高中数学 第一章 不等式的基本性质和证明的基本方法 1_1_2 一元一次不等式和一元二次不等式的解法
- 格式:ppt
- 大小:13.13 MB
- 文档页数:25
必修1→4→5→2→3普通高中课程标准实验教科书数学必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用普通高中课程标准实验教科书数学必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系普通高中课程标准实验教科书数学必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码普通高中课程标准实验教科书数学必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换普通高中课程标准实验教科书数学必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式普通高中课程标准实验教科书数学选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分普通高中课程标准实验教科书数学选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2结构图信息技术应用用Word2002绘制流程图选修2 系列2由3个模块组成选修2-1常用逻辑用语圆锥曲线空间中的向量与立体几何选修2-2导数及其应用推理与证明数系的扩充与复数的引入选修2-3计数原理统计案例概率选修3 系列3由6个模块组成选修3-1 数学史选讲选修3-2 信息安全与密码选修3-3球面上的几何选修3-4对称与群选修3-5欧拉公式与闭曲面分类选修3-6三等分角与数域扩充选修4 系列4由10专题组成选修4-1几何证明选讲选修4-2矩阵与变换选修4-3数列与差分选修4-4坐标系与参数方程选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法第一节不等式的基本性质和一元二次不等式的解法第二节基本不等式第三节绝对值不等式的解法第四节绝对值的三角不等式第五节不等式证明的基本方法第二章柯西不等式与排序不等式及其应用第一节柯西不等式第二节排序不等式第三节平均值不等式(选学)第四节最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式第一节数学归纳法原理第二节用数学归纳法证明不等式,贝努利不等式选修4-6初等数论初步选修4-7优选法与试验设计初步选修4-8统筹法与图论初步选修4-9风险与决策选修4-10开关电路与布尔代数。
不等式的性质与解法不等式是数学中一种重要的表示不等关系的数学语句,它与等式相对应。
研究不等式的性质和解法对于理解数学知识、解决实际问题具有重要意义。
本文将探讨不等式的性质以及一些常见的解法,并为读者提供一些实用的技巧。
一、不等式的基本性质不等式的基本性质包括传递性、对称性和加法、减法、乘法性质。
1. 传递性:如果 a > b 且 b > c,则有 a > c。
这种性质使得不等式在运算过程中具有连续性,方便我们研究和解决问题。
2. 对称性:如果 a > b,则有 b < a。
不等式在进行对称变换时可以改变不等式符号的方向,但不等式仍然成立。
3. 加法、减法性质:如果 a > b,则有 a + c > b + c,a - c > b - c。
不等式在加法和减法运算中,可以将数加减到两边,不等关系仍然成立。
4. 乘法性质:如果 a > b 且 c > 0,则有 ac > bc,如果 c < 0,则有 ac < bc。
不等式在乘法运算中可以将等式两边乘以正数,或者乘以负数并改变不等关系的方向。
二、解一元一次不等式一元一次不等式是最简单的不等式形式,解这类不等式的方法和解方程类似。
以下是解一元一次不等式的步骤:1. 将不等式中的所有项移到一边,使不等式变为“不等于0”的形式。
2. 如果不等式两边乘以负数,则需要改变不等式的方向。
3. 对于一元一次不等式,在不等式两边同时加上同一个数或者乘以同一个正数时,不等式的不等关系不变。
4. 求解出不等式的解集。
例如,解不等式2x - 5 > 7,按照上述步骤进行解答:1. 将不等式变为“不等于0”的形式:2x - 5 - 7 > 0。
2. 对不等式两边同时加上同一个数:2x - 12 > 0。
3. 不等式两边同时除以正数2:x - 6 > 0。
4. 求解出不等式的解集:x > 6。
高中数学第一章不等式的基本性质和证明不等式的基本方法1-3绝对值不等式的解法学案新人教B版选修4_5[读教材·填要点]1.含绝对值的不等式|x|≤a与|x|≥a的解集2.(1)|ax+b|≤c⇔-c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c或ax+b≤-c.3.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法(1)分区间讨论法:以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负进而去掉绝对值符号是解题关键.(2)图象法:构造函数,结合函数的图象求解.(3)几何法:利用绝对值不等式的几何意义求解.[小问题·大思维]1.|x|以及|x-a|±|x-b|表示的几何意义是什么?提示:|x|的几何意义是数轴上表示数x的点到原点O的距离;|x-a|±|x-b|的几何意义是数轴上表示数x的点与表示数a,b的点的距离之和(差).2.如何解|x-a|<|x-b|、|x-a|>|x-b|(a≠b)型的不等式的解集?提示:可通过两边平方去绝对值符号的方法求解.[例1](1)1<|x -2|≤3;(2)|2x +5|>7+x ;(3)≤.[思路点拨] 本题考查较简单的绝对值不等式的解法.解答本题(1)可利用公式转化为|ax +b|>c(c >0)或|ax +b|<c(c >0)型不等式后逐一求解,也可利用绝对值的定义分两种情况去掉绝对值符号,还可用平方法转化为不含绝对值的不等式.(2)可利用公式法转化为不含绝对值的不等式.(3)可分类讨论去掉分母和绝对值.[精解详析] (1)法一:原不等式等价于不等式组⎩⎪⎨⎪⎧ |x -2|>1,|x -2|≤3,即⎩⎪⎨⎪⎧ x <1或x >3,-1≤x≤5,解得-1≤x<1或3<x≤5,所以原不等式的解集为{x|-1≤x<1或3<x≤5}.法二:原不等式可转化为:①或②⎩⎪⎨⎪⎧ x -2<0,1<--,由①得3<x≤5,由②得-1≤x<1,所以原不等式的解集是{x|-1≤x<1或3<x≤5}.(2)由不等式|2x +5|>7+x ,。
第1章 不等式的基本性质和证明的基本方法[自我校对]①含绝对值的不等式 ②比较法 ③综合法和分析法 ④反证法和放缩法值时,和有最小值.在具体应用基本不等式解题时,一定要注意适用的范围和条件:“一正、二定、三相等”.【例1】 (1)求函数y =x 2(1-5x )⎝⎛⎭⎪⎫0≤x ≤15的最大值;(2)已知a ,b ,c ∈(0,+∞),a +b +c =1,求y =1a +1b +1c的最小值.[精彩点拨] 根据条件,发现定值,利用基本不等式求最值. [规范解答] (1)y =52x 2⎝ ⎛⎭⎪⎫25-2x =52·x ·x ·⎝ ⎛⎭⎪⎫25-2x . ∵0≤x ≤15,∴25-2x ≥0,∴y ≤52⎣⎢⎢⎡⎦⎥⎥⎤x +x +⎝ ⎛⎭⎪⎫25-2x 33=4675. 当且仅当x =x =25-2x ,即x =215时,上式取等号.因此y max =4675.(2)y =1a +1b +1c =⎝ ⎛⎭⎪⎫1a +1b +1c (a +b +c )=3+⎝ ⎛⎭⎪⎫b a +a b +c a +a c +c b +b c ,而b a +a b +c a +a c +c b +b c≥6,当且仅当a =b =c =13时取到等号,则y ≥9,即y =1a +1b +1c的最小值为9.1.设a >0,b >0,且a +b =1a +1b.证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.[证明] 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1,这与ab =1矛盾. 故a 2+a <2与b 2+b <2不可能同时成立.化成一般的不等式,主要的依据是绝对值的定义.1.公式法|f (x )|>g (x )⇔f (x )>g (x )或f (x )<-g (x ); |f (x )|<g (x )⇔-g (x )<f (x )<g (x ). 2.平方法|f (x )|>|g (x )|⇔[f (x )]2>[g (x )]2. 3.零点分段法含有两个以上绝对值符号的不等式,可先求出使每个含绝对值符号的代数式值等于零的未知数的值,将这些值依次在数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号内的代数式在每一个区间上的符号,转化为不含绝对值的不等式去解.【例2】 解下列关于x 的不等式: (1)|x -x 2-2|>x 2-3x -4; (2)|x -2|-|2x +5|>2x .[精彩点拨] 去掉绝对值号,转化为没有绝对值的不等式求解.(1)x -x 2-2=-x 2+x -2=-⎝ ⎛⎭⎪⎫x -122-74<0;(2)通过分类讨论去掉绝对值. [规范解答] 法一:原不等式等价于x -x 2-2>x 2-3x -4或x -x 2-2<-(x 2-3x -4),解得1-2<x <1+2或x >-3,∴原不等式的解集为{x |x >-3}.法二:∵|x -x 2-2|=|x 2-x +2|=x 2-x +2, ∴原不等式等价于x 2-x +2>x 2-3x -4⇔x >-3. ∴原不等式的解集为{x |x >-3}.(2)分段讨论:①当x <-52时,原不等式变形为2-x +2x +5>2x ,解得x <7,∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-52. ②当-52≤x ≤2时,原不等式变形为2-x -2x -5>2x ,解得x <-35.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52≤x <-35. ③当x >2时,原不等式变形为x -2-2x -5>2x , 解得x <-73,∴原不等式无解.综上可得,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-35.2.解不等式|x +1|+|x |<2.[解] 法一:当x ≤-1时,-x -1-x <2,解得-32<x ≤-1;当-1<x <0时,x +1-x <2,解得-1<x <0; 当x ≥0时,x +1+x <2,解得0≤x <12.因此,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <12. 法二:令f (x )=|x +1|+|x |-2 =⎩⎪⎨⎪⎧2x -1(x ≥0),-1(-1≤x <0),-2x -3(x <-1).作函数f (x )的图象(如图), 知当f (x )<0时,-32<x <12.故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <12. 法三:由绝对值的几何意义知,|x +1|表示数轴上点P (x )到点A (-1)的距离,|x |表示数轴上点P (x )到点O (0)的距离.由条件知,这两个距离之和小于2.作数轴(如图),知原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <12. 法四:原不等式⇔0≤|x +1|<2-|x |, ∴(x +1)2<(2-|x |)2,且|x |<2, 即0≤4|x |<3-2x ,且|x |<2. ∴16x 2<(3-2x )2,且-2<x <2, 解得-32<x <12.故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <12.次还有反证法、放缩法、换元法、判别式法、构造函数法等,但这些方法不是孤立的,它们相互渗透、相辅相承,有的题可以有多种证法,而有的题目要同时用几种方法才能解决,因此我们在平时解题中要通过一题多解,一解多法的反复训练,加强对各种方法的区别与联系的认识,把握每种方法的长处和不足,从而不断提高我们分析问题和解决问题的能力.1.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数大小与运算的关系.其主要步骤是:作差——恒等变形——判断差值的符号——结论.其中,变形是证明推理中的关键,变形的目的在于判断差的符号.【例3】 设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2. [精彩点拨] 作差,变形,定号,下结论即可. [规范解答] 3a 3+2b 3-(3a 2b +2ab 2) =3a 2(a -b )+2b 2(b -a )=(a -b )(3a 2-2b 2). ∵a ≥b >0,∴a -b ≥0,3a 2-2b 2>2a 2-2b 2≥0. 从而(3a 2-2b 2)(a -b )≥0, 故3a 3+2b 3≥3a 2b +2ab 2成立.3.设实数a ,b ,c 满足等式①b +c =6-4a +3a 2,②c -b =4-4a +a 2,试确定a ,b ,c 的大小关系.[解] 由②c -b =(a -2)2≥0,知c ≥b . 又①-②,得b =a 2+1,∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,故c ≥b >a .2.综合法、分析法证明不等式分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因寻果”逐步推导出不等式成立的必要条件,两者是对立统一的两种方法,一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.【例4】 已知a ,b ,c 均为正数,且互不相等,又abc =1. 求证:a +b +c <1a +1b +1c.[精彩点拨] 本题考查用综合法证明不等式,解答本题可从左到右证明,也可从右到左证明.由左端到右端,应注意左、右两端的差异,这种差异正是我们思考的方向,左端含有根号,脱去根号可通过a =1bc <1b +1c 2实现;也可以由右到左证明,按上述思路逆向证明即可.[规范解答] 法一:∵a ,b ,c 是不等正数,且abc =1,∴a +b +c =1bc+1ac+1ab <1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c. 法二:∵a ,b ,c 是不等正数,且abc =1, ∴1a +1b +1c=bc +ca +ab=bc +ca 2+ca +ab 2+ab +bc2>abc 2+a 2bc +ab 2c =a +b +c .4.已知a >0,a 2-2ab +c 2=0且bc >a 2,试证明:b >c . [证明] ∵a 2-2ab +c 2=0, ∴a 2+c 2=2ab .又a 2+c 2≥2ac ,且a >0,∴2ab ≥2ac ,∴b ≥c . 若b =c ,由a 2-2ab +c 2=0,得a 2-2ab +b 2=0,∴a =b .从而a =b =c ,这与bc >a 2矛盾. 从而b >c .【例5】 设a ,b ,c 均为大于1的正数,且ab =10. 求证:log a c +log b c ≥4lg c .[精彩点拨] 本题采用综合法比较困难,可采用分析式法转化为同底的对数寻找方法. [规范解答] 由于a >1,b >1,故要证明log a c +log b c ≥4lg c , 只要证明lg c lg a +lg clg b ≥4lg c .又c >1,故lg c >0,所以只要证1lg a +1lg b ≥4,即lg a +lg blg a lg b ≥4,因ab =10,故lg a +lg b =1, 只要证明1lg a lg b≥4.(*)由a >1,b >1,故lg a >0,lg b >0,所以0<lg a lg b ≤⎝⎛⎭⎪⎫lg a +lg b 22=⎝ ⎛⎭⎪⎫122=14,即(*)式成立.所以,原不等式log a c +log b c ≥4lg c 得证.5.已知a >0,b >0,且a +b =1, 求证:a +12+b +12≤2.[证明] 要证a +12+b +12≤2,只要证⎝⎛⎭⎪⎫a +12+b +122≤4,即证a +b +1+2⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤4. 只要证⎝ ⎛⎭⎪⎫a +12⎝ ⎛⎭⎪⎫b +12≤1,也就是要证ab +12(a +b )+14≤1,即证ab ≤14.∵a >0,b >0,a +b =1.∴1=a +b ≥2ab ,∴ab ≤14,即上式成立.故a +12+b +12≤2.3.反证法和放缩法证明不等式证明不等式除了三种基本方法,还可运用反证法,放缩法等,若直接证明难以入手时,“正难则反”,可利用反证法加以证明,若不等式较复杂,可将需要证明的不等式的值适当地放大(或缩小),使不等式由繁化简,达到证明目的.【例6】 若a ,b ,c ,x ,y ,z 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.[精彩点拨] 在题目中含有“至少”“至多”“最多”以及否定性的结论时,用直接法证明比较困难,往往采取反证法.[规范解答] 假设a ,b ,c 都不大于0, 则a ≤0,b ≤0,c ≤0,∴a +b +c ≤0, 由题设知,a +b +c=⎝⎛⎭⎪⎫x 2-2y +π2+⎝ ⎛⎭⎪⎫y 2-2z +π3+⎝ ⎛⎭⎪⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3, ∴a +b +c >0,这与a +b +c ≤0矛盾, 故a ,b ,c 中至少有一个大于0.6.已知f (x )=a x+x -2x +1(a >1),证明:方程f (x )=0没有负数根. [证明] 假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1, 由0<ax 0<1⇒0<-x 0-2x 0+1<1,解得12<x 0<2,这与x 0<0矛盾,所以假设不成立. 故方程f (x )=0没有负数根.【例7】 求证:1+11+11×2+11×2×3+…+11×2×3×…×n <3.[精彩点拨] 不等式比较复杂,亦采用放缩法, 由11×2×3×…×n <11×2×2×…×2=12n -1(n 是大于2的自然数),然后把各项求和.[规范解答] 由11×2×3×…×n <11×2×2×…×2=12n -1(n 是大于2的自然数),得1+11+11×2+11×2×3+…+11×2×3×…×n <1+1+12+122+123+…+12n -1=1+1-12n1-12=3-12n -1<3.7.设x >0,y >0,z >0,求证:x 2+xy +y 2+y 2+yz +z 2>x +y +z .[证明] ∵x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+3y 24>x +y 2, ①y 2+zy +z 2=⎝ ⎛⎭⎪⎫z +y 22+34y 2>z +y 2,②∴由①②得,x 2+xy +y 2+y 2+zy +z 2>x +y +z .法.通过不断地转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式简单的问题.在本章,我们讨论恒成立问题,向最值转换,通过不等式性质、基本不等式、绝对值不等式求最值等问题都用到了转化的思想.【例8】 若不等式|x +3|+|x -7|≥a 2-3a 的解集为R ,求实数a 的取值范围. [精彩点拨] 由不等式的解集为R ,可知对x ∈R ,都有|x +3|+|x -7|≥a 2-3a 成立,∴(|x +3|+|x -7|)min ≥a 2-3a ,从而得出a 的不等式求解.[规范解答] ∵原不等式的解集为R ,∴x ∈R ,都有|x +3|+|x -7|≥a 2-3a ,∴(|x +3|+|x -7|)min ≥a 2-3a .∵|x +3|+|x -7|≥|(x +3)-(x -7)|=10,∴a 2-3a ≤10, 解得-2≤a ≤5.∴实数a 的取值范围是[-2,5].8.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围.[解] (1)由|ax +1|≤3,得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意. 当a >0时,-4a ≤x ≤2a,得a =2.(2)法一:记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧1,x ≤-1,-4x -3, -1<x <-12,-1,x ≥-12,所以|h (x )|≤1,因此k 的取值范围是k ≥1. 法二:⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2=||2x +1|-2|x +1|| =2⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪x +12-|x +1|≤1, 由⎪⎪⎪⎪⎪⎪f (x )-2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,可知k ≥1. 所以k 的取值范围是k ≥1.1.不等式|x -1|-|x -5|<2的解集是( ) A .(-∞,4) B .(-∞,1) C .(1,4)D .(1,5)[解析] ①当x ≤1时,原不等式可化为1-x -(5-x )<2, ∴-4<2,不等式恒成立, ∴x ≤1.②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4, ∴1<x <4.③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4),故选A. [答案] A2.若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________. [解析] 由于f (x )=|x +1|+2|x -a |, 当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1(x <-1),-x +2a +1(-1≤x ≤a ),3x -2a +1(x >a ).作出f (x )的大致图象如图所示,由函数f (x )的图象可知f (a )=5, 即a +1=5,∴a =4.同理,当a ≤-1时,-a -1=5,∴a =-6. [答案] -6或43.设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .[证明] 因为|x -1|<a 3,|y -2|<a3, 所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .4.已知函数f (x )=|x +1|-|2x -3|. (1)画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.[解] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示. (2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5.- 11 - 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <13或1<x <3或x >5. 5.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.[解] (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立, 所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3. ①当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a 的取值范围是[2,+∞).。
第一章不等式的基本性质和证明的基本方法本章复习课1.掌握不等式的基本性质,会应用基本性质进行简单的不等式变形.2.熟练掌握一元一次不等式、一元二次不等式的解法.3.理解绝对值的几何意义,理解绝对值三角不等式,会利用绝对值三角不等式证明有关不等式和求函数的最值.4.会解四种类型的绝对值不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≤m,|x-c|+|x-b|≥m.5.会用平均值不等式求一些特定函数的最值.6.理解不等式证明的五种方法:比较法、综合法、分析法、反证法、放缩法,会用它用证明比较简单的不等式.知识结构知识梳理1.实数的运算性质与大小顺序的关系:a>b⇔a-b>0,a=b⇔a-b=0,a<b⇔a-b<0,由此可知要比较两个实数的大小,判断差的符号即可.2.不等式的6个基本性质是不等式的基础.3.一元一次、一元二次不等式的解法是解不等式的基础,各类不等式的求解都转化为一元一次不等式、一元二次不等式,一元二次不等式都可化为两种类型,ax2+bx+c≥0 (a>0)或ax2+bx+c≤0 (a>0),ax2+bx+c≥0 (a>0)的解集实质上是函数f(x)=ax2+bx+c (a>0)的函数值f(x)≥0对应的自变量x的取值范围,方程ax2+bx+c=0 (a>0)的根实质上是函数f(x)的图象与x轴交点的横坐标,方程的根也是方程对应的一元二次不等式解集的端点值.4.基本不等式(1)定理1:若a,b∈R,则a2+b2≥2ab (当且仅当a=b时取“=”).(2)定理2:若a,b∈R+,则a+b2≥ab(当且仅当a=b时取“=”).(3)引理:若a,b,c∈R+,则a3+b3+c3≥3abc(当且仅当a=b=c时取“=”)可以当作重要结论直接应用.(4)定理3:若a ,b ,c ∈R +,则a +b +c3≥3abc (当且仅当a =b =c 时取“=”).(5)推论:若a 1,a 2,…,a n ∈R +,则a 1+a 2+…+a n n≥na 1a 2…a n .当且仅当a 1=a 2=…=a n 时,取“=”.(6)在应用基本不等式求最值时一定要注意考察是否满足“一正,二定,三相等”的要求. 5.绝对值不等式的解法:解含绝对值的不等式的基本思想是通过去掉绝对值符号,把含绝对值的不等式转化为一元一次不等式,或一元二次不等式.去绝对值符号常见的方法有: (1)根据绝对值的定义;(2)平方法;(3)分区间讨论. 6.绝对值三角不等式:(1)|a |的几何意义表示数轴上的点到原点的距离,|a -b |的几何意义表示数轴上两点间的距离.(2)|a +b |≤|a |+|b | (a ,b ∈R ,ab ≥0时等号成立).(3)|a -c |≤|a -b |+|b -c | (a ,b ,c ∈R ,(a -b )(b -c )≥0等号成立).(4)||a |-|b ||≤|a +b |≤|a |+|b | (a ,b ∈R ,左边“=”成立的条件是ab ≤0,右边“=”成立的条件是ab ≥0).(5)||a |-|b ||≤|a -b |≤|a |+|b | (a ,b ∈R ,左边“=”成立的条件是ab ≥0,右边“=”成立的条件是ab ≤0). 7.不等式证明的基本方法 (1)比较法:作差法与作商法.(2)综合法:强调将问题进行合理变形转换,使之能运用定义、公理、定理、性质推证命题. (3)分析法:强调书写步骤的合理性,注意逻辑上的充分性,步步可逆不是指等价,当然等价也行.(4)反证法:反证法是一种“正难则反”的方法,反证法适用的范围:①直接证明困难;②需要分成很多类进行讨论;③“唯一性”、“存在性”的命题;④结论中含有“至少”、“至多”及否定性词语的命题.(5)放缩法:放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用基本不等式放缩.例如⎝ ⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122,1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1(以上k >2且k ∈N *). 典例剖析知识点1 基本不等式的应用【例1】 求函数y =x 2(1-5x ) ⎝ ⎛⎭⎪⎫0≤x ≤15的最值.解 y =52x 2⎝ ⎛⎭⎪⎫25-2x =52·x ·x ·⎝ ⎛⎭⎪⎫25-2x ,∵0≤x ≤15,∴25-2x ≥0.∴y ≤52⎣⎢⎢⎡⎦⎥⎥⎤x +x +⎝ ⎛⎭⎪⎫25-2x 33=4675. 当且仅当x =25-2x ,即x =215时,y 取得最大值且y max =4675.知识点2 证明不等式(利用函数的单调性)【例2】 已知△ABC 的三边长是a ,b ,c ,且m 为正数, 求证:aa +m +bb +m >cc +m. 证明 设函数f (x )=xx +m =1-mx +m(x >0,m >0).易知f (x )在(0,+∞)上是增函数. ∵f (a )+f (b )=aa +m +bb +m>a a +b +m +b a +b +m =a +b a +b +m=f (a +b ).又a +b >c ,∴f (a +b )>f (c )=c c +m,∴aa +m +bb +m >cc +m.知识点3 应用绝对值三角不等式证明不等式【例3】 已知f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1]. (1)记|f (x )|的最大值为M ,求证:M ≥12;(2)当M =12时,求f (x )的表达式.(1)证明 由题意M ≥|f (0)|,M ≥|f (1)|,M ≥|f (-1)|. ∴4M ≥2|f (0)|+|f (1)|+|f (-1)| =2|b |+|1+a +b |+|1-a +b | ≥|1+a +b +1-a +b -2b |=2,∴M ≥12.(2)解 当M =12时,|f (0)|=|b |≤12,∴-12≤b ≤12.同理有-12≤1+a +b ≤12,-12≤1-a +b ≤12.两式相加-1≤2+2b ≤1,∴-32≤b ≤-12.又-12≤b ≤12,∴b =-12.当b =-12时,由-12≤1+a +b ≤12⇒-1≤a ≤0;由-12≤1-a +b ≤12⇒0≤a ≤1,即a =0.∴f (x )=x 2-12.基础达标1.若a ,b ,x ,y ∈R ,则⎩⎪⎨⎪⎧x +y >a +b (x -a )(y -b )>0是⎩⎪⎨⎪⎧x >ay >b 成立的( )A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析 由(x -a )(y -b )>0知,x -a 与y -b 同号, 由x +y >a +b 得(x -a )+(y -b )>0, 即(x -a ),(y -b )同正,所以⎩⎪⎨⎪⎧x >a ,y >b .如果⎩⎪⎨⎪⎧x >a ,y >b .易知⎩⎪⎨⎪⎧x +y >a +b ,(x -a )(y -b )>0. 答案 C2.若a 3+b 3=2,则( ) A.a +b <2 B.a +b ≤2 C.a +b >2D.a +b ≥2解析 ∵a 3+b 3=2, ∴(a +b )(a 2+b 2-ab )=2, (a +b )[(a +b )2-3ab ]=2.(a +b )3=3(a +b )ab +2≤3(a +b )⎝ ⎛⎭⎪⎫a +b 22+2.∴(a +b )3≤8,∴a +b ≤2. 答案 B3.设a >0,b >0,下列不等式中不正确的是( ) A.a 2+b 2≥2abB.b a +a b≥2 C.b 2a +a 2b≥a +b D.1a +1b ≤1a +b解析 1a +1b -1a +b =a +b ab -1a +b =(a +b )2-ab ab (a +b )=a 2+ab +b 2ab (a +b )>0,故选D.答案 D 4.A =1+12+13+…+1n与n (n ∈N +)的大小关系是________. 解析 A =1+12+13+…+1n ≥1n +1n +…+1n=nn=n ,∴A ≥n . 答案 A ≥n5.若a =1-b 2,则a +b 的最小值是________. 解析 设b =sin θ,-π2≤θ≤π2,则a =cos θ,a +b =2sin ⎝ ⎛⎭⎪⎫θ+π4.∵-π4≤θ+π4≤3π4,∴-22≤sin ⎝⎛⎭⎪⎫θ+π4≤1,故-1≤a +b ≤ 2. 答案 -16.解不等式|2x -4|-|3x +9|<1. 解 ①当x >2时,原不等式等价于⎩⎪⎨⎪⎧x >2,(2x -4)-(3x +9)<1⇒x >2 ②当-3≤x ≤2时,原不等式等价于⎩⎪⎨⎪⎧-3≤x ≤2,-(2x -4)-(3x +9)<1⇒-65<x ≤2③当x <-3时,原不等式等价于⎩⎪⎨⎪⎧x <-3,-(2x -4)+(3x +9)<1⇒x <-12.综上所述知不等式的解集为{x |x >-65或x <-12}.综合提高7.设函数y =x 2-x +a (a >0)满足f (m )<0,则( ) A.f (m +1)≥0 B.f (m +1)≤0 C.f (m +1)>0D.f (m +1)<0解析 设x 1、x 2是方程x 2-x +a =0的两根, 则|x 1-x 2|=(x 1+x 2)2-4x 1x 2=1-4a <1. ∴当f (m )<0时,f (m +1)>0. 答案 C8.设0<a <b 且f (x )=x +1+xx,则下列结论中正确的是( ) A.f (a )<f ⎝ ⎛⎭⎪⎫a +b 2<f (ab )B.f ⎝⎛⎭⎪⎫a +b 2<f (b )<f (ab )C.f (ab )<f ⎝ ⎛⎭⎪⎫a +b 2<f (a )D.f (b )<f ⎝⎛⎭⎪⎫a +b 2<f (ab )解析 当x >0时,f (x )=1+1x2+1x∴f (x )在(0,+∞)上为减函数. 又b >a +b2>ab .答案 D9.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 由ab =a +b +3≥2ab +3,令ab =x ,则有x 2≥2x +3⇔x 2-2x -3≥0,解x 求ab 的范围. x ≥3或x ≤-1(舍去),∴ab ≥9.答案 [9,+∞)10.函数y =1+2x +3x的值域是____________.解析 ∵⎪⎪⎪⎪⎪⎪2x +3x =|2x |+3|x |≥2 6. ∴2x +3x∈[26,+∞)或(-∞,-26].∴y ∈(-∞,-26+1]∪[26+1,+∞). 答案 (-∞,-26+1]∪[26+1,+∞) 11.设a >b >c >1,记M =a -c ,N =a -b ,P =2⎝ ⎛⎭⎪⎫a +b 2-ab ,Q =3⎝ ⎛⎭⎪⎫a +b +c 3-3abc ,试找出其中的最小者,并说明理由. 解 ∵b >c >0,∴b >c ,∴N <M ; 又Q -P =c +2ab -33abc =c +ab +ab -33abc ≥33c ·ab ·ab -33abc =0, 又a >b >c >1,∴c ≠ab ,从而Q >P ,又N -P =2ab -b -b =b (2a -1-b ) =b [(a -1)+(a -b )]>0(∵a >b >c >1) ∴P <N ,故P 最小.12.设a 、b 、c 、d 是正数,求证:下列三个不等式a +b <c +d ,①(a +b )(c +d )<ab +cd ,② (a +b )cd <ab (c +d )③ 中至少有一个不正确. 证明 本题显然应该用反证法.假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以①与②相乘,得: (a +b )2<ab +cd .④由③得(a +b )cd <ab (c +d )≤⎝ ⎛⎭⎪⎫a +b 22(c +d ).∵a +b >0,∴4cd <(a +b )(c +d ). 结合②,得4cd <ab +cd , ∴3cd <ab ,即cd <13ab .由④,得(a +b )2<43ab ,即a 2+b 2<-23ab ,矛盾.∴不等式①、②、③中至少有一个不正确.。
辽宁省北票市高中数学第一章不等式的基本性质和证明的基本方法1.1.1 不等式性质和一元二次不等式解法导学案(无答案)新人教B版选修4-5
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省北票市高中数学第一章不等式的基本性质和证明的基本方法1.1.1 不等式性质和一元二次不等式解法导学案(无答案)新人教B版选修4-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为辽宁省北票市高中数学第一章不等式的基本性质和证明的基本方法1.1.1 不等式性质和一元二次不等式解法导学案(无答案)新人教B版选修4-5的全部内容。
1。
1.1不等式的性质和一元二次不
等式的解法
【学习目标】
1理解不等式的性质,掌握一元二次不等式
的解法
【预习案】
预习教材1—6页并完成下列问题
练一
典例分析:
例1
例2
例3
例4
例5
【课后案】。