﹣2)2﹣+(﹣3)0(2)4(x2+2)﹣4(x+1)(x﹣1)25.图是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形有_____________.12.如果是一个完全平方公式,则---------.25.已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,-3),C(0,-3),则抛物线的表达式是___________.4.下列各点:(-1,2),(-1,-2),(-2,-4),(-2,4),其中在二次函数y=-2x2的图象上的是____. 6.解一元二次方程时,可转化为两个一元一次方程,请写出其中的一个一元一次方程______________14.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y= (x>0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.26.“国运兴衰,系于教育”图中给出了我国从1998─2002年每年教育经费投入的情况..(1)由图可见,1998─2002年的五年内,我国教育经费投入呈现出_______趋势;(2)根据图中所给数据,求我国从1998年到2002年教育经费的年平均数;(3)如果我国的教育经费从2002年的5480亿元,增加到2004年7891亿元,那么这两年的教育经费平均年增长率为多少?(结果精确到0.01,=1.200)22.如图,△ABC内接于⊙O,若AC的长为6,∠B=45°,求⊙O的半径.22.小红参加学校组织的庆祝党的十九大胜利召开知识竞赛,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,可是小红这两道题都不会,不过竞赛规则规定每位选手有两次求助机会,使用“求助”一次可以让主持人去掉其中一题的一个错误选项,主持人提醒小红可以使用两次“求助”.(1)如果小红两次“求助”都在第一道题中使用,那么小红通关的概率是______________.(2)如果小红将每道题各用一次“求助”,请用树状图或者列表来分析她顺序通关的概率.7.如图是由几个小立方块所拼成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的左视图是()A B C D1.的相反数是()A.B.C.D.3.如图汽车标志中不是中心对称图形的是()A.B.C.D.1.⊙O的半径为4,点A到圆心O的距离为2,点A与⊙O的位置关系是( )A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定12.如图,△OAB绕点O逆时针旋转70°得到△OCD,若∠A=“110°,” ∠D=30°,则∠α的度数是()A.20°B.30°C.40°D.50°12.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X﹣113y﹣1353下列结论:⑴ac<0;⑵当x>1时,y的值随x值的增大而减小.⑶3是方程ax2+(b﹣1)x+c=0的一个根;⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A. 4个B. 3个C. 2个D. 1个8.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在△ABC中,∠ADE=∠B,DE:BC=2:3,则下列结论正确的是()A.AD:AB=2:3B.AE:AC=2:5C.AD:DB=2:3D.CE:AE=3:21.已知扇形的圆心角为120°,半径为4,则扇形的弧长为( )A.B.πC.πD.3π11.如果函数是关于x的二次函数,那么k的值是()A.1或2B.0或2C.2D.0。
初中数学初三月考考试卷模拟考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题评卷人得分16.计算:.19.(本题10分)计算:;16.计算下列各题:(1);(2).19.计算:(1)3tan30°+cos245°-2sin60°;(2)tan260°-2sin45°+cos60°.25.某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为.(1)则今年南瓜的种植面积为______________亩;(用含的代数式表示)(2)如果今年南瓜亩产量的增长率是种植面积的增长率的,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.19.已知多项式A=.求解:(1)化简多项式A;(2)若,求A的值.25.如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t= s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.25.如图,四边形ABCD、BEFG均为正方形,(1)如图1,连接AG、CE,试判断AG和CE的数量和位置关系并证明.(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系.8.如图,画出图形与ΔABC关于点O成中心对称.7.已知锐角α满足sin(α+20°)=1,则锐角α的度数为________.12.如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则tan∠DBE=________.14.某校六个绿化小组一天植树的棵树如下:10,11,12,13,8,x.若这组数据的平均数是11,则这组数据的众数是_____.2.一个正多边形的一个外角为30°,则它的内角和为_____.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为__.5.(2016·南充中考)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心、OC为半径作半圆.求证:AB为⊙O的切线.16.某数学课外活动小组在做气体压强实验时,获得压强p(Pa)与体积V(cm3)之间有下列对应数据:p(Pa)…12345…V(cm3)…6321.51.2…根据表中提供的信息,回答下列问题:(1)猜想p与V之间的关系,并求出函数关系式;(2)当气体的体积是12cm3时,压强是多少?26.在一块长16m、宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.小明说:我的设计方案如图(1),其中花园四周小路的宽度相等.通过解方程,我得到小路的宽为2m.小颖说:我的设计方案如图(2),其中花园中每个角上的扇形相同.(1)你认为小明的结果对吗?请计算说明;(2)请你帮助小颖求出图中的x(结果保留根号和);20.(1)(配方法)(2)2sin60°-cos45°-3tan30°+tan45°4.如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A.1个B.2个C.3个D.4个2.下列四个字母是中心对称图形的是()A.MB.EC.HD.Y4.如图,AB是⊙O直径,∠AOC=110°,则∠D=“(” )A.65°B.25°C.15°D.35°7.如图,已知⊙O的半径为5,点到弦的距离为3,则⊙O上到弦所在直线的距离为2的点有()A.1个B.2个C.3个D.4个1.下列图形不是中心对称图形的是()A.正三角形B.正四边形C.正六边形D.矩形9.如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.1.对于反比例函数y=(k≠0),下列说法不正确的是()A.它的图象分布在第一、三象限B.点(k,k)在它的图象上C.它的图象是中心对称图形D.随的增大而增大2.图中的三角形是有规律地从里到外逐层排列的。
初中数学初三月考考试卷测试考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题17.计算题:.19.计算:sin245°﹣2tan30°tan60°+cos245°.19.(2015秋•甘谷县期末)计算题:(2sin60°﹣cos45°)+sin45°tan60°.19.计算:.20.解方程: .20.如图,已知是反比例函数的图象与一次函数的图象的两个交点.(1)求此反比例函数和一次函数的表达式;(2)根据图象写出不等式的解集.17.( 本小题满分10分)(1)计算:; (2)化简:15.计算(﹣2)2+tan45°﹣2cos60°.21.小明用下面的方法求出方程的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.>方程换元法得新方程解新方程评卷人得分检验求原方程的解令则所以9.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形序号是________.16.如图,一个量角器放在∠BAC的上面,则∠BAC=__度.12.已知是方程的两个实数根,则的值为__________.15.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为____________.4.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______________ m5.如图所示的几何体的主视图为( )A.AB.BC.CD.D13.如图,在△ABC中,点E,F分别在边AB,AC上,EF∥BC,,△CEF的面积为2,则△EBC的面积为( )A.4B.6C.8D.123.下列说法中,正确的是()A.周长相等的圆是等圆B.过任意三点可以画一个圆C.相等的圆心角所对的弧相等D.平分弦的直径垂直于弦5.下列图形中,不是轴对称图形的是()A.B.C.D.8.如图,在平行四边形ABCD中,如果点M为CD中点,AM与BD相交于点N,若已知SΔDMN=3,那么SΔBAN 为()A.6B.9C.12D.36.如图,在平面直角坐标系中,点的坐标为(1,4)、(5,4)、(1、),则外接圆的圆心坐标是()A.(3,1)B.(3,2)C.(1,3)D.(2,3)1.下列方程中是关于x的一元二次方程的是()A.x2+2x=x2﹣1B.ax2+bx+c=0C.x(x﹣1)=1D.3x2﹣2xy﹣5y2=04.若为方程的解,则的值为()A.B.16C.9D.62.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个2.已知关于x的一元二次方程的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,223.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?18.某服装店用3000元购进一批儿童服装,按80﹪的利润率定价无人购买,决定降价出售,但仍无人购买,结果又一次降价后才售完,但仍盈利45.8﹪.若两次降价的百分率相同,问每次降价的百分率是多少?20.已知一元二次方程x2-4x+k=0有两个不相等的实数根,(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m 的值.18.已知关于x的方程。
初中数学初三月考考试卷全真模拟考试卷考点
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题解答题判断题计算题附加题总分
得分
一、计算题
评卷人得分
17.(7分)计算:.
19.一条长为64cm的铁丝被剪成两段,每段均折成正方形(不计接头),若两个正方形的面积和等于160cm2,求两个正方形的边长分别是多少?
21.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.
(1)试求袋中蓝球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.
17.计算:(﹣1)2016+|1﹣|﹣2cos45°.
24.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点
A(﹣2,1),点B(1,n).
(1)求此一次函数和反比例函数的解析式;
(2)请直接写出满足不等式kx+b﹣<0的解集;
(3)在平面直角坐标系的第二象限内边长为1的正方形EFDG的边均平行于坐标轴,若点E(﹣a,a),如
图,当曲线y=(x<0)与此正方形的边有交点时,求a的取值范围.
22.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.
19.如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,
(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:AC=DF.
19.如图,AB//ED,已知AC=BE,且点B、C、D三点共线,若,求证:BC=
DE.
20.所谓气质,是指婴儿出生后最早表示出来的以一种较为明显而稳定的人格特征类型,也指孩子对身体内在或外来刺激反应的方式。
心理学界常将气质分为四大类:胆汁型、多血质、黏液质、抑郁质。
我校心理协会为了更好的了解学生,在高中随机发放了若干份问卷调查,并将统计结果绘制成如下图表:
四种气质类型人数频数分布表
黏液质气质各年级人数频数分布直方图
气质类型
频数
频率
胆汁型
180
a
多血质
140
0.28
黏液质
80
0.16
抑郁质
b
0.20
根据以上信息完成下列问题并补全频数分布直方图:
(1)_______,_______
(2)请你估计一下,高三年级1200名学生中,胆汁型和多血质的共有多少人?
四、解答题(本大题4个小题,每小题10分,共40分)
14.已知m,n是方程x2+2x–5 = 0的两个实数根,则m2–mn+3m+n=______________.
14.已知m,n是方程x2+2x–5 = 0的两个实数根,则m2–mn+3m+n=______________.
16.如图,在Rt△ABC中,AC=8,BC=6,直线l经过点C,且l∥AB,P为l上一个动点,若△ABC与△PAC 相似,则PC=______________.
2.如图所示几何体的主视图是( )
A.A
B.B
C.C
D.D
8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于
()
A.
B.
C.
D.
2.已知|a|=5,=3,且ab>0,则a+b的值为()
A.8
B.﹣2
C.8或﹣8
D.2或﹣2
3.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为【】.
A.y=3(x+2)2—1
B.y=3(x-2)2+1
C.y=3(x-2)2—1
D.y=3(x+2)2+l
1.在半径为4cm的圆中,挖去一个半径为xcm 的圆面,剩下一个圆环的面积为ycm2,则y与x的函数关系式为( )
A.y=x2-4
B.y=(2-x)2
C.y=-(x2+4)
D.y=-x2+16
4.如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( ).
A.5m
B.m
C.4m
D.2m
9.身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300m,250 m,200m;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝()
A.甲的最高
B.乙的最低
C.丙的最低
D.乙的最高
9.如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C、D、E为顶点的三角形与△ABC相似,则点E的坐标不可能是()
A.(4,2) B.(6,0) C.(6,3) D.(6,5)
4.如图,直线,直线AC分别交于点A,B,C,直线DF分别交于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()
A.
B.2
C.
D.
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().
A.x2-8x+(-4)2=31
B.x2-8x+(-4)2=1
C.x2+8x+42=1
D.x2-4x+4=-11
16.某数学课外活动小组在做气体压强实验时,获得压强p(Pa)与体积V(cm3)之间有下列对应数据:
p(Pa)
…
1
2
3
4
5
…
V(cm3)
…
6
3
2
1.5
1.2
…
根据表中提供的信息,回答下列问题:
(1)猜想p与V之间的关系,并求出函数关系式;
(2)当气体的体积是12cm3时,压强是多少?
28.在平面直角坐标系xOy中,给出如下定义:
对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MP N最大,称∠MPN为点P关于⊙C的“视角”.直线l 与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线l 关于⊙C的“视角”.
(1)如图,⊙O的半径为1,
①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y = 2,直接写出直线y = 2关于⊙O 的“视角”;
②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;
(2)⊙C的半径为1,
①C的坐标为(1,2),直线l: y=kx + b(k > 0)经过点D(,0),若直线l关于⊙C的“视角”为60°,求k的值;
②圆心C在x轴正半轴上运动,若直线y =x +关于⊙C的“视角”大于120°,直接写出圆心C的横坐
标xC的取值范围.
21.如图,抛物线的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
12.用适当的方法解下列方程:
(1)(x+1)(x﹣2)=x+1;
(2)。