渐开线直齿圆柱齿轮设计中的接触应力研究
- 格式:pdf
- 大小:2.19 MB
- 文档页数:3
《机械设计基础》试题七答案一、填空(每空1分,共20分)1、渐开线标准直齿圆柱齿轮传动,正确啮合条件是模数相等,压力角相等。
2、凸轮机构的种类繁多,按凸轮形状分类可分为:盘形凸轮、移动凸轮、圆柱凸轮。
3、 V带传动的张紧可采用的方式主要有:调整中心距和张紧轮装置。
4、齿轮的加工方法很多,按其加工原理的不同,可分为范成法和仿形法。
5、平面四杆机构中,若各杆长度分别为a=30,b=50,c=80,d=90,当以a为机架,则该四杆机构为双曲柄机构。
6、凸轮机构从动杆的运动规律,是由凸轮轮廓曲线所决定的。
7、被联接件受横向外力时,如采用普通螺纹联接,则螺栓可能失效的形式为__拉断。
二、单项选择题(每个选项0.5分,共20分)()1、一对齿轮啮合时 , 两齿轮的 c 始终相切。
(A)分度圆 (B) 基圆 (C) 节圆 (D) 齿根圆()2、一般来说, a 更能承受冲击,但不太适合于较高的转速下工作。
(A) 滚子轴承 (B) 球轴承 (C) 向心轴承 (D) 推力轴承()3、四杆机构处于死点时,其传动角γ为A 。
(A)0°(B)90°(C)γ>90°(D)0°<γ<90°()4、一个齿轮上的圆有 b 。
(A)齿顶圆和齿根圆(B)齿顶圆,分度圆,基圆和齿根圆(C)齿顶圆,分度圆,基圆,节圆,齿根圆(D)分度圆,基圆和齿根()5、如图所示低碳钢的σ-ε曲线,,根据变形发生的特点,在塑性变形阶段的强化阶段(材料恢复抵抗能力)为图上 C 段。
(A)oab(B)bc(C)cd(D)de()6、力是具有大小和方向的物理量,所以力是 d 。
(A)刚体(B)数量(C)变形体(D)矢量()7、当两轴距离较远,且要求传动比准确,宜采用。
(A) 带传动 (B)一对齿轮传动 (C) 轮系传动(D)螺纹传动()8、在齿轮运转时,若至少有一个齿轮的几何轴线绕另一齿轮固定几何轴线转动,则轮系称为 a 。
基于Hertz接触理论的齿轮接触分析胡夏夏;宋斌斌;戴小霞;刘晓曼【摘要】由于齿轮啮合过程中齿廓接触点曲率半径变化以及单双啮合交替的存在,而引起齿面载荷分布不均匀和冲击的问题,根据Hertz接触原理对接触模型和接触应力进行了研究.分析提取啮合线上不同啮合点的综合曲率半径,利用包络线绘制一条连续的曲率曲线,并根据该曲线生成特征曲面;利用有限元方法分别对齿轮接触、特征曲面与平板之间接触进行了接触应力分析;分析结果显示两种接触模型的接触应力分布相似度比较高,简化后的齿轮接触理论模型可为齿轮接触应力实验分析提供参考依据.【期刊名称】《浙江工业大学学报》【年(卷),期】2016(044)001【总页数】4页(P19-22)【关键词】Hertz接触原理;综合曲率半径;有限元;接触应力【作者】胡夏夏;宋斌斌;戴小霞;刘晓曼【作者单位】浙江工业大学特种装备制造与先进加工技术教育部重点实验室,浙江杭州310014;浙江工业大学特种装备制造与先进加工技术教育部重点实验室,浙江杭州310014;浙江工业大学特种装备制造与先进加工技术教育部重点实验室,浙江杭州310014;浙江工业大学特种装备制造与先进加工技术教育部重点实验室,浙江杭州310014【正文语种】中文【中图分类】TH132.413渐开线齿轮是工程应用最为广泛的机械零件之一,齿轮传动具有传递功率大、传动比准确、安全可靠等优点.但是齿间接触属于高副,因此接触区域必然会存在应力集中现象,齿轮的接触应力循环作用下容易产生齿面接触疲劳现象.国内外有不少研学者对齿轮啮合过程中接触应力做过大量研究,并取得了丰硕的成果[1-4].但是大多数学者仅研究了节点啮合位置的接触应力,而对接触线上不同位置接触应力分布的研究较少,且相对精确的齿轮接触应力实验模型方面的研究就更少了.因此,开展对接触模型以及接触应力分布的研究有着重大实际意义[5].本研究根据Hertz 接触原理[6]对齿轮接触模型和接触应力分布进行了分析,对比了简化前后齿轮接触模型的接触应力分布情况,为齿轮接触应力的实验分析提供了理论参考.渐开线齿轮齿面为形状较复杂的特殊曲面,由于接触区宽度小于齿面在接触区域的曲率半径,因而可对啮合齿面作适当简化.Week等[7]试验结果表明:当运转条件相同时,轮齿间的接触状态可用一对滚子来模拟(图1),一对轮齿之间的啮合可以转换为两个圆柱体沿其母线的接触.图1中两个圆柱体滚子的半径R1,R2分别为齿轮啮合位置的曲率半径.由Hertz接触理论推出的接触区最大触应力σH公式[8]为式中:ZE为配对齿轮的材料系数;Fn为载荷;b为两圆柱体的接触宽度;ρ为综合曲率半径;ρ1,ρ2分别为两圆柱体接触线处的曲率半径.齿面接触应力的计算是以两圆柱体接触时的最大接触应力推到出来的.由渐开线性质可知:一对齿轮啮合过程,由于齿轮表面啮合位置不同,可以看成为两个曲率半径随时变化着的平行圆柱体的接触过程,故各啮合位置的接触应力各不相同[9].因此,图1中一对轮齿的啮合可以简化成一对对应接触半径圆柱体的接触,建立了二个数值分析模型,下文将对其合理性进行验证.当两个半径分别为ρ1和ρ2的圆柱体接触时,根据式(2),ρ为综合曲率半径,且假设它为一定值.当ρ2→+∞时,则ρ2圆柱体的曲面趋向成一个平面,ρ1圆柱体的半径趋向成综合曲率半径,即→ρ.此时,两个圆柱体的接触就简化成一个圆柱体与一个平板之间的接触,如图2所示.同理,可将齿轮啮合线上每个啮合点通过图2的方法等效成一个综合曲率半径圆柱体与一个平板之间的接触.由齿轮啮合传动示意图以及齿轮各个参数的关系得出啮合线上两齿面的综合曲率半径为式中为从动轮基圆半径;N1N2为理论啮合线长度;αk为从动轮啮合点压力角.笔者以Z1=20,Z2=45,M=4的一对直齿圆柱齿轮作为研究对象,其中大齿轮为主动轮.运用MATLAB对式(3)进行编程求解,得到实际啮合线KK′上各个啮合点处两齿廓的综合曲率半径数值.将综合曲率半径数值曲线导入到二维绘图软件AutoCAD中,利用包络线原理绘制出的综合曲率曲线[10],如图3所示.图3中加粗曲线为综合曲率半径数值曲线,通过450个曲率圆包络成综合曲率曲线.最后在三维软件Pro/E中根据综合曲率曲线生成特征曲面.因此,特征曲面上的曲率半径的变化符合所研究直齿圆柱齿轮中一对轮齿从啮入到啮出过程中综合曲率半径的变化特征.在相同边界条件下,特征曲面与一平板的接触模型和齿轮接触模型在接触应力分布方面应具有一定相似度. 渐开线直齿圆柱齿轮在啮合过程中,为保证传动的连续性和平稳性,重合度ε必须大于1.当重合度ε在1~2之间时,啮合线两端各有一段两对轮齿同时啮合的区段,在这两区段里,每对齿轮副只承受一部分载荷;啮合线中间有一段只有一对轮齿啮合的区段,在这一区段里,由一对轮齿承受所有载荷.然而,载荷在同时啮合的轮齿之间存在一个分配问题,即载荷分配系数XΓ.根据ISO425E中关于XΓ的表达式[11]以及齿轮啮合过程示意图,如图4所示,齿轮啮合线上载荷分配系数的计算式为式中:啮合点P从啮入点K向啮出点K′逐渐移动;XΓ为啮合点K点处轮齿的载荷分配系数.运用MATLAB对式(4)求解并得到啮合点位置与载荷分配系数的关系曲线,如图5所示.在Pro/E中建立实体模型,通过无缝接口将实体模型导入到ANSYS Workbench 中,选择材料属性,划分网格,完成有限元模型的建立.采用ANSYS Workbench 接触分析模块,由于齿轮接触时表面既有滚动又有滑动,因此接触类型设置为Frictional,摩擦系数为0.06[12],计算时的接触算法控制方程设置为Augmented lagrange.增广拉格朗日法比罚函数法加大了接触力的计算,对接触刚度变得不敏感,减少了接触渗透量,但会导致非线性计算迭代次数增多,因此大变形Large deflection要设置为ON.设置弹性模量E=211 GPa,泊松比μ=0.277,接触刚度系数K=1.从动轮内圈约束条件设置为固定约束Fixed support,主动轮约束条件为Cylindrical support并且保留Tangential方向上的自由度[13].在主动轮上施加T=165 000 N·mm的动力扭矩,则单齿啮合区段齿间法向载荷Fn=2T/d2=1 833.3 N.在两个双齿啮合区段上各取5个啮合点,在单啮合区段上取4个啮合点,利用ANSYS Workbench计算,并利用后处理查看齿面接触应力的变化云图,如图6所示.本次接触分析一共提取了啮合线上均匀分布的14个接触点作为研究对象,近似得到单个轮齿在一个啮合周期内的接触应力变化规律,结果如表1所示.啮合线上均匀分布的14个接触点作为研究对象,近似得到单个轮齿在一个啮合周期内的接触应力变化规律,结果如表1所示.根据载荷分配系数XΓ分别求得14个啮合点处的法向载荷Fni(i=1,2,…,14),如表2所示.利用接触分析模块求解出特征曲面与平板对应接触点的接触应力,如图7所示.本次接触分析同样提取特征曲面上均匀分布的14个接触点,得到特征曲面上接触应力变化情况,如表3所示.根据表1和表3所得数据,得到两种模型的接触应力变化趋势,如图8所示.随着齿轮开始进入双齿啮合区,载荷分布系数慢慢增大,两种模型1~5号接触点的接触应力都呈逐渐上升趋势;进入单齿啮合区段,两种模型的6~9号接触位置都出现了应力峰值;之后由于再次进入双啮合区段,10~14号接触点应力逐渐下降.两种模型接触应力计算结果表明:在接触过程中经简化后的接触应力模型与齿轮接触模型在接触应力分布趋势上相似度比较高,说明笔者提出的简化模型在模拟齿轮啮合过程中接触应力方面具有一定的准确性和可行性.根据Hertz接触原理以及综合曲率半径的等效法将曲面之间的接触等效成曲面与平面之间的接触,并利用载荷分配系数提取了不同接触位置的动力载荷,利用有限元分别对两种模型进行接触应力分析.分布曲线表明:两种模型在接触应力分布趋势上相似度比较高,因此简化模型的方法具有一定的合理性.由于齿轮的啮合是一个连续的运动过程,可将简化模型(特征曲面与平板的接触)转变成特征曲面凸轮与平板接触的实验模型.通过主动件凸轮的旋转而达到不同综合曲率半径之间的接触,可以模拟齿轮接触过程的接触应力变化,本研究可为齿轮接触应力实验分析提供一定的理论依据.【相关文献】[1] 李碧波,李素有,吴立言,等.渐开线齿轮接触应力分布规律的研究[J].机械与电子,2010(6):69-71.[2] LI Shuting. Gear contact model and loaded tooth contact analysis of a three-dimensional, thin-rimmed gear[J].Journal of mechanical design, 2002,124(3):511-517.[3] 张永栋,谢小鹏,廖钱生,等.基于有限元方法的齿轮接触仿真分析[J].滑与密封,2009,34(1):49-51.[4] 李杰,孙青军,王乐勤.渐开线齿轮的接触分析[J].工程设计学报,2009,16(1):27-31.[5] 杨凡,孙首群,于建华,等.齿轮啮合过程中接触力的精确分析[J].机械传动,2010,34(7):56-59.[6] WECK M, KRUSE A, GOHRITZ A. Determination of surface fatigue of gears material by roller test[J]. Journal of mechanical design,1978(100):433-439.[7] 唐锐,张敬东,张祺.新型齿轮传动副建模及接触分析[J].机械传动,2013,37(2):76-79.[8] 冯剑军,谭援强.基于Hertz理论圆柱和平面之间的滑动接触分析[J].摩擦学学报,2009(4):346-350.[9] 包家汉,张玉华,薛家国,等.齿轮啮合过程齿间载荷分配的有限元分析[J].机械传动,2004,28(5):14-17.[10] 金寿松,徐泽侠,杨东坡,等.基于VB和AutoCAD的齿轮滚刀鉴定系统研究[J].浙江工业大学学报,2013,41(5):514-518.[11] 李庆远.渐开线圆柱齿轮的载荷分配系数与齿间载荷分布系数[J].昆明理工大学学报(理工版),1986(4):22-26.[12] 高创宽,李群.齿面粗糙纹理方向对轮润滑的影响[J].工程设计报,2014(4),393-397.[13] 金玉萍.QTZ63塔式起重机有限元分析[J].浙江工业大学学报,2010,38(3):242-245.。
GB/T 3480.2—XXXX直齿轮和斜齿轮承载能力计算第2部分:齿面接触(点蚀)强度计算(征求意见稿)编制说明课题工作组2020年3月《直齿轮和斜齿轮承载能力计算 第2部分:齿面接触(点蚀)强度计算》(征求意见稿)编制说明一、 工作简况1 任务来源本项目是根据国家标准化管理委员会制、修订国家标准项目计划(国标委综合[2010]年87号文),计划编号:20101311-T-469,项目名称“直齿轮和斜齿轮承载能力计算方法 第2部分:齿面接触(点蚀)强度计算”进行修订,等同采用ISO 6336-2:2019,部分代替GB/T 3480—1997。
主要起草单位:郑州机械研究所有限公司、湖南大学、中机轨道交通装备科技有限公司、西安法士特汽车传动有限公司、山东华成中德传动设备有限公司、中机生产力促进中心、河南中豫远大重工科技有限公司、苏州绿控传动科技股份有限公司、郑州高端装备与信息产业技术研究院有限公司、江苏中工高端装备研究院有限公司。
计划完成时间:2020年6月。
GB/T 3480系列标准引进自ISO 6336系列。
ISO 6336在“直齿轮和斜齿轮承载能力计算”的总标题下包括以下5个部分:——第1部分:基本原理、概述和通用影响因素;——第2部分:齿面接触(点蚀)强度计算;——第3部分:轮齿弯曲强度计算——第5部分:材料的强度和质量——第6部分:变载荷条件下的使用寿命计算其中,GB/T 3480.1—2019(ISO 6336-1:2006,IDT )、GB/T 3480.5—2008(ISO 6336-5:2006,IDT )和GB/T 3480.6—2018(ISO 6336-6:2006,IDT )已经先后发布,GB/T 3480.2—XXXX (ISO 6336-2:2019,IDT )和GB/T 3480.3—XXXX (ISO 6336-3:2019,IDT )已完成征求意见稿,现在开始向全社会征集修改意见。
一、填空题1.渐开线圆柱齿轮圆上的压力角最大,圆上的压力角最小,圆上的压力角为标准值。
2.渐开线齿廓上任一点的压力角是指,渐开线齿廓上任意一点的法线与相切。
3.一对渐开线直齿圆柱齿轮正确啮合的条件是相等,亦即两齿轮的和相等。
4.一对渐开线斜齿圆柱齿轮正确啮合的条件是、、 .5.一斜齿轮法面模数Mn=3mm,分度圆螺旋角β=15°,其端面模数Mt= .6.用标准齿条型刀具加工标准齿轮时,其刀具的线与轮坯圆之间作纯滚动。
7.斜齿圆柱的参数分为和,其中参数为标准值,齿廓形状为标准渐开线。
8直齿锥齿轮的参数为和,其中参数为标准。
9.理论上,一对相互啮合齿轮的齿面接触应力大小应。
10.材料相同、热处理工艺相同、齿宽相同的一对相互啮合的齿轮,小齿轮的齿根弯曲强度大齿轮的齿根弯曲强度。
11.在斜齿轮的齿数、模数一定时,斜齿圆柱齿轮的螺旋角越大,其轴向力越,分度圆越。
12.一对渐开线直齿圆柱齿轮(α=20°,ha*=1)啮合时,当安装时的实际中心距大于标准中心距时,啮合角度变;重合度;传动比。
13.用齿条型刀具加工αn=20°,ha*=1,β=15°的斜齿圆柱齿轮时不切根的最少齿数是。
二、选择题1.属于平面齿轮机构的是。
A直齿圆柱齿轮机构 B锥齿轮机构C平行轴斜齿圆柱齿轮机构2.渐开线圆柱齿轮的基圆大小与其齿根圆大小必然是关系。
A等于 B大于 C小于 D给出齿数后才能确定3.当安装中心距大于理论中心距时,渐开线圆柱齿轮的节圆直径分度圆直径。
A等于 B大于 C小于4.为保证齿轮的连续传动,渐开线的实际啮合线理论啮合线。
A等于 B大于 C大于等于 D小于等于一对相啮合传动的渐开线齿轮,起压力角为,啮合角为。
A基圆上的压力角 B节圆上的压力角C分度圆上的压力角 D齿顶圆上的压力角6.一般参数的闭式软齿面齿轮传动的主要失效形式是。
A齿面胶合 B齿面磨力粒磨损 C轮齿折断 D齿面点蚀7.材料为20Cr的齿轮要达到的硬齿面,常用的热处理方法是。
直齿圆柱齿轮传动的受力分析和载荷计算直齿圆柱齿轮传动的受力分析:图 9-8为一对直齿圆柱齿轮,若略去齿面间的摩擦力,轮齿节点处的法向力F n 可分解为两个互相垂直的分力:切于分度圆上的圆周力F t 和沿半径方向的径向力F r 。
(1)各力的大小图 9 - 8直齿圆柱齿轮受力分析圆周力(9-1)径向力(9-2)法向力(9-3)其中转矩(9-4)式中:T1 ,T2 是主、从动齿轮传递的名义转矩,N.mm ;d1 ,d2 是主、从动齿轮分度圆直径, mm ;为分度圆压力角;P是额定功率, kW ;n1 ,n2 是主动齿轮、从动轮的转速, r/min 。
作用在主动轮和从动轮上的各对应力大小相等,方向相反。
即:,,(2)各力的方向主动轮圆周力的方向与转动方向相反;从动轮圆周力的方向与转动方向相同;径向力F r 分别指向各自轮心 ( 外啮合齿轮传动 ) 。
9.4.2 计算载荷前面齿轮力分析中的F n 、F t 和F r 及F a 均是作用在轮齿上的名义载荷。
原动机和工作机性能的不同有可能产生振动和冲击;轮齿在啮合过程中会产生动载荷;制造安装误差或受载后轮齿的弹性变形以及轴、轴承、箱体的变形,会使载荷沿接触线分布不均,而同时啮合的各轮齿间载荷分配不均等,因此接触线单位长度的载荷会比由名义载荷计算的大。
所以须将名义载荷修正为计算载荷。
进行齿轮的强度计算时,按计算载荷进行计算。
(9-4)计算载荷(9 - 5)载荷系数(9- 6)式中:K是载荷系数;K A 是使用系数;K v 是动载系数;是齿向载荷分布系数;是齿间载荷分配系数。
1 .使用系数K A使用系数K A 是考虑由于齿轮外部因素引起附加动载荷影响的系数。
其取决于原动机和工作机的工作特性、轴和联轴器系统的质量和刚度以及运行状态。
其值可按表 9 - 3选取。
表 9-3使用系数K A工作机的工作特性工作机器原动机的工作特性及其示例电动机、均匀运转的蒸气机、燃气轮机蒸气机、燃气轮机液压装置电动机(经多缸内燃机单缸内燃机(小的,启动转矩大)常启动启动转矩大)均匀平稳发电机、均匀传送的带式或板式运输机、螺旋输送机、轻型升降机、机床进给机构、通风机、轻型离心机、均匀密度材料搅拌机等1.00 1.101.251.50轻微冲击不均匀传送的带式输送机、机床的主传动机构、重型升降机、工业与矿用风机、重型离心机、变密度材料搅拌机、给水泵、转炉、轧机、1.25 1.351.51.75中等冲击橡木工机械、胶积压机、橡胶和塑料作间断工作的搅拌机、轻型球磨机、木工机械、钢坯初轧机、提升装置、单缸活塞泵等1.50 1.601.752.00严重挖掘机、重型球磨机、橡 1.75 1.85 2.0 2.25冲击胶揉合机、落沙机、破碎机、重型给水泵、旋转式钻探装置、压砖机、带材冷轧机、压坯机等0或更大注: 1. 对于增速传动,根据经验建议取表中值的 1.1 倍。
渐开线直齿圆柱齿轮的基本参数一、引言渐开线直齿圆柱齿轮是机械传动中常用的元件之一,其基本参数对于齿轮的设计和制造具有重要意义。
本文将详细介绍渐开线直齿圆柱齿轮的基本参数。
二、基本概念1. 渐开线直齿圆柱齿轮渐开线直齿圆柱齿轮是指齿面为渐开线曲面,且轴向为直线的圆柱形齿轮。
其主要特点是传动平稳、噪声小、寿命长等。
2. 齿数指一对啮合的渐开线直齿圆柱齿轮中,从一个端点到另一个端点所经过的全部有效牙数之和。
3. 模数模数是指在同一法向宽度上,每个啮合周期中牙顶到牙谷距离的比值。
通常用m表示。
4. 齿宽指沿着轴向测量的有效啮合长度,也称为法向宽度。
通常用b表示。
5. 压力角压力角是指啮合时两相邻啮合面上接触点处切向力与法向力之比的角度。
通常用α表示。
6. 分度圆直径分度圆直径是指渐开线直齿圆柱齿轮上用来计算模数、齿数等参数的圆柱形基准面上的直径。
通常用d表示。
三、基本参数计算1. 齿数的计算在设计渐开线直齿圆柱齿轮时,首先需要确定齿数。
一般情况下,齿数应该选取为偶数,以保证各个牙床之间的负载均衡。
同时,还需要考虑到传动比和啮合性能等因素。
2. 模数的计算模数是设计渐开线直齿圆柱齿轮时非常重要的参数之一。
在确定模数时,需要考虑到传动功率、转速、负载等因素。
一般情况下,模数越大,扭矩越大,但同时也会导致轴向长度增加和噪声增加等问题。
3. 齿宽的计算在设计渐开线直齿圆柱齿轮时,还需要考虑到其法向宽度或称为齿宽数值。
一般情况下,根据传动扭矩和转速等因素来确定其齿宽。
4. 压力角的计算在设计渐开线直齿圆柱齿轮时,压力角也是非常重要的参数之一。
一般情况下,压力角越大,传动效率越高,但同时也会导致噪声和磨损等问题。
因此,在确定压力角时需要综合考虑各种因素。
5. 分度圆直径的计算分度圆直径是设计渐开线直齿圆柱齿轮时必须要确定的参数之一。
在确定分度圆直径时,需要根据模数和齿数等参数来计算。
四、结论渐开线直齿圆柱齿轮是机械传动中常用的元件之一,其基本参数对于齿轮的设计和制造具有重要意义。
GB/T 3480.2—XXXX直齿轮和斜齿轮承载能力计算第2部分:齿面接触(点蚀)强度计算(征求意见稿)编制说明课题工作组2020年3月《直齿轮和斜齿轮承载能力计算第2部分:齿面接触(点蚀)强度计算》(征求意见稿)编制说明一、工作简况1任务来源本项目是根据国家标准化管理委员会制、修订国家标准项目计划(国标委综合[2010]年87号文),计划编号:20101311-T-469,项目名称“直齿轮和斜齿轮承载能力计算方法第2部分:齿面接触(点蚀)强度计算”进行修订,等同采用ISO 6336-2:2019,部分代替GB/T 3480—1997。
主要起草单位:郑州机械研究所有限公司、湖南大学、中机轨道交通装备科技有限公司、西安法士特汽车传动有限公司、山东华成中德传动设备有限公司、中机生产力促进中心、河南中豫远大重工科技有限公司、苏州绿控传动科技股份有限公司、郑州高端装备与信息产业技术研究院有限公司、江苏中工高端装备研究院有限公司。
计划完成时间:2020年6月。
GB/T 3480系列标准引进自ISO 6336系列。
ISO 6336在“直齿轮和斜齿轮承载能力计算”的总标题下包括以下5个部分:——第1部分:基本原理、概述和通用影响因素;——第2部分:齿面接触(点蚀)强度计算;——第3部分:轮齿弯曲强度计算——第5部分:材料的强度和质量——第6部分:变载荷条件下的使用寿命计算其中,GB/T 3480.1—2019(ISO 6336-1:2006,IDT )、GB/T 3480.5—2008(ISO 6336-5:2006,IDT )和GB/T 3480.6—2018(ISO 6336-6:2006,IDT )已经先后发布,GB/T 3480.2—XXXX (ISO 6336-2:2019,IDT )和GB/T 3480.3—XXXX (ISO 6336-3:2019,IDT )已完成征求意见稿,现在开始向全社会征集修改意见。
第十章齿轮传动10.1渐开线性质有哪些?。
答:(1)发生线在基圆上滚过的长度等于基圆上被滚过的弧长,即NK=NA (2)因为发生线在基圆上作纯滚动,所以它与基圆的切点N就是渐开线上K点的瞬时速度中心,发生线NK就是渐开线在K点的法线,同时它也是基圆在N点的切线。
(3)切点N是渐开线上K点的曲率中心,NK是渐开线上K点的曲率半径。
离基圆越近,曲率半径越少。
(4)渐开线的形状取决于基圆的大小。
基圆越大,渐开线越平直。
当基圆半径无穷大时,渐开线为直线。
(5)基圆内无渐开线。
10.2何谓齿轮中的分度圆?何谓节圆?二者的直径是否一定相等或一定不相等?答:分度圆为人为定的一个圆。
该圆上的模数为标准值,并且该圆上的压力角也为标准值。
节圆为啮合传动时,以两轮心为圆心,圆心至节点p的距离为半径所作的圆。
标准齿轮采用标准安装时,节圆与分度圆是相重合的;而采用非标准安装,则节圆与分度圆是不重合的。
对于变位齿轮传动,虽然齿轮的分度圆是不变的,但与节圆是否重合,应根据具体的传动情况所决定。
10.3在加工变位齿轮时,是齿轮上的分度圆与齿条插刀上的节线相切作纯滚动,还是齿轮上的节圆与齿条插刀上的分度线相切作纯滚动?答:是齿轮上的分度圆与齿条插刀上的节线相切。
10.4为了使安装中心距大于标准中心距,可用以下三种方法:(1)应用渐开线齿轮中心距的可分性。
(2)用变位修正的直齿轮传动。
(3)用标准斜齿轮传动。
试比较这三种方法的优劣。
答:(1)此方法简易可行,但平稳性降低,为有侧隙啮合,所以冲击、振动、噪声会加剧。
(2)采用变位齿轮传动,因a'>a,所以应采用正传动。
可使传动机构更加紧凑,提高抗弯强度和齿面接触强度,提高耐磨性,但互换性变差,齿顶变尖,重合度下降也较多。
(3)采用标准斜齿轮传动,结构紧凑,且进入啮合和脱离啮合是一个逐渐的过程,传动平稳,冲击、噪声小,而斜齿轮传动的重合度比直齿轮大,所以传动平稳性好。
10.5 一渐开线齿轮的基圆半径rb=60mm,求(1)rK=70mm时渐开线的展角θK,压力角αK以及曲率半径ρK;(2)压力角α=20时的向径r、展角θ及曲率半径ρ。