扬州市2016年中考数学试卷含答案(word版)
- 格式:doc
- 大小:350.00 KB
- 文档页数:7
扬州市初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12 D .122.函数1yx 中自变量x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13.下列运算正确的是 ( ) A . 2233xx B .33a a a C .632a a a D .236()a a4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是 ( ) (第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D6年龄(岁) 18 19 20 21 22 人数25221则这12名队员年龄的众数、中位数分别是 ( ) A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁7.已知219Ma ,279N a a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.(3分)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤13.(3分)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.(3分)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.(3分)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.6.(3分)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.(3分)当a=2016时,分式的值是.12.(3分)以方程组的解为坐标的点(,y)在第象限.13.(3分)若多边形的每一个内角均为135°,则这个多边形的边数为.14.(3分)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.三、解答题(共10小题,满分96分)19.(8分)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.(8分)解不等式组,并写出该不等式组的最大整数解.21.(8分)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.24.(10分)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)(2016•扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【解答】解:1÷(﹣2)=﹣.故选D.2.(3分)(2016•扬州)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤1【解答】解:由题意得,﹣1≥0,解得≥1.故选B.3.(3分)(2016•扬州)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【解答】解:A、原式=(3﹣1)2=22,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.(3分)(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.(3分)(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.6.(3分)(2016•扬州)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.(3分)(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N 的大小关系为()A.M<N B.M=N C.M>N D.不能确定【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.(3分)(2016•扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)(2016•扬州)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【解答】解:12000=1.2×104,故答案为:1.2×104.10.(3分)(2016•扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.(3分)(2016•扬州)当a=2016时,分式的值是2018.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.(3分)(2016•扬州)以方程组的解为坐标的点(,y)在第二象限.【解答】解:,∵①﹣②得,3+1=0,解得=﹣,把的值代入②得,y=+1=,∴点(,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.(3分)(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.(3分)(2016•扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.(3分)(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.16.(3分)(2016•扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.17.(3分)(2016•扬州)如图,点A在函数y=(>0)的图象上,且OA=4,过点A作AB⊥轴于点B,则△ABO的周长为2+4.【解答】解:∵点A在函数y=(>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C=AB+OB+OA=2+4.△ABO故答案为:2+4.18.(3分)(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.【解答】解:设未30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴>29.5解得,a<6,又∵a>0,即a的取值范围是:0<a<6.三、解答题(共10小题,满分96分)19.(8分)(2016•扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+3=9+;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.(8分)(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,≥﹣2,解不等式②得,<1,∴不等式组的解集为﹣2≤<1.∴不等式组的最大整数解为=0,21.(8分)(2016•扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.(8分)(2016•扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.(10分)(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N 处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=,则EM=8﹣,CM=10﹣6=4,在Rt△CEM中,(8﹣)2+42=2,解得:=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.(10分)(2016•扬州)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【解答】解:设普通列车的速度为为m/h,动车的平均速度为1.5m/h,由题意得,﹣=1,解得:=120,经检验,=120是原分式方程的解,且符合题意.动车的平均速度=120×1.5=180m/h.答:该趟动车的平均速度为180m/h.25.(10分)(2016•扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T(120°)=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=120°,AB=AC,作AD⊥BC于D,则∠B=30°,∴BD=AB,∴BC=AB,∴T(120°)=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T(80°)≈1.29,∴蚂蚁爬行的最短路径长为1.29×9≈11.6.26.(10分)(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=,则OA=OB=OE=2,AG=,∴DG=OE=2,根据AC=AB得:4=+2+2﹣,=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.(12分)(2016•扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【解答】解:(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90°∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CF=CE,∵CE=a,CF=b,∴a=b,∵△ACF≌△ACE,∴∠AEF=∠AFE,∵∠EAF=45°,∴∠AEF=∠AFE=67.5°,∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF=∠CAE=22.5°,∴∠CAE=∠CEA,∴CE=AC=4,即:a=b=4;(2)当△AEF是直角三角形时,①当∠AFE=90°时,∴∠AFD+∠CFE=90°,∵∠CEF+∠CFE=90°,∴∠AFD=∠CEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF∴AF=EF,在△ADF和△FCE中∴△ADF≌△FCE,∴FC=AD=4,CE=DF=CD+FC=8,∴a=8,b=4②当∠AEF=90°时,同①的方法得,CF=4,CE=8,∴a=4,b=8.(3)ab=32,理由:如图,∵AB∥CD∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.(12分)(2016•扬州)如图1,二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=(>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC 于点N.若在点T运动的过程中,为常数,试确定的值.【解答】解:(1)∵二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=2﹣2,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).故答案为P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴=时,=.∴当=时,点T运动的过程中,为常数.。
保密★启用前2016年中考真题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2(1)⨯-的结果是()A、12-B、2-C、1 D、22、若∠α的余角是30°,则cosα的值是()A、12BCD3、下列运算正确的是()A、21a a-=B、22a a a+=C、2a a a⋅=D、22()a a-=-4、下列图形是轴对称图形,又是中心对称图形的有()A、4个B、3个C、2个D、1个5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A、40°B、50°C、60°D、80°6、已知二次函数2y ax=的图象开口向上,则直线1y ax=-经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是()8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A、28℃,29℃B、28℃,29.5℃C、28℃,30℃D、29℃,29℃9、已知拋物线2123y x=-+,当15x≤≤时,y的最大值是()A、2B、23C、53D、7310、如图,已知OBOA,均为⊙O上一点,若︒=∠80AOB,则=∠ACB()A.80°B.70°C.60°D.40°11、如图,是反比例函数1kyx=和2kyx=(12k k<)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若2AOBS∆=,则21k k-的值是()A、1B、2C、4D、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A、1011升B、19升C、110升D、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011-的相反数是__________14、近似数0.618有__________个有效数字.15、分解因式:39a a-= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则'C DCD的值为__________ABCD16题图17题图18题图(第10题18、如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②'12O OE AOCS S∆∆=;③2AC AD=;④四边形O'DEO是菱形.其中正确的结论是__________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)32π-----+20、已知:12x x、是一元二次方程2410x x-+=的两个实数根.求:2121211()()x xx x+÷+的值.21、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到11.411.73 )22、如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA3π,求⊙O的半径r.23、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为34.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=100%⨯利润进价)25、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,EB的长.26、已知抛物线223 (0)y ax ax a a=--<与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.。
2016年江苏扬州市中考数学试卷(Word版) 2016年江苏扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1、实数是()A、有理数B、无理数C、正数D、负数2、2015年我国大学生毕业人数将达到xxxxxxx人,这个数据用科学记数法表示为()A、7.49×10^6B、7.49×10^5C、74.9×10^4D、0.749×10^73、如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A、音乐组B、美术组C、体育组D、科技组4、下列二次根式中的最简二次根式是()A、√30B、√12C、√8D、√(3×2)5、如图所示的物体的左视图为()无法排版,无法确定答案)6、如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A、△ABC绕点C顺时针旋转90°,再向下平移3B、△ABC绕点C顺时针旋转90°,再向下平移1C、△ABC绕点C逆时针旋转90°,再向下平移1D、△ABC绕点C逆时针旋转90°,再向下平移37、如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin C>sin D;②cos C>cos D;③tan C>tan D中,正确的结论为(。
)A、①②B、②③C、①②③D、①③8、已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A、a>1B、a≤2C、1<a≤2D、1≤a≤2二、填空题(本大题共有10小题,每小题3分,共30分)9、-3的相反数是 310、因式分解:x(x-9)=011、已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是 (9,1)12、色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如下表:抽取的体检表数n 色盲患者的频数m 色盲患者的频率m/n50 3 0.06100 7 0.07200 13 0.065400 29 0.073500 37 0.074800 55 0.0691000 69 0.0691200 85 0.0711500 105 0.072000 138 0.069表格已经排版好,无需修改)2016年江苏扬州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1、实数中,以下哪些是有理数?A、有理数B、无理数C、正数D、负数2、2015年我国大学生毕业人数将达到xxxxxxx人,这个数据用科学记数法表示为()A、7.49×10^6B、7.49×10^5C、74.9×10^4D、0.749×10^73、如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A、音乐组B、美术组C、体育组D、科技组4、以下二次根式中,哪个是最简二次根式?A、√30B、√12C、√8D、√(3×2)5、如图所示的物体的左视图为()无法排版,无法确定答案)6、如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A、△ABC绕点C顺时针旋转90°,再向下平移3B、△ABC绕点C顺时针旋转90°,再向下平移1C、△ABC绕点C逆时针旋转90°,再向下平移1D、△ABC绕点C逆时针旋转90°,再向下平移37、如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin C>sin D;②cos C>cos D;③tan C>tan D中,哪个结论是正确的?A、①②B、②③C、①②③D、①③8、已知x=2是不等式(x-5)(ax-3a+2)≤0的解,且x=1不是这个不等式的解,则实数a的取值范围是()A、a>1B、a≤2C、1<a≤2D、1≤a≤2二、填空题(本大题共有10小题,每小题3分,共30分)9、-3的相反数是 310、因式分解:x(x-9)=011、已知一个正比例函数的图像与一个反比例函数的图像的一个交点坐标为(1,3),则另一个交点坐标是 (9,1)12、以下是从男性体检信息库中随机抽取的体检表中的色盲患者数据。
2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(2016·江苏扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【考点】有理数的除法.【分析】根据因数等于积除以另一个因数计算即可得解.【解答】解:1÷(﹣2)=﹣.故选D.2.(2016·江苏扬州)函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选B.3.(2016·江苏扬州)下列运算正确的是()A.3x2﹣x2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,同底数幂的乘除法以及幂的乘方与积的乘方计算法则进行计算即可.【解答】解:A、原式=(3﹣1)x2=2x2,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.(2016·江苏扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【考点】简单几何体的三视图.【分析】首先判断几何体的三视图,然后找到答案即可.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.(2016·江苏扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.(2016·江苏扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【考点】配方法的应用;非负数的性质:偶次方.【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.(2016·江苏扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【考点】几何问题的最值.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.(2016·江苏扬州)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104,故答案为:1.2×104.10.(2016·江苏扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【考点】几何概率.【分析】刚好落在黑色三角形上的概率就是黑色三角形面积与总面积的比值,从而得出答案.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.(2016·江苏扬州)当a=2016时,分式的值是2018.【考点】分式的值.【分析】首先将分式化简,进而代入求出答案.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.(2016·江苏扬州)以方程组的解为坐标的点(x,y)在第二象限.【考点】二元一次方程组的解;点的坐标.【分析】先求出x、y的值,再根据各象限内点的坐标特点即可得出结论.【解答】解:,∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=﹣+1=,∴点(x,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.(2016·江苏扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【考点】多边形内角与外角.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.(2016·江苏扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【考点】平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.(2016·江苏扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【考点】菱形的性质.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.=4AD=4×6=24.C菱形ABCD故答案为:24.16.(2016·江苏扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=6,∴AC=CD=AD=×4=2,故答案为:2.17.(2016·江苏扬州)如图,点A在函数y=(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为2+4.【考点】反比例函数图象上点的坐标特征.【分析】由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.【解答】解:∵点A在函数y=(x>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C△ABO=AB+OB+OA=2+4.故答案为:2+4.18.(2016·江苏扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a≤5.【考点】二次函数的应用.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:设未来30天每天获得的利润为y,y=(20+4t)﹣(20+4t)a化简,得y=﹣4t2+t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴≥﹣4×302+×30+1400﹣20a解得,a≤5,又∵a>0,即a的取值范围是:0<a≤5.三、解答题(共10小题,满分96分)19.(2016·江苏扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【考点】实数的运算;整式的混合运算—化简求值;负整数指数幂;特殊角的三角函数值.【分析】(1)本题涉及负整数指数幂、二次根式化简、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式和平方差公式化简,然后把a、b的值代入计算..【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+2=9;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.(2016·江苏扬州)解不等式组,并写出该不等式组的最大整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,21.(2016·江苏扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A等级的人数及所占的比例即可得出总人数,进而可得出扇形统计图中D级所在的扇形的圆心角.(2)根据D等级的人数=总数﹣A等级的人数﹣B等级的人数﹣C等级的人数可补全图形.(3)先求出等级为D人数所占的百分比,然后即可求出大概的等级为D的人数.【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.(2016·江苏扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【考点】列表法与树状图法.【分析】(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.(2016·江苏扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B 落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【考点】矩形的性质;平行四边形的判定与性质;翻折变换(折叠问题).【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM 中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.(2016·江苏扬州)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【考点】分式方程的应用.【分析】设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,根据走过相同的路程360km,坐动车所用的时间比坐普通列车所用的时间少1小时,列方程求解.【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,由题意得,﹣=1,解得:x=120,经检验,x=120是原分式方程的解,且符合题意.答:该趟动车的平均速度为120km/h.25.(2016·江苏扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T≈1.97,T(80°)≈1.29,T(40°)≈0.68)【考点】相似形综合题.【分析】(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可;(2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=90°,AB=AC,作AD⊥BC于D,则∠B=60°,∴BD=AB,∴BC=AB,∴T=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T≈1.97,∴蚂蚁爬行的最短路径长为1.97×9≈17.7.26.(2016·江苏扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E 作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【考点】切线的性质.【分析】(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形;(2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=x,∴DG=0E=2x,根据AC=AB得:4x=x+2x+2﹣,x=1,∴0E=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.(2016·江苏扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A 旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【考点】四边形综合题.【分析】(1)当∠EAF被对角线AC平分时,易证△ACF≌△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE(CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45°,再判断出∠AFC+∠AEC=45°,从而求出∠AEC,而∠ACF=∠ACE=135°,得到△ACF∽△ECA,即可.【解答】解:(1)∵四边形ABCD是正方形,∴∠ACF=∠DCD=90°,∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CE=CE,∵CE=a,CF=b,∴a=b;(2)当△AEF是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF是等腰直角三角形,∴AF2=2FE2=2(CE2+CF2),AF2=2(AD2+BE2),∴2(CE2+CF2)=2(AD2+BE2),∴CE2+CF2=AD2+BE2,∴CE2+CF2=16+(4+CE)2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE,∴△ABE∽△ECF,∴,∴,∴4CF=CE(CE+4)②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,∵∠BAG+∠AGB=90°,∠AFC+∠CGF=90°,∠AGB=∠CGF,∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.(2016·江苏扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M 在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.【解答】解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴k=时,=.∴当k=时,点T运动的过程中,为常数.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC 的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)。
2016年江苏省扬州市中考数学试卷一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣2.(3分)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤13.(3分)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a64.(3分)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.5.(3分)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.6.(3分)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为.10.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.11.(3分)当a=2016时,分式的值是.12.(3分)以方程组的解为坐标的点(,y)在第象限.13.(3分)若多边形的每一个内角均为135°,则这个多边形的边数为.14.(3分)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=°.三、解答题(共10小题,满分96分)19.(8分)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.20.(8分)解不等式组,并写出该不等式组的最大整数解.21.(8分)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?22.(8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.24.(10分)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.2016年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每题3分,共24分)1.(3分)(2016•扬州)与﹣2的乘积为1的数是()A.2 B.﹣2 C.D.﹣【解答】解:1÷(﹣2)=﹣.故选D.2.(3分)(2016•扬州)函数y=中,自变量的取值范围是()A.>1 B.≥1 C.<1 D.≤1【解答】解:由题意得,﹣1≥0,解得≥1.故选B.3.(3分)(2016•扬州)下列运算正确的是()A.32﹣2=3 B.a•a3=a3C.a6÷a3=a2D.(a2)3=a6【解答】解:A、原式=(3﹣1)2=22,故本选项错误;B、原式=a1+3=a4,故本选项错误;C、原式=a6﹣3=a3,故本选项错误;D、原式=a2×3=a6,故本选项正确.故选:D.4.(3分)(2016•扬州)下列选项中,不是如图所示几何体的主视图、左视图、俯视图之一的是()A.B. C.D.【解答】解:几何体的主视图为选项D,俯视图为选项B,左视图为选项C.故选A.5.(3分)(2016•扬州)剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故错误;B、不是中心对称图形,故错误;C、是中心对称图形,故正确;D、不是中心对称图形,故错误;故选:C.6.(3分)(2016•扬州)某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)1819202122人数25221则这12名队员年龄的众数、中位数分别是()A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.7.(3分)(2016•扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N 的大小关系为()A.M<N B.M=N C.M>N D.不能确定【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A8.(3分)(2016•扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.二、填空题(本大题共有10小题,每题3分,共30分)9.(3分)(2016•扬州)2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 1.2×104.【解答】解:12000=1.2×104,故答案为:1.2×104.10.(3分)(2016•扬州)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.11.(3分)(2016•扬州)当a=2016时,分式的值是2018.【解答】解:==a+2,把a=2016代入得:原式=2016+2=2018.故答案为:2018.12.(3分)(2016•扬州)以方程组的解为坐标的点(,y)在第二象限.【解答】解:,∵①﹣②得,3+1=0,解得=﹣,把的值代入②得,y=+1=,∴点(,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.13.(3分)(2016•扬州)若多边形的每一个内角均为135°,则这个多边形的边数为8.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.14.(3分)(2016•扬州)如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1=80°.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=80°,故答案为:80.15.(3分)(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.16.(3分)(2016•扬州)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.17.(3分)(2016•扬州)如图,点A在函数y=(>0)的图象上,且OA=4,过点A作AB⊥轴于点B,则△ABO的周长为2+4.【解答】解:∵点A在函数y=(>0)的图象上,∴设点A的坐标为(n,)(n>0).在Rt△ABO中,∠ABO=90°,OA=4,∴OA2=AB2+OB2,又∵AB•OB=•n=4,∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,∴AB+OB=2,或AB+OB=﹣2(舍去).∴C=AB+OB+OA=2+4.△ABO故答案为:2+4.18.(3分)(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t 为正整数)的增大而增大,a的取值范围应为0<a<6.【解答】解:设未30天每天获得的利润为y,y=(110﹣40﹣t)(20+4t)﹣(20+4t)a化简,得y=﹣4t2+(260﹣4a)t+1400﹣20a每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,∴>29.5解得,a<6,又∵a>0,即a的取值范围是:0<a<6.三、解答题(共10小题,满分96分)19.(8分)(2016•扬州)(1)计算:(﹣)﹣2﹣+6cos30°;(2)先化简,再求值:(a+b)(a﹣b)﹣(a﹣2b)2,其中a=2,b=﹣1.【解答】解:(1)(﹣)﹣2﹣+6cos30°=9﹣2+6×=9﹣2+3=9+;(2)(a+b)(a﹣b)﹣(a﹣2b)2=a2﹣b2﹣a2+4ab﹣4b2=4ab﹣5b2,当a=2,b=﹣1时,原式=4×2×(﹣1)﹣5×1=﹣13.20.(8分)(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,≥﹣2,解不等式②得,<1,∴不等式组的解集为﹣2≤<1.∴不等式组的最大整数解为=0,21.(8分)(2016•扬州)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A、B、C、D四个等级.某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图.(1)这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°;(2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D?【解答】解:(1)15÷30%=50(名),50﹣15﹣22﹣8=5(名),360°×=36°.答:这次抽样调查共抽取了50名学生的生物成绩.扇形统计图中,D等级所对应的扇形圆心角度数为36°.故答案为:50,36;(2)50﹣15﹣22﹣8=5(名),如图所示:(3)600×=60(名).答:这次模拟考试有60名学生的生物成绩等级为D.22.(8分)(2016•扬州)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为;(2)求他们三人在同一个半天去游玩的概率.【解答】解:(1)根据题意,画树状图如图,由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为=;答:他们三人在同一个半天去游玩的概率是.故答案为:(1).23.(10分)(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N 处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=,则EM=8﹣,CM=10﹣6=4,在Rt△CEM中,(8﹣)2+42=2,解得:=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.24.(10分)(2016•扬州)动车的开通为扬州市民的出行带了方便.从扬州到合肥,路程为360m,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.【解答】解:设普通列车的速度为为m/h,动车的平均速度为1.5m/h,由题意得,﹣=1,解得:=120,经检验,=120是原分式方程的解,且符合题意.动车的平均速度=120×1.5=180m/h.答:该趟动车的平均速度为180m/h.25.(10分)(2016•扬州)如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.(1)求证:=;(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.①理解巩固:T(90°)=,T(120°)=,若α是等腰三角形的顶角,则T(α)的取值范围是0<T(α)<2;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)【解答】解:(1)∵AB=AC,DE=DF,∴=,又∵∠A=∠D,∴△ABC∽△DEF,∴=;(2)①如图1,∠A=90°,AB=AC,则=,∴T(90°)=,如图2,∠A=120°,AB=AC,作AD⊥BC于D,则∠B=30°,∴BD=AB,∴BC=AB,∴T(120°)=;∵AB﹣AC<BC<AB+AC,∴0<T(α)<2,故答案为:;;0<T(α)<2;②∵圆锥的底面直径PQ=8,∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π,设扇形的圆心角为n°,则=8π,解得,n=160,∵T(80°)≈1.29,∴蚂蚁爬行的最短路径长为1.29×9≈11.6.26.(10分)(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.【解答】解:(1)△ABC是等腰三角形,理由是:如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形;(2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=,则OA=OB=OE=2,AG=,∴DG=OE=2,根据AC=AB得:4=+2+2﹣,=1,∴OE=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=﹣2,⊙O的半径为2.27.(12分)(2016•扬州)已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a、b的值;(2)当△AEF是直角三角形时,求a、b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a、b满足的关系式,并说明理由.【解答】解:(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90°∵AC是正方形ABCD的对角线,∴∠ACB=∠ACD=45°,∴∠ACF=∠ACE,∵∠EAF被对角线AC平分,∴∠CAF=∠CAE,在△ACF和△ACE中,,∴△ACF≌△ACE,∴CF=CE,∵CE=a,CF=b,∴a=b,∵△ACF≌△ACE,∴∠AEF=∠AFE,∵∠EAF=45°,∴∠AEF=∠AFE=67.5°,∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF=∠CAE=22.5°,∴∠CAE=∠CEA,∴CE=AC=4,即:a=b=4;(2)当△AEF是直角三角形时,①当∠AFE=90°时,∴∠AFD+∠CFE=90°,∵∠CEF+∠CFE=90°,∴∠AFD=∠CEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF∴AF=EF,在△ADF和△FCE中∴△ADF≌△FCE,∴FC=AD=4,CE=DF=CD+FC=8,∴a=8,b=4②当∠AEF=90°时,同①的方法得,CF=4,CE=8,∴a=4,b=8.(3)ab=32,理由:如图,∵AB∥CD∴∠BAG=∠AFC,∵∠BAC=45°,∴∠BAG+∠CAF=45°,∴∠AFC+∠CAF=45°,∵∠AFC+∠AEC=180°﹣(∠CFE+∠CEF)﹣∠EAF=180°﹣90°﹣45°=45°,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135°,∴△ACF∽△ECA,∴,∴EC×CF=AC2=2AB2=32∴ab=32.28.(12分)(2016•扬州)如图1,二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=(>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC 于点N.若在点T运动的过程中,为常数,试确定的值.【解答】解:(1)∵二次函数y=a2+b的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=2﹣2,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).故答案为P(1+,2)或(1﹣,2)或P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴=时,=.∴当=时,点T运动的过程中,为常数.。
数学精品复习资料扬州市2016年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12 D .12-2.函数y =x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13.下列运算正确的是 ( ) A . 2233x x -= B .33a aa ? C .632a a a ? D .236()a a =4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是 ( )(第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D6则这12A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁 7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
将该矩形纸片剪去3个 等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( ) A .6 B .3 C .2.5 D .2二、填空题(本大题共有10小题,每小题3分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 。
扬州市2016年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12 D .12-2.函数y =x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤13.下列运算正确的是 ( ) A . 2233x x -= B .33a aa ? C .632a a a ? D .236()a a =4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是 ( )(第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D6则这12名队员年龄的众数、中位数分别是 ( ) A .2,20岁 B .2,19岁 C .19岁,20岁 D .19岁,19岁7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
将该矩形纸片剪去3个 等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( ) A .6 B .3 C .2.5 D .2二、填空题(本大题共有10小题,每小题3分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为 。
10.如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为 。
11.当a=2016时,分式242a a --的值是 。
12.以方程组221y x y x ì=+ïí=-+ïî的解为坐标的点(x ,y )在第 象限。
13.若多边形的每一个内角均为135°,则这个多边形的边数为 。
14.如图,把一块三角板的60°角的顶点放在直尺的一边上,若∠1=2∠2,则∠1= °。
15.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,E 为AD 的中点,若OE=3,则菱形ABCD 的周长为 。
16.如图,⊙O 是△ABC 的外接圆,直径AD=4,∠ABC=∠DAC ,则AC 长为 。
17.如图,点A 在函数4y x=(x >0)的图像上,且OA=4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为 。
第10题第14题(第8题)BC.18.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0)。
未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元。
通过市场调研发现,该时装单价每降1元,每天销量增加4件。
在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 。
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分) (1)计算:21()6cos303---?; (2)先化简,再求值:2()()(2)a b a b a b +---,其中a=2,b= -120.(本题满分8分)解不等式组22(4)113x x x x ì-+ïí-+ïî≤<,并写出该不等式组的最大整数解。
21.(本题满分8分)从今年起,我市生物和地理会考实施改革,考试结果以等级形式呈现,分A 、B 、C 、D 四个等级。
某校八年级为了迎接会考,进行了一次模拟考试,随机抽取部分学生的生物成绩进行统计,绘制成如下两幅不完整的统计图。
(1)这次抽样调查共抽取了 名学生的生物成绩。
扇形统计图中,D 等级所对应的扇形圆心角度数为 °; (2)将条形统计图补充完整;(3)如果该校八年级共有600名学生,请估计这次模拟考试有多少名学生的生物成绩等级为D ? 22.(本题满分8分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩。
(1)小明和小刚都在本周日上午去游玩的概率为 ; (2)求他们三人在同一个半天去游玩的概率。
23.(本题满分10分)如图,AC 为矩形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处。
(1)求证:四边形AECF 是平行四边形;(2)若AB=6,AC=10,求四边形AECF 的面积。
24.(本题满分10分)动车的开通为扬州市民的出行带来了方便。
从扬州到合肥,路程为360km ,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度。
25.(本题满分10分)如图1,△ABC 和△DEF 中,AB=AC ,DE=DF ,∠A=∠D 。
(1)求证:BC EFAB DE=; (2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也就确定,我们把这个比值记作T(A),即()A BCT A A AB==∠的对边(底边)∠的邻边(腰),如T(60°)=1.①理解巩固:T(90°)= ,T(120°)= ,若α是等腰三角形的顶角,则T(α)的取值范围是 ;②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点这沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1)。
(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)26.(本题满分10分)如图1,以△ABC 的边AB 为直径的⊙O 交边BC 于点E ,过点E 作⊙O 的切线交AC 于点D ,且ED ⊥AC. (1)试判断△ABC 的形状,并说明理由;(2)如图2,若线段AB 、DE 的延长线交于点F ,∠C=75°,CD=2-O 的半径和BF 的长.图2图1FAB27.(本题满分12分)已知正方形ABCD 的边长为4,一个以点A 为顶点的45°角绕点A 旋转,角的两边分别与边BC 、DC 的延长线交于点E 、F ,连接EF 。
设CE=a ,CF=b 。
(1)如图1,当∠EAF 被对角线AC 平分时,求a 、b 的值; (2)当△AEF 是直角三角形时,求a 、b 的值;(3)如图3,探索∠EAF 绕点A 旋转的过程中a 、b 满足的关系式,并说明理由。
图3图2(备用图)图128.(本题满分12分)如图1,二次函数2y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1.(1)求这个二次函数的表达式;(2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标;(3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y 轴交OC 于点N 。
若在点T 运动的过程中,2ON OM为常数,试确定k 的值。
图3图2(备用图)图1参考答案一.选择题D B D A C D A C 二、填空题9. 4102.1⨯ 10.3111. 2018 12. 二 13. 8 14. 80 15. 24 16.22 17.462+ 18.50≤<a 三、解答题19.(1) 39+ (2) 13- 20. 12-<≤x 最大整数解为0 21.(1)50 36(2)5人(图略) (3)60人 22.(1)41 (2)41 23.(1)证明(略) (2)3024. 180km/h25.(1)证明略(只需说明△ABC~△DEF ) (2)①23 2)(0<<a T② 11.626.(1)等腰三角形 (2)半径=2,BF=2-33427.(1)a=b=24(2)a=8,b=4 或 a=4.b=8 (3)ab=32 28.(1)x x y 22-=(2)P (415,+)或P (213,+) (3)k=21。