大学物理2试卷二带答案
- 格式:doc
- 大小:656.00 KB
- 文档页数:6
):姓名:学号:命题:审题:审批:--------------------------密----------------------------封---------------------------线-------------------------------------------------------(答题不能超出密封线)2014 ∼2015 学年第一学期大学物理(二)科目考试(查)试题A(B)卷(开)闭卷考试;时间120()分钟;可以使用没有记忆功能的普通计算器:是(否)使用班级(老师填写):化工、化生、机电、电信、建筑学院13级各专业考务电话:2923688题号一二三四五六七八九总分得分阅卷人一、选择题:(本大题共10小题,每小题3分,共30 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示,则有些点的磁感应强度可能为零的区域[](A)仅在象限1 (B)仅在象限2(C)仅在象限1、3 (D)仅在象限2、42.长直导线通有电流I,将其弯成如图所示形状,则O点处的磁感应强度大小为[](A)RIRI42μπμ+(B)RIRI84μπμ+(C)RIRI82μπμ+(D)RIRI44μπμ+3.在地球北半球的某区域,磁感应强度的大小为5104-⨯T,方向与铅直线成60度角。
则穿过面积为1平方米的水平平面的磁通量:[](A)0 (B)5104-⨯Wb(C)5102-⨯Wb (D)51046.3-⨯Wb4.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布[](A) 不能用安培环路定理来计算.(B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出.5.对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B[](A)内外部磁感应强度B都与r成正比;L4(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;管内部轴线中点上的磁感应强度为.(104⨯=πμTm/A)ABI姓名:学号:密----------------------------封---------------------------线------------------------------------------------(答题不能超出密封线)12.在如图所示回路L1、L2、L3、L4的环流为⎰=⋅1Ll dBρρ;⎰=⋅2Ll dBρρ;⎰=⋅3Ll dBρρ;⎰=⋅4Ll dBρρ。
中国海洋大学命题专用纸(附页A)中国海洋大学命题专用纸(附页C)2006-2007学年第 2 学期试题名称:大学物理II2 (B)共6页第 4 页三、计算题(共36分)10 C·m-3求距球心17、(本题12分)均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×55cm,8cm ,12cm 各点的场强.中国海洋大学命题专用纸(附页E)2006-2007学年第 2 学期试题名称:大学物理II2 (B)共6页第 6 页19、(本题12分)白光垂直照射到空气中一厚度为3800oA的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色?四、简答题(共7分)20、(本题7分)光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?06-07学年第二学期大学物理II2(B )参考答案及评分标准一、选择题 (每题3分,共27分)1B 2C 3D 4B 5D 6B 7C 8A 9D二、填空题 (共30分)00010.()0,(2E (2,(2,(2,(2,(2(2,(2,(2(2sin sin 2,(2sin 2(26,(2(216.41(243(2r r r m E r rI I f qv lvtB t lvB t σεεεεμμα=⨯00R 分)(r)=分)11.分)分)分)12.分)0,分)2分)13.分)v B 分)14.分)分)15.分)明,分),分),分)三、计算题 (共36分)17. 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s ,02π4ε∑=q r E (4分)当5=r cm 时,0=∑q ,0=E(2分)8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外.(3分) 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. (3分) 18.两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题图所示.求: (1)两导线所在平面内与该两导线等距的一点A 处的磁感应强度; (2)通过图中斜线所示面积的磁通量.(1r =3r =10cm, l =25cm).解:(1) 52010104)2(2)2(2-⨯=+=d I d I B A πμπμ T 方向⊥纸面向外 (6分)(2)取面元 r l S d d =612010110102.23ln 31ln 23ln 2])(22[1211-+⨯=πμ=πμ-πμ=-πμ+πμ=⎰lI l I l I ldr r d I r I r r r ΦWb (6分) 19.白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k (4分) 得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) (2分) 3=k , 40433=λ oA (紫色) (2分)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k (2分) 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) (2分)故背面呈现绿色.四、简答题(共7分)20. 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.(4分)而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律(3分).。
大学数学专业《大学物理(二)》开学考试试题A卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一个力F作用在质量为 1.0 kg的质点上,使之沿x轴运动.已知在此力作用下质点的运动学方程为 (SI).在0到4 s的时间间隔内, (1) 力F的冲量大小I =__________________. (2) 力F对质点所作的功W =________________。
2、一根无限长直导线通有电流I,在P点处被弯成了一个半径为R的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为_______________,方向为_________________。
3、理想气体向真空作绝热膨胀。
()A.膨胀后,温度不变,压强减小。
B.膨胀后,温度降低,压强减小。
C.膨胀后,温度升高,压强减小。
D.膨胀后,温度不变,压强不变。
4、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
5、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
6、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
7、将热量Q传给一定量的理想气体:(1)若气体的体积不变,则热量转化为_____________________________。
(2)若气体的温度不变,则热量转化为_____________________________。
(3)若气体的压强不变,则热量转化为_____________________________。
大学物理学专业《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。
3、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
4、两列简谐波发生干涉的条件是_______________,_______________,_______________。
5、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
6、动方程当t=常数时的物理意义是_____________________。
7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。
9、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
10、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()二、名词解释(共6小题,每题2分,共12分)1、能量子:2、受激辐射:3、黑体辐射:4、布郎运动:5、熵增加原理:6、瞬时加速度:三、选择题(共10小题,每题2分,共20分)1、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程()。
大学基础教育《大学物理(二)》期末考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、理想气体向真空作绝热膨胀。
()A.膨胀后,温度不变,压强减小。
B.膨胀后,温度降低,压强减小。
C.膨胀后,温度升高,压强减小。
D.膨胀后,温度不变,压强不变。
2、气体分子的最可几速率的物理意义是__________________。
3、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
4、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
5、两列简谐波发生干涉的条件是_______________,_______________,_______________。
6、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
7、如图,在双缝干涉实验中,若把一厚度为e、折射率为n的薄云母片覆盖在缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O处的光程差为_________________。
8、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。
9、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
大学物理(二)练习册 参考解答第12章 真空中的静电场一、选择题1(A),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r qε ; (7). -2³103V ; (8).⎪⎪⎭⎫ ⎝⎛-πb a r r q q 11400ε(9). 0,pE sin α ; (10). ()()j y x i xy40122482+-+-- (SI) ;三、计算题1. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强.解:在O 点建立坐标系如图所示. 半无限长直线A ∞在O 点产生的场强:()j i R E -π=014ελ半无限长直线B ∞在O 点产生的场强:()j i R E +-π=024ελ四分之一圆弧段在O 点产生的场强:()j i R E +π=034ελ由场强叠加原理,O 点合场强为: ()j i RE E E E +π=++=03214ελBA∞O BA∞∞2. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C .(1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85³10-12 C 2²N -1²m -2)解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E²S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴() E E h1201-=ερ=4.43³10-13C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理⎰⎰E²S d =∑i1qε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9³10-10C/m 33. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 在x 、y 轴上的二个分量d E x =-d E cos φ, d E y =-d E sin φ 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 RRE y 000208d sin 4ελφφελ-=π=⎰π∴ j Rj E i E E y x008ελ-=+=(2)2(1)4. 一“无限长”圆柱面,其电荷面密度为: σ = σ0cos φ ,式中φ 为半径R 与x 轴所夹的角,试求圆柱轴线上一点的场强.解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为λ = σ0cos φ R d φ, 它在O 点产生的场强为:φφεσελd s co 22d 000π=π=R E它沿x 、y 轴上的二个分量为: d E x =-d E cos φ =φφεσd s co 220π-d E y =-d E sin φ =φφφεσd s co sin 20π 积分:⎰ππ-=2020d s co 2φφεσx E =2εσ0)d(sin sin 2200=π-=⎰πφφεσy E∴ i i E E x02εσ-==5. 一半径为R 的带电球体,其电荷体密度分布为4πRqr =ρ (r ≤R ) (q 为一正的常量)ρ = 0 (r >R )试求:(1) 带电球体的总电荷;(2) 球内、外各点的电场强度;(3) 球内、外各点的电势.解:(1) 在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 d q = ρd V = qr 4πr 2d r /(πR 4) = 4qr 3d r/R 4 则球体所带的总电荷为 ()q r r Rq V Q rV===⎰⎰34d /4d ρ(2) 在球内作一半径为r 1的高斯球面,按高斯定理有4041241211d 414Rqr r r Rqr E r r εε=π⋅π=π⎰得402114R qr E επ=(r 1≤R),1E方向沿半径向外.在球体外作半径为r 2的高斯球面,按高斯定理有 0222/4εq E r =π得22024r q E επ=(r 2 >R ),2E方向沿半径向外.(3) 球内电势⎰⎰∞⋅+⋅=RR r r E r E U d d 2111⎰⎰∞π+π=RRr r rq r Rqrd 4d 4204021εε40310123Rqr R qεεπ-π=⎪⎪⎭⎫ ⎝⎛-π=3310412R r R qε ()R r ≤1 球外电势 2020224d 4d 22r q r rq r E U r Rr εεπ=π=⋅=⎰⎰∞()R r >26. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE bb===⎰⎰得到 E = kb 2/ (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有()022εεk S b x d x kSSE E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为i xx E012εσ='圆盘在该处的场强为i x R x x E⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR xE E E 220212+=+=εσ该点电势为 ()220222d 2xR R xR x x U x+-=+=⎰εσεσ8.一真空二极管,其主要构件是一个半径R 1=5³10-4m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B A B A rr r E U U ελ120ln 2R R ελπ-= 得到()120/ln 2R R UUAB-=πελ, 所以 ()rR R UUE AB1/ln 12⋅-=在阴极表面处电子受电场力的大小为()()11211/c R R R U U e R eE F A B ⋅-===4.37³10-14N 方向沿半径指向阳极.四 研讨题1. 真空中点电荷q 的静电场场强大小为 241rq E πε=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而0d d d ≠⋅'-⋅=⋅⎰⎰⎰cb a d l E l E l E按静电场环路定理应有0d =⋅⎰l E,此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?参考解答:由电势的定义: ⎰⋅=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理二考试题及答案一、选择题(每题2分,共10分)1. 光的波长与频率的关系是()。
A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率是线性关系答案:B2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
如果作用力增大一倍,而物体的质量不变,则物体的加速度将()。
A. 减小一倍B. 增大一倍C. 保持不变D. 变为原来的两倍答案:B3. 以下哪个选项是描述电磁波的()。
A. 需要介质传播B. 只能在真空中传播C. 可以在真空中传播D. 只能在固体中传播答案:C4. 一个物体从静止开始做匀加速直线运动,经过时间t后的速度为v,则该物体在时间t内的平均速度为()。
A. v/2B. v/tC. 2v/tD. 2v答案:A5. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与外界对系统做的功的代数和。
如果一个物体吸收热量,同时外界对它做功,那么它的内能()。
A. 增加B. 减少C. 不变D. 无法确定答案:A二、填空题(每题2分,共10分)1. 根据麦克斯韦方程组,变化的磁场可以产生_________。
答案:电场2. 一个物体的动能与其速度的平方成正比,比例系数为物体的_________。
答案:质量3. 在理想气体状态方程PV=nRT中,R是_________常数。
答案:气体4. 根据量子力学,一个粒子的波函数可以描述其_________。
答案:概率分布5. 根据欧姆定律,电流I与电压V和电阻R之间的关系是I=_________。
答案:V/R三、计算题(每题10分,共20分)1. 一辆汽车以20m/s的速度行驶,突然刹车,刹车后加速度为-5m/s²,求汽车完全停止所需的时间。
答案:t = (0 - 20) / (-5) = 4s2. 一个质量为2kg的物体从静止开始自由落体运动,忽略空气阻力,求物体在下落5m时的速度。
答案:v = √(2gh) = √(2 * 9.8 * 5) ≈ 9.9m/s四、简答题(每题5分,共10分)1. 简述牛顿第三定律的内容。
大学物理二考试题及答案大全一、选择题(每题2分,共20分)1. 一个物体在水平面上以一定的初速度开始做匀减速直线运动,直到静止。
若物体在最后1秒内通过的位移为s,那么物体总的位移为:A. 2sB. 3sC. 4sD. 5s答案:B2. 根据牛顿第三定律,作用力和反作用力的大小关系是:A. 相等B. 不相等C. 无法确定D. 有时相等有时不相等答案:A3. 一个质量为m的物体从高度h自由落下,忽略空气阻力,落地时的速度v与高度h的关系是:A. v = √(2gh)B. v = √(gh)C. v = 2ghD. v = gh答案:A4. 在理想气体状态方程PV = nRT中,P表示:A. 温度B. 体积C. 压力D. 气体分子的数量答案:C5. 光的折射定律中,入射角和折射角的关系是:A. 入射角总是大于折射角B. 折射角总是大于入射角C. 入射角和折射角成正比D. 入射角和折射角的正弦值成正比答案:D6. 一个电路中,电阻R1和R2串联,已知R1 = 100Ω,R2 = 200Ω,总电阻R总是:A. 150ΩB. 300ΩC. 400ΩD. 500Ω答案:B7. 根据能量守恒定律,一个封闭系统中的总能量:A. 可以增加B. 可以减少C. 保持不变D. 无法确定答案:C8. 在电磁学中,电流的磁效应是由以下哪位科学家发现的?A. 牛顿B. 法拉第C. 奥斯特D. 库仑答案:C9. 一个物体在水平面上以一定的初速度开始做匀速直线运动,其动量的变化率等于:A. 物体的质量B. 物体的动量C. 物体的冲量D. 物体的力答案:D10. 根据麦克斯韦方程组,电场和磁场之间的相互关系是:A. 电场产生磁场B. 磁场产生电场C. 电场和磁场相互独立D. 电场和磁场可以相互转换答案:D二、填空题(每题2分,共20分)11. 一个物体做匀加速直线运动,初速度为3m/s,加速度为2m/s²,那么在第2秒末的速度是________m/s。
大学基础教育《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
2、一条无限长直导线载有10A的电流.在离它 0.5m远的地方它产生的磁感强度B为____________。
一条长直载流导线,在离它1cm处产生的磁感强度是T,它所载的电流为____________。
3、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
4、理想气体向真空作绝热膨胀。
()A.膨胀后,温度不变,压强减小。
B.膨胀后,温度降低,压强减小。
C.膨胀后,温度升高,压强减小。
D.膨胀后,温度不变,压强不变。
5、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
6、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
7、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
8、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
9、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。
10、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
大学物理2试卷二一、填空题(共21分)1(本题3分)两种不同的理想气体,若它们的最概然速率相等,则它们的 (A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等. (C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ ] 2(本题3分)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大.(C) Z 增大而λ减小. (D)Z 不变而λ增大. [ ]3(本题3分)一辆汽车以25 m/s 的速度远离一辆静止的正在鸣笛的机车.机车汽笛的频率为600 Hz ,汽车中的乘客听到机车鸣笛声音的频率是(已知空气中的声速为330 m/s ) (A) 550 Hz . (B) 645 Hz .(C) 555 Hz . (D) 649 Hz . [ ] 4(本题3分)如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动.(E) 向左平移. [ ]5(本题3分)一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角i 0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(D) 是部分偏振光. [ ]6(本题3分)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K . . (B) 2h ν - E K .(C) h ν - E K . (D) h ν + E K . [ ] 7(本题3分)不确定关系式h p x x ≥⋅∆∆表示在x 方向上(A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定. (C) 粒子位置和动量都不能准确确定.(D) 粒子位置和动量不能同时准确确定. [ ]空气单色光i 012二、填空题(共19分)8(本题3分)1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为________________J ;分子的平均平动动能为____________J;分子的平均总动能为_____________________J.9(本题4分)现有两条气体分子速率分布曲线(1)和(2),如图所示. 若两条曲线分别表示同一种气体处于不同的温度下的速率分布,则曲线_____表示气体的温度较高. 若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线_____表示的是氧气的速率分布. 10(本题3分)一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为___________,初相为_______________. 11(本题3分)在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为_______________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m ) 12(本题3分)一束光垂直入射在偏振片P 上,以入射光线为轴转动P ,观察通过P 的光 强的变化过程.若入射光是__________________光,则将看到光强不变;若入 射光是__________________,则将看到明暗交替变化,有时出现全暗;若入射光 是_________________,则将看到明暗交替变化,但不出现全暗. 13(本题3分)根据氢原子理论,若大量氢原子处于主量子数n = 5的激发态,则跃迁辐射的谱线可以有________条,其中属于巴耳末系的谱线有______条.三、计算题(共60分)14(本题10分)0.32kg 的氧气作如图所示的ABCDA 循环,设212V V =,1300K T =,2200K T =,求循环效率。
[氧气的定体摩尔热容的实验值为,21.1J (mol K)V m C =⋅]15(本题10分)某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求 (1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成(摩尔气体常量 R = 8.31 J ·mol -1·K -1 玻尔兹曼常量 k = 1.38×10-23J·K -1)的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点); (3) 该波的波长. 16(本题10分)一列沿x 正方向传播的简谐波,已知 01=t 和25.02=t 求 (1)此波的波动方程;(2)P 点的简谐振动方程。
17(本题10分)在图示的双缝干涉实验中,若用薄玻璃片(折射率n 1=1.4)覆盖缝S 1,用同样厚度的玻璃片(但折射率n 2=1.7)覆盖缝S 2,将使原来未放玻璃时屏上的中央明条纹处O 变为第五级明纹.设单色光波长λ=480 nm(1nm=109m ),求玻璃片的厚度d (可认为光线垂直穿过玻璃片). 18(本题10分)用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹? 19(本题10分)(1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm (1 nm=10-9 m).已知单缝宽度b =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数b+b '=1.0×10-3 cm 的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离. 20(本题10分)假定在康普顿散射实验中,入射光的波长λ0 = 0.0030 nm ,反冲电子的速度 v = 0.6 c ,求散射光的波长λ. ( 电子的静止质量m e = 9.11×10-31 kg ,普朗克常量h = 6.63×10-34 J ·s ,1 nm = 10-9 m ,c 表示真空中的光速 )大学物理2试卷二答案一、选择题(共21分)A BCBBDD 二、填空题(共19分)8(本题3分)6.23×10 3 6.21×10 - 21 1.035×10 - 219(本题4分) (2) (1)10(本题3分)1×10-2 m π/611(本题3分))6/2cos(39.2π+π=t H y ν A/m 12(本题3分)自然光或(和)圆偏振光 线偏振光(完全偏振光) 部分偏振光或椭圆偏振光13(本题3分)10 3 三、计算题(共60分)14(本题10分)解 因AB 、CD 为等温过程,循环过程中系统作的净功为22121132121ln ln ()ln 5.7610J AB CD V V m m W W W RT RT M V M V V mR T T M V =+=+=-=⨯由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中0=∆E ,则AB AB W Q = 等体升压过程中0=W ,则DA DA E Q ∆= 所以循环过程中系统吸热的总量为421,121ln () 3.8410J AB DA AB DAV m Q Q Q W E V m mRT C T T M V M∆=+=+=+-=⨯ 由此得到该循环的效率 15%WQη== 15(本题10分) 解:(1) 振动方程 )22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (2) 波动表达式 ])/(cos[06.0π+-π=u x t y ])21(cos[06.0π+-π=x t (SI)(3) 波长 4==uT λ m16(本题10分)解:(1)由波形图可知 m 6.0, m 2.0==λA ,则0.6m/s 0.25/4 ==∆∆=λt x u H 16.06.0 Z u ===λν用矢量图示法可得原点o 的初相位为 2πϕ=故原点O 的简谐运动方程为 ⎪⎭⎫ ⎝⎛+=22cos 2.0o ππt y 则此波的波动方程为 ()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=26.02cos 2.0,ππx t t x y m 17(本题10分) 解:原来δ = r 2-r 1= 0 覆盖玻璃后,δ=( r 2 + n 2d – d )-(r 1 + n 1d -d )=5λ ∴ (n 2-n 1)d =5λ 125n n d -=λ= 8.0×10-6 m18(本题10分)解:(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=21λ处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度 e 4=λ23∴ ()l l e 2/3/4λθ===4.8×10-5 rad (2) 由上问可知A 处膜厚为 e 4=3×500 / 2 nm =750 nm对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为λ'+2124e ,它与波长λ'之比为0.321/24=+'λe .所以A 处是明纹(3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗纹.19(本题10分)解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k b (取k =1 ) ()222231221sin λλϕ=+=k b f x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈ 所以 b f x /2311λ= b f x /2322λ=则两个第一级明纹之间距为 b f x x x /2312λ∆=-=∆=0.27 cm(2) 由光栅衍射主极大的公式 1111sin )(λλϕ=='+k b b2221sin )(λλϕ=='+k b b且有f x /an t sin =≈ϕϕ所以)/(12b b f x x x '+∆=-=∆λ=1.8 cm20(本题10分)解:根据能量守恒,有 220mc h c m h e +=+νν这里 2)/(11c m m ev -=∴ 20c m h h e +=νν])/(111[2c v --则 20c m hc hc e +=λλ])/(111[2c v --解得: ])/(111[1200c h c m e v --+=λλλ= 0.00434 nm。