第一章系统与系统理论概述.
- 格式:ppt
- 大小:378.00 KB
- 文档页数:102
第一章计算机控制系统概述§1.1概述随着科学技术的进步,人们越来越多地用计算机来实现控制系统。
近几年来,计算机技术、自动控制技术、检测与传感技术、CRT显示技术、通信与网络技术、微电子技术的高速发展,促进了计算机控制技术水平的提高。
本章主要介绍计算机控制系统及其组成、工业控制机的组成结构及特点、计算机控制系统的发展概况和趋势。
1.1.1计算机控制技术研究的内容及特点1、研究的内容:主要研究控制理论、计算机技术(软、硬件技术)、网络通信技术、测量技术、信号处理技术等在微机控制中的应用、以及微机的控制方法及其应用。
2、主要的特点:1)理论性强:应用各种控制理论、信号处理理论等2)综合性强:应用有控制理论、计算机硬件技术、编程技术、网络技术、测量技术、信号处理技术、电子技术等3)实践性强:所有设计、计算必须要反复进行实验;在实践中积累了大量的经验方法、经验数据等4)理论与实践相结合5)实用性强6)应用广泛等1.1.2计算机控制技术这门课所应用到的技术:计算机技术、自动控制技术、微电子技术、信息处理技术、检测与传感技术、通信与网络技术、CRT显示技术等等1.1.3计算机控制技术的现状与发展趋势计算机控制技术是一种运用控制理论、仪器仪表、计算机和其它信息技术,对工业生产过程实现检测、控制、优化、调度、管理和决策,达到增加产量、提高质量、降低消耗、确保安全等目的的综合性技术,主要包括工业自动化软件、硬件和系统三大部分1.1.4目前,计算机控制技术正在向智能化、网络化和集成化方向发展。
一、以工业PC为基础的低成本工业控制自动化将成为主流二、PLC在向微型化、网络化、PC化和开放性方向发展三、面向测控管一体化设计的DCS系统四、控制系统正在向现场总线(FCS)方向发展五、仪器仪表技术在向数字化、智能化、网络化、微型化方向发展六、数控技术向智能化、开放性、网络化、信息化发展七、工业控制网络将向有线和无线相结合方向发展八、工业控制软件正向先进控制方向发展► 1.2. 计算机控制系统的组成► 1.3 计算机控制系统分类► 1.4 计算机控制系统中的计算机► 1.5 微型计算机控制系统的发展趋势§1.2 计算机控制系统的组成★自动控制:在没有人直接参与的情况下,通过控制器使生产过程自动地按照预定的规律运行。
上篇自动控制原理第一章自动控制系统概述本章要点本章简要介绍有关自动控制的基本概念、开环控制和闭环控制的特点、自动控制系统的基本组成和分类以及对自动控制系统的基本要求。
第一节自动控制的基本概念自动控制是指在没有人的直接干预下,利用物理装置对生产设备和工艺过程进行合理的控制,使被控制的物理量保持恒定,或者按照一定的规律变化。
自动控制系统则是为实现某一控制目标所需要的所有物理部件的有机组合体。
在自动控制系统中,被控制的设备或过程称为被控对象或对象;被控制的物理量称为被控量或输出量;决定被控量的物理量称为控制量或给定量;妨碍控制量对被控量进行正常控制的所有因素称为扰动量。
扰动量按其来源可分为内部扰动和外部扰动。
给定量和扰动量都是自动控制系统的输入量。
通常情况下,系统有两种外作用信号:一是有效输入信号(以下简称输入信号),二是有害干扰信号(以下简称干扰信号)。
输入信号决定系统被控量的变化规律或代表期望值,并作用于系统的输入端。
干扰信号是系统所不希望而又不可避免的外作用信号,它不但可以作用于系统的任何部位,而且可能不止一个。
由于它会影响输入信号对系统被控量的有效控制,严重时必须加以抑制或补偿。
第二节开环控制和闭环控制自动控制有两种基本的控制方式:开环控制和闭环控制。
与这两种控制方式对应的系统分别称之为开环控制系统和闭环控制系统。
一、开环控制系统开环控制系统是指系统的输出端和输入端不存在反馈关系,系统的输出量对控制作用不发生影响的系统。
这种系统既不需要对输出量进行测量,也不需要将输出量反馈到输入端与输入量进行比较,控制装置与被控对象之间只有顺向作用,没有反向联系。
电加热系统的控制目标是,通过改变自耦变压器滑动端的位置,来改变电阻炉的温度,并使其恒定不变。
因为被控制的设备是电阻炉,被控量是电阻炉的温度,所以该系统可称为温度控制系统,如图1-1所示。
开环控制系统的优点是系统结构和控制过程简单,稳定性好,调试方便,成本低。
线性系统理论论文论文题目:线性系统理论综述—连续系统线性二次最优控制学院:年级:专业:姓名:学号:指导教师:目录摘要 (3)前言 (3)第一章线性系统理论概述 (3)1.1线性系统理论的研究对象 (4)1.2 线性系统理论的主要任务 (4)1.3 线性系统的主要学派 (5)1.4 现代线性系统的主要特点 (5)1.5 线性系统的发展 (6)第二章连续系统线性二次最优控制 (6)2.1最优控制问题 (6)2.2最优控制的性能指标 (7)2.3 最优控制问题的求解方法 (8)2.4 线性二次型最优控制 (9)2.5 连续系统线性二次型最优控制实例 (10)2.6 小结 (13)总结 (13)参考文献 (13)摘要线性系统理论是现代控制理论中最基本、最重要也是最成熟的一个分支,是生产过程控制、信息处理、通信系统、网络系统等多方面的基础理论。
本文对线性系统的历史背景、研究现状和发展趋势作了简单的综述。
线性二次最优控制理论内容丰富、应用广泛,引起广泛地关注并取得了丰硕成果。
最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。
本文基于连续系统线性二次最优控制,提出新的控制算法并结合实例进行了仿真验证。
关键字:线性系统;线性二次最优控制;控制系统;连续系统前言线性系统理主要阐述线性系统时域理论,给出了线性系统状态空间的概念、组成方法和基本性质,进而导出系统的状态空间描述。
以状态空间法为主要工具研究多变量线性系统的理论[1]。
随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。
与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。
随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。