蠕变---高温强度与断裂
- 格式:ppt
- 大小:14.32 MB
- 文档页数:61
耐热钢的高温力学性能耐热钢的基本性能是它在高温下的力学性能和耐腐蚀性能,同时还有常温下的力学性能、工艺性能和物理性能等。
耐热钢的高温力学性能主要包括蠕变性能、持久强度、疲劳性能、松弛性能等。
1 蠕变性能耐热材料的蠕变是指温度高于0.5T下,材料所承受的应力远低熔点于屈服强度的应力时,随着加载时间的持续增加而产生的缓慢塑性变形现象。
通常用蠕变曲线来描述材料的蠕变规律。
在实践中通常使用条件蠕变极限来测定耐热钢的蠕变性能。
条件蠕变极限是指在获得一定变形速率,在规定时间内获得一定总变形量的应力。
一般用下列两种方式表示:表示;1) 以伸长率确定蠕变极限时,用σδτ/τ表示。
2) 以蠕变速率确定蠕变极限时,用σv在工程实践中常用规定的蠕变速率确定蠕变极限。
汽轮机、锅炉设备零部件的工作时间一般规定为105h。
用于汽轮机、锅炉设备的耐热钢,其条件蠕变极限的确定是以105h变形为1%时的应力来计算零部件的强度。
2 持久强度耐热材料的持久强度是指在给定的温度下和规定的时间内断裂时的强度,要求给出的只是此时所能承受的最大应力。
持久强度试验不仅反映材料在高温长期应力作用下的断裂应力,而且还表明断裂时的塑性(即持久塑性)。
耐热材料零部件在高温下工作的时间长达几百小时,几千小时,甚至几万小时,而持久强度试验不可能进行那么长时间,一般只做一些应力较高而时间较短的试验,然后根据这些试验数据利用外推法,得出更长时间的持久强度值。
但外推法所得持久强度值可能与实际值有差距,因此,重要的材料仍需进行长达数万小时的持久强度试验。
耐热材料零部件由于温度波动会加速蠕变过程,降低持久强度。
有些耐热钢有缺口敏感性。
缺口所造成的应力集中对持久强度的影响决定于试验温度、缺口的几何形状、钢的持久塑性、热处理工艺及钢的成分等因素。
3 疲劳性能高温下工作的材料,除经受机械疲劳之外,还经受热疲劳作用。
材料经多次反复热应力循环以后导致破坏的过程称为热疲劳。
航空发动机涡轮叶片、导向叶片、涡轮盘及汽轮机叶片等部件经常处于温度急剧交变情况下工作.使材料内部承受交变的热应力,同时伴随着弹性变形的循环,由此引起塑性变形逐渐积累损伤,最后导致材料破坏。
力学性能试验:蠕变试验是什么所谓蠕变,就是指金属材料在恒温、x恒载荷的长期作用下缓慢的产生塑性变形的现象。
在高温条件下,蠕变对构件产生的影响十分显著。
严格来说,任何温度下金属材料都可能产生蠕变,但低温时并不明显,因此可以忽略不计;但当约比温度>0.3的时候,蠕变效应将比较明显,此时就必须考虑蠕变的影响。
蠕变试验的研究意义目前在石油化工、能源、医药、冶金等行业中,高温及腐烛性较强的产品非常普遍,由此对承载构件的安全可靠性就提出了更高的要求。
这些承载构件的意外破坏将可能会导致灾难性的后果和重大的经济损失。
调查发现,大多数高温环境承载构件的失效是由高温、高压作用引起的高温蠕变所致。
不同金属材料的组织、化学成分和热物理性能都存在着较大的差异,因此其蠕变性能的高低也不尽相同。
例如,低合金钢和不锈钢之间的蠕变性能就存在很大的差异。
鉴此,研究金属材料的高温蠕变特性就显得尤为重要。
现如今,在研究金属材料蠕变特性时,除单轴拉伸蠕变试验方法外,研究者还提出了微小型试样技术等新型试验方法。
新的方法能解决单轴拉伸蠕变拉伸试验耗材多、试样制备要求严格等问题,但仍然耗时费力。
且对于在役设备来说,这些方法都会不同程度影响设备的正常运行。
蠕变的分类由于施加应力方式的不同,x e 可分为高温压缩蠕变、高温拉伸蠕变、高温弯曲蠕变和高温扭转蠕变。
高温蠕变比高温强度能更有效地预示材料在高温下长期使用时的应变趋势和断裂寿命,是材料的重要力学性能之一,它与材料的材质及结构特征有关。
蠕变试验方法单轴拉伸蠕变试验蠕变试验方法之一采用单轴拉伸试验温度一定的条件下,将一组试样置于不同应力下进行试验,得到一组孺变曲线,然后画出该温度下应力与规定时间蠕变速率的关系曲线,即可求出规定蠕变速率下的蠕变极限。
三点弯小试样蠕变试验单轴拉伸蠕变试验方法用材较多且对试样尺寸要求严格。
微小型试样技术是解决这种问题的有效方法。
因此,马渊睿等人通过将微小型试样技术与三点弯曲蠕变试验方法相结合,提出了三点弯小试样试验方法。
第7章 材料在高温下的力学性能7.1 材料在高温下力学性能的特点有许多机件是在高温下工作的,如高压锅炉,蒸汽轮机、燃气轮机、以及化工厂的反应容器等,对于这些机件的性能要求,就不能以常温下的力学性能来衡量。
材料在高温下的力学性能明显地不同于室温。
首先,材料在高温将发生蠕变现象。
即在应力恒定的情况下,材料在应力的持续作用下不断地发生变形。
这样,材料在高温下的强度便与载荷作用的时间有关了。
载荷作用的时间越长,引起一定变形速率(如)或变形量的形变抗力(蠕变极限)以及断裂抗力(持久强度)就越低。
粗略地说,发生蠕变现象的温度,对金属材料约为T>0.3-0.4TM ;(TM为材料的熔点以绝对温度K计);对陶瓷约为T>0.4-0.5TM ;对高分子材料为T>Tg,Tg为玻璃化温度,多数高分子材料在室温下就发生蠕变。
由于蠕变的产生,我们就不能笼统地说材料在某一高温下其强度是多少,因为高温强度与时间这一因素有关。
而材料在常温下的强度是不考虑时间因素的。
除非试验时加载的应变速率非常高。
材料在高温下不仅强度降低,而且塑性也降低。
应变速率越低,载荷作用时间越长,塑性降低得越显著。
和蠕变现象相伴随的还有高温应力松驰。
一个紧固螺栓在高温长时间作用下,其初始预紧力逐渐下降,这种现象也是由蠕变造成的。
另外,蠕变还会产生疲劳损伤,使高温疲劳强度下降,为此,必须研究蠕变和疲劳的交互作用。
材料在高温下的力学性能特点都是和蠕变过程紧密相连的。
第一,材料在变形时首先总是引起形变强化,蠕变之所以能发生,必然还伴随着一个变形的软化过程,这个软化过程就是高温回复。
第二,蠕变的变形机制必然与在常温下的不同。
材料在常温下的变形可通过位错的滑动产生滑移和孪晶两种变形型式。
而在高温下位错还可通过攀移,使位错遇到障碍时作垂直于滑移面的运动,如图7-0所示。
这样位错便不会阻塞在障碍面前,而使得变形能继续下去,这就是一个变形的软化过程。
可以粗略地说,蠕变就是位错的滑移和攀移交替进行的结果。
本章内容小结一、高温下的蠕变1.蠕变定义:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。
它与塑性变形不同,塑性变形通常在应力超过屈服极限之后才出现,而蠕变只要应力的作用时间相当长,它在应力小于屈服极限施加的力时也能出现。
2.蠕变研究的意义发电装置的蒸汽轮机、化工设备以及航空发动机的涡轮叶片等工业装置都是在高温下运行的。
这些装置的结构材料在高温长期运行中缓慢地发生塑性变形,甚至发生断裂,导致材料失效,甚至引发灾难性的事故。
因此,研究材料高温变形和断裂的现象,机制和理论,对装置的安全运行,开发新材料等方面具有重要的理论和工程意义。
3.高温蠕变的特点(1)常温下塑性变形只引起加工硬化,而高温下塑性变形引起的加工硬化的同时发生动态回复甚至再结晶;(2)常温下塑性变形与载荷的持续时间无关,而高温下塑性变形与载荷的持续时间相关。
这是因为高温变形与扩散相关;(3)常温下只有应力超过屈服极限时才能发生塑性变形,而在高温下,即使应力低于屈服极限,也会随时间缓慢发生塑性变形。
4.蠕变的不同阶段第一阶段:蠕变速度随时间减小(初始蠕变阶段);蠕变开始时,金属内位错密度低,变形抗力小,蠕变速度很快;蠕变开始后由于变形引起加工硬化,蠕变速率逐渐降低;第二阶段:蠕变速度不变(稳态蠕变阶段);随着加工硬化过程动态回复速率也逐渐增加,最终加工硬化与回复软化过程达到动态平衡,蠕变速率保持恒定,进入变形达到稳态蠕变;第三阶段:蠕变速度随时间加快(加速蠕变阶段)。
内部产生蠕变空洞和发生颈缩导致实际应力升高等因素导致蠕变速度增加。
研究蠕变现象的两种试验方法(1)恒定温度和应力下测量蠕变变形量随时间的变化--在一定温度和载荷作用下变形;(2)恒定温度和应变速度下测量流变应力随应变的变化--以一定速度塑性变形时需计算载荷。
5.蠕变本构方程蠕变本构方程反应的是稳态蠕变速度与温度,应力的关系。
(1)蠕变速度与应力的关系较低应力下:(幂率蠕变,power law creep),其中A1:与材料和温度有关的常数,n: 蠕变速度的应力指数。
高温蠕变断裂机理
高温蠕变是一种结构材料在高温、高应力和长时间荷载作用下发生的
塑性变形现象,研究高温蠕变对于材料设计和安全评估至关重要。
高温蠕
变引起断裂的机理主要包括以下几个方面:
1.组织破坏:高温蠕变下,材料微观组织强烈变化,出现粗化、孔洞
和空隙等缺陷,这会导致材料强度下降和断裂。
2.晶体细化:高温蠕变时,由于晶粒的变形和滑移,晶粒大小会逐渐
减小,因而加快了材料的变形速度和断裂过程。
3.民谷效应:高温蠕变时,在高应力条件下,材料的变形会逐渐增大,服役时间越长,塑性应变逐渐逼近断裂应变,材料便会发生断裂。
4.化学反应:高温蠕变下,材料表面可能发生氧化、还原等化学反应,导致材料性能下降。
综上所述,高温蠕变断裂的机理是一个复杂的多因素相互作用的过程,需要综合考虑材料的化学成分、微观组织以及外部荷载和环境等因素。
高温合金钢的高温机械性能测试与评价高温合金钢是一种用于高温环境下的特种钢材,具有优异的高温机械性能,被广泛应用于航空、航天、能源等领域。
为了确保其在高温条件下的可靠性和性能,对高温合金钢的高温机械性能进行测试与评价是至关重要的。
1. 强度和延伸性测试高温合金钢在高温环境下的强度和延伸性是评价其机械性能的重要指标。
常用的测试方法包括拉伸试验和冲击试验。
拉伸试验是指在一定应变速率下对试样进行拉伸,测定其抗拉强度、屈服强度、延伸率等力学性能指标。
高温环境下的拉伸试验要求使用专用设备,温度范围通常从室温到高温条件。
通过拉伸试验可以评估高温合金钢在高温下的强度和延伸性,为材料的设计和应用提供依据。
冲击试验是另一种常用的测试方法,用于评估材料在高温条件下的抗冲击性能。
冲击试验一般使用冲击试样,通过对其施加冲击载荷来测定材料的韧性和抗冲击能力。
高温合金钢在高温环境下的冲击试验需要在恒温条件下进行,以模拟实际使用情况下的冲击载荷。
2. 硬度测试硬度是反映材料抗压强度的指标,通常使用洛氏硬度、维氏硬度等进行测定。
高温环境对高温合金钢的硬度有较大影响,因此在高温条件下的硬度测试和评价至关重要。
在高温下进行硬度测试需要考虑到试样在测试过程中的热变形和蠕变现象。
确保测试过程中试样的稳定状态是关键,通常使用高温硬度试验机进行测试。
通过在不同温度下对高温合金钢进行硬度测试,可以了解其在高温环境下的硬度变化规律,为材料设计和使用提供依据。
3. 疲劳性能测试高温合金钢在高温条件下的疲劳性能是评价其耐久性能的重要指标。
疲劳性能测试可以模拟材料在实际使用条件下受到的循环载荷,通过测定材料的疲劳寿命来评估其抗疲劳性能。
高温合金钢的疲劳性能测试主要包括低周疲劳试验和高周疲劳试验。
低周疲劳试验是在较高应变幅下进行,可以评估材料在高温环境下的疲劳寿命和抗疲劳性能。
高周疲劳试验是在较低应变幅下进行,用于评估材料在高温条件下的高周疲劳强度。
疲劳性能测试需要考虑到试样的热蠕变和材料疲劳寿命的统计性质。