中位数平均数众数方差
- 格式:ppt
- 大小:847.50 KB
- 文档页数:101
第13讲平均数、众数、中位数及方差◆考点链接1.通过实际例子,体会用样本估计总体的思想,能用样本的平均数、•方差估计总体的平均数、方差.2.会计算加权平均数、极差,并用它们表示数据的离散程度.◆典例精析【例题1】(绍兴)某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是().A.在公园调查了1000名老年人的健康状况;B.在医院调查了1000名老年人的健康状况;C.调查了10名老年邻居的健康状况;D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况答案:D评析:调查、收集数据是统计学中的一个重要环节.因此对调查的对象是采用普查或抽查,选取的样本是否具有代数性都应考虑.【例题2】为了调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:min)分别为:60,55,75,•55,•55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60min,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?解:(1)这组数据中,55出现了3次,出现次数最多,即这组数据的众数是55;•将数据按从小到大排列,其中间两个数据都是55,即这组数据的中位数是55.(2)平均数是:x=18(60+55+75+55+55+43+65+40)=56(min),∴这8名学生完成家庭作业所需的平均时间为56min.∵56<60,由此估计该班学生每天完成家庭作业的平均时间符合学校的要求.【例题3】(武汉)在一次科技知识竞赛中,两组学生成绩统计如下表,•通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,•甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有().A.2种 B.3种 C.4种 D.5种解:甲组的平均数是80分,乙组的平均数是80分,所以①正确;S甲2小于S乙2, 所以甲组的成绩要稳定些,②也正确;甲组成绩的众数是90,乙组成绩的众数是70,所以③正确;甲组成绩的中位数是80,乙组成绩的中位数是80,•从中位数来看成绩一样,•成绩≥80的人数甲组比乙组多,甲组成绩总体比乙组好,所以④正确;⑤的说法显然正确,所以选D.评析:要会求平均数、众数、中位数、方差;同时知道方差越大波动就越大,性能越不稳定.◆探究实践【问题1】(广西)数据2,3,m,5,9,n的平均数是3,则m,n的平均数是_____.解:由(2+3+m+5+9+n)÷6=3得m+n=-1,所以m,n的平均数是-0.5.评析:本题用到了平均数的公式和整体思想.【问题2】(宜昌)甲、乙、丙三台包装机同时分装质量为400g的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,_______包装机包装的茶叶质量最稳定.解:方差小,波动就小,性能就稳定,所以选乙.◆中考演练一、填空题1.(宁波)在航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,•其中甲同学考了89分,则除甲以外的5名同学的平均分为______分.2.菱湖是全国著名的淡水鱼产地,•某养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼______条.3.(天津)已知一组数据:-2,-2,3,-2,x,-1,若这组数据的平均数是0.5,•则这组数据的中位数是________.二、选择题1.(天津)已知甲乙两组数据的平均数相等,若甲组数据的方差是S甲2=0.055,•乙组数据的方差是S乙2=0.105,则().A.甲组数据比乙组数据波动性大; B.乙组数据比甲组数据波动性大;C.甲组数据与乙组数据波动性一样大; D.甲乙两组数据的波动性无法比较2.(甘肃)甲乙两人在相同的条件下各射靶10次,他们的环数的方差是S甲2=2.4, S乙2=3.2,则射击稳定性是().A.甲高 B.乙高 C.两人一样多 D.不能确定3.(辽宁)鞋店试销一种新款女鞋,一周内各种型号的鞋卖出的情况如下表所示:对这个鞋店的经理来说,她最关注的是数据的().A.平均数 B.众数 C.中位数 D.极差三、解答题1.(山东)为了从甲、乙两名学生中选择一人参加电脑知识竞赛,•在相同条件下对他们的电脑知识进行了10次测验,成绩如下,(单位:分):(1)请填写下表:(2)利用以上信息,请从三个不同的角度对甲、乙两名学生的成绩进行分析.2.(吉林)下图中给出的条形图是截至2002年44•位费尔兹奖得主获奖时的年龄统计图,经计算费尔兹获得主获奖时的平均年龄是35岁,根据条形图回答问题:(1)费尔兹得主获奖时的年龄超过中位数的有多少人? (2)费尔兹得主获奖时年龄的极差是多少?(3)费尔兹奖得主获奖时年龄高于平均年龄的人数占获奖人数的百分比是多少?◆实战模拟 一、填空题1.(湘潭)某公司对应聘者进行面试,按专业知识、工作经验、•仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1,对应聘的王丽、张英两人的打分如下,如果两人中只录一人,若你是人事主管,你会录用______.2.(桂林)在我市2004年的一次中学生运动会上,参加男子跳高比赛的有17•名运动员,通讯员在将成绩表送组委会时不慎被墨水污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75m ,表中每个成绩都至少有一名运动员,根据这些信息,可以计算出这17名运动员的平均跳高成绩是______m (精确到0.01m ).3.(河南)小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息估计小张和小李中新手是______.二、选择题1.(北京)李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号 1 2 3 4 5 6 7 8 91质量(kg)14 21271718219231922 据调查,市场上今年樱桃的批发价是每千克15元,用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃的总收入分别是().A.200kg,3000元 B.1900kg,28 500元C.2000kg,30 000元 D.1850kg,27 750元2.为了了解汽车司机遵守交通法则的意识,•小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:km/h),情况如图所示.根据统计图分析,这组车速数据的众数和中位数分别是().A.60km/h,60km/h B.58km/h,60km/h;C.60km/h,58km/h D.58km/h,58km/h3.(湘潭)下列调查方式,正确的是().A.了解一批炮弹的杀伤半径,采用普查方式;B.了解湘潭市每天的流动人口数,采用抽查方式;C.要保证“神舟6号”载人飞船成功发射,对重要零件采取抽查方式;D.了解湘潭市居民日平均用水量,采用普查方式三、解答题:1.(南京)某水果店有200个菠萝,原计划以2.6元/kg的价格出售,•现在为了满足市场需要,水果店决定将所有的菠萝去皮后出售,以下是随机抽取的5•个菠萝去皮前后相应的质量统计表(单位:kg):(1)•计算所抽取的5•个菠萝去皮前的平均质量和去皮后的平均质量,•并估计这200个菠萝去皮前的总质量和去皮后的总质量;(2)根据(1)的结果,要使去皮后这200个菠萝的销售总额与原计划的销售总额相同,那么去皮后的菠萝的售价应是每千克多少元?2.今年“五.一”黄金周期间,小三峡风景区共接待游客约22.5万人,•为了了解该风景区的服务水平,有关部门从这些游客中随机抽取450人进行调查.•请他们对景区的服务质量进行评分,评分结果的统计数据如下表:根据表中提供的信息,回答下列问题.(1)所有评分数据的中位数应在第几档内?(2)若评分不低于70分为“满意”,试估计今年“五.•一”黄金周期间对小三峡风景区服务“满意”的旅客人数.参考答案中考演练一、1.71 2.1000 3.-1.5二、1.B 2.A 3.B三、1.(1)(2)甲成绩的众数是84,乙成绩的众数是90,从成绩的众数看,乙的成绩好;•甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;甲乙的平均数、中位数都是84,但从85分以上的频率看乙的成绩好.2.(1)因为中位数是35.5岁,所以年龄超过中位数的有22人(2)40-28=12(岁)(3)高于平均年龄的人数为22人,22÷44=50%实战模拟一、1.张英 2.1.69 3.小李二、1.C 2.C 3.B三、1.(1)抽取的5个菠萝去皮前的平均质量为15(1.0+1.1+1.4+1.2+1.3)=1.2kg,抽取的5个菠萝去皮后的平均质量为15(0.6+0.7+0.9+0.8+0.9)=0.79kg,估计这200个菠萝去皮前的总质量为1.2×200=240kg,估计这200个菠萝去皮后的总质量为0.78×200=156kg.(2)设去皮后菠萝的售价应是x元/kg,根据题意得:240×2.6=156x,•解得x=4,答:设去皮后菠萝的售价应是4元/kg2.(1)三档(2)17.1万人.。
安边中学高一年级2学期数学学科导学稿执笔人:王广青总第课时备课组长签字:王广青包级领导签字:学生:上课时间:集体备课个人空间一、课题:4.1平均数、中位数、众数、极差、方差二、学习目标1.了解平均数、中位数和众数的含义,并掌握各自的求法。
2.了解极差、方差的含义,能通过实例理解样本数据方差的意义和作用,会计算数据的极差、方差。
3.在分析和解决具体具体实际问题过程中,学会用恰当的统计量表示数据的方法,并能通过统计量对所给数据的分布情况作出合理的解释三、教学过程【自主预习】1.回顾什么是平均数、中位数、众数、极差和方差?2.刻画数据离散程度的度量,其理想形式应满足什么原则?3.某公司员工月工资情况如下表所示.月工资/元50004000200100900 800 700 600 500员工/人2 4 6 7 6 8 20 5 2分别计算该公司员工月工资平均数、中位数和众数。
2.甲乙两台机床同时生产直径是40mm的零件。
为了检查产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表:甲机床生产的零件直径/mm 39.940.40.239.840.239.840.39.840.140.2乙机床生产的零件直径/mm 40.140.40.139.939.940.39.940.140.40.(1)分别计算上面从甲乙两台机床抽取的10件产品直径的极差、方差(2)通过上面的计算,我们可以看到那个机床所生产的零件更标准?【合作探究】1为了了解面包的销售情况,面包店随机选取24个营业日,分别纪录下每天销售的新鲜面包的数量(个)53,49,27,48,60,52,44,38,47,52,82,4655,31,39,54,51,47,50,45,50,61,43,64(1)请用不同的方式分别表示上面的数据;(2)分别计算以上数据的平均数、中位数和众数(3)根据以上结果,你认为该面包店每天应该生产多少新鲜面包?2在1976~1998年间的几届冬季奥运会中,男子、女子1500米速滑的冠军成绩分别如下表所示:年份1976年1980年1984年1988年1992年1994年1998年男子1´59.38´´1´55.44´´1´58.36´´1´52.06´´1´54.81´´1´51.29´´1´47.87´´女子2´16.58´´2´10.95´´2´03.42´´2´00.68´´2´05.87´´2´02.19´´1´57.58´´1´59.38´´表示1分59.38秒。
一.平均数、众数、中位数、极差、方差、标准差的数学内涵:平均数:是指一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数众数:在一组数据中出现次数最多的数叫做这组数据的众数。
极差:一组数据中最大值与最小值的差叫做这组数据的极差。
方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差标准差:方差的算术平方根叫做标准差算术平均值A rithmeticmean:等差中项:n个数字的总和除n.[(a1+a2+……+an)/n是算术平均值]几何平均值G eometric mean:n个数字的乘积的n次根 .[(a1*a2*……*an)^(1/n)是几何平均值]n个数的平方根,就是n个数的平方和除n,再开根号。
例如a b c 的均方根即[(a*a+b*b+c*c)/3]^(1/2)均方根值(RMS)、均方根误差(RMSE)、各种平均值论文写作中经常需要比较几个算法的优略,下面列举的是一些常用的评估方法。
均方根值也称作为效值,它的计算方法是先平方、再平均、然后开方。
比如幅度为100V而占空比为0.5的方波信号,如果按平均值计算,它的电压只有50V,而按均方根值计算则有70.71V。
这是为什么呢?举一个例子,有一组100伏的电池组,每次供电10分钟之后停10分钟,也就是说占空比为一半。
如果这组电池带动的是10Ω电阻,供电的10分钟产生10A的电流和1000W的功率,停电时电流和功率为零。
那么在20分钟的一个周期内其平均功率为500W,这相当于70.71V的直流电向10Ω电阻供电所产生的功率。
【教师寄语:昨天很残酷,明天很残酷,不要倒在今天晚上!】 平均数、中位数、众数、方差、 标准差 一、考点、热点回顾考点一、平均数1、平均数:是指一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标。
2、求平均数的方法 (1)定义法当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++= (2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。
(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
)'''(1'21n x x x nx +++=是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
考点二、中位数1、中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数。
2、中位数的找法:将该组数从小到大排列,取中间的数3、当一组数有偶位数时,该组数的中位数为中间两个数的平均数;当一组数有奇位数时,该组数的中位数为中间那个数。
考点三:众数众数:在一组数据中出现次数最多的数众数:在一组数据中出现次数最多的数叫做这组数据的众数。
考点四:极差、频数、频率1、极差:一组数据中最大值与最小值的差叫做这组数据的极差。
2、频数:将数据分组后落在各小组内的数据个数叫做该小组的频数。
3、频率:每一小组的频数与样本容量的比值叫做这一小组的频率。
4、频数和频率的基本关系式:频率 = ——————频数样本容量5、各小组频数的总和等于样本容量,各小组频率的总和等于1。
平均数、中位数、众数与方差I卢老师家教部诃【基本概念】1. 总体:在统计学里,所要考察对象的「叫做总体。
2. 个体:总体中的每一个考察对象叫做一3. _____________ 样本:从____________ 中所抽取的个体,叫做总体的一个样本。
4. _____________________________ 样本容量:样本中个体的______________ 叫做样本容量(样本容量没有_____________________________________ ).5. 平均数:样本中所有个体的平均数叫做样本一一. 设一组数据召宀,坷,…,£的平均数为尤,(1)______________________________ 一般平均数:x=(2)加权平均数:在m个数据中,£出现人次,心出现厶次,…,兀出现人次(/] + £+•••f k=n\则x = _______________________ ;(3)简化计算公式:元= 2+0,其中卫是x;,x;,…尤的平均数,兀,=兀一“(心12…,“)4 为接近样本平均数的较''整”的常数,在数据较大且在平均数左右波动时,用平均数简化计算公式较为简便。
6. 众数:在一组数据中,出现次数的数据叫做这组数据的众数,众数可能不止一个。
7. 中位数:将一组数据按排列,把处在最中间位置的一个数据(或最中间的两个数据的_________ )叫做这组数据的中位数(中位数可能不是这组数据中的任何一个)。
例1.为了了解某校初三年级学生的身高状况,从中抽查了50名学生的身高。
在这个问題中,下列说确的是()A.300名学生是总体B.300是众数C. 50名是学生抽取的一个样本D.样本容量是50 例2•将一组数据中的所有数都加2,则所得到的一组新数据的平均数与原来那组数据相比()A.扩大2倍B.增加2 C.数值不变 D.増加2倍例3.要了解某市初中毕业会考的数学成绩情况,从中抽查了1000名学生的数学成绩,样本是指()(A)此城市所有参加毕业会考的学生(B)此城市所有参加毕业会考的学生的数学成绩(C)被抽查的1 000名学生(D)被抽查的1 000名学生的数学成绩例4.如果必与卫的平均数是6,那么川+1与上+3的平均数是()(A) 4 (B) 5 (C) 6 (D) 8例5.甲、乙两个样本的方差分别是芒甲=6. 06,"乙=14.31,由此可反映()(A)样本甲的波动比样本乙大(B)样本甲的波动比样本乙小(C)样本甲和样本乙的波动大小一样(D)样本甲和样本乙的波动大小关系,不能确定例6•某餐厅共有7名员工,所有员工的工资情况如下表所示,则餐厅所有员工工资的众数是中位数是。
方差中位数众数平均数的公式大家好!今天我们来聊聊一些统计学里头的“明星”——方差、中位数、众数和平均数。
虽然听起来有点复杂,但其实它们都是我们日常生活中常用的工具。
接下来,就让我带你们一探究竟,看看这些“明星”到底是怎么亮眼的!1. 平均数——数据的“代表性”明星1.1 平均数的定义首先,咱们得从平均数说起。
平均数是最常见的统计量,它就像是数据的“代表性”明星。
想象一下,你和朋友们去吃火锅,大家点了不同的菜,最后你们计算每个人的花费,结果得出一个大家都差不多的数,这个数就是你们的平均花费。
1.2 平均数的计算方法计算平均数特别简单。
你只需要把所有数据加在一起,然后除以数据的总个数。
举个例子,假设你有五个数字:2、4、6、8、10。
把它们加起来,得到30。
然后,30除以5,得出6。
这6就是这五个数字的平均数。
2. 中位数——数据的“居中者”2.1 中位数的定义接下来聊聊中位数。
中位数是数据的“居中者”,它表示当所有数据按大小排列时,正中间的那个数。
它特别适合用来了解数据的“中间状态”,尤其是在数据分布不均的情况下。
2.2 中位数的计算方法要找中位数,首先得把数据按从小到大的顺序排列。
然后,如果数据个数是奇数,中位数就是中间那个数;如果数据个数是偶数,中位数就是中间两个数的平均值。
比如,有一组数据:1、3、5、7、9。
中间的5就是中位数。
如果是:1、3、5、7,那中位数就是(3+5)/2 = 4。
3. 众数——数据的“最受欢迎者”3.1 众数的定义说到众数,它就是数据中出现次数最多的那个数。
就像你去超市买东西,看到某种零食卖得特别好,大家都在买,那种零食就是最受欢迎的。
众数就是这样,代表了数据中最“受欢迎”的那个数。
3.2 众数的计算方法找众数其实很简单。
你只需要数一数每个数出现了多少次,然后看看哪个数出现的次数最多。
比如,有一组数据:2、3、3、5、7。
如果3出现了两次,而其他数字都只出现了一次,那么3就是这组数据的众数。
平均数、中位数、众数与方差2卢老师家教内部资料平均数、中位数、众数与方差 姓名【基本概念】1.总体:在统计学里,所要考察对象的______,叫做总体。
2.个体:总体中的每一个考察对象叫做_______.3.样本:从_____中所抽取的________个体,叫做总体的一个样本。
4.样本容量:样本中个体的______叫做样本容量(样本容量没有______).5.平均数:样本中所有个体的平均数叫做样本_______.设一组数据123,,,,nx x x x 的平均数为x ,(1)一般平均数:x =_________________________;(2)加权平均数:在n 个数据中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(1f +2f +…kf =n ),则x =___________________; (3)简化计算公式:x x a '=+,其中x '是12,,nx x x '''的平均数,(1,2,,),i ix x a i n a '=-=为接近样本平均数的较“整”的常数,在数据较大且在平均数左右波动时,用平均数简化计算公式较为简便。
6.众数:在一组数据中,出现次数______的数据叫做这组数据的众数,众数可能不止一个。
7.中位数:将一组数据按_________排列,把处在最中间位置的一个数据(或最中间的两个数据的________)叫做这组数据的中位数(中位数可能不是这组数据中的任何一个)。
例 1.为了了解某校初三年级学生的身高状况,从中抽查了50名学生的身高。
在这个问题中,下列说法正确的是()A.300名学生是总体B.300是众数C.50名是学生抽取的一个样本D.样本容量是50例2.将一组数据中的所有数都加2,则所得到的一组新数据的平均数与原来那组数据相比( ) A.扩大2倍B.增加2 C.数值不变D.增加2倍例3.要了解某市初中毕业会考的数学成绩情况,从中抽查了1000名学生的数学成绩,样本是指()(A)此城市所有参加毕业会考的学生(B)此城市所有参加毕业会考的学生的数学成绩(C)被抽查的1 000名学生(D)被抽查345叫做这组数据(或样本)的标准差,记作_____。