第5章参数估计基础
- 格式:ppt
- 大小:360.00 KB
- 文档页数:41
第五章抽样调查及参数估计5.1 抽样与抽样分布5.2 参数估计的基本方法5.3 总体均值的区间估计5.4 总体比例的区间估计5.5 样本容量的确定一、简答题1.什么是抽样推断?用样本指标估计总体指标应该满足哪三个标准才能被认为是优良的估计?2.什么是抽样误差,影响抽样误差的主要因素有哪些?3.简述概率抽样的五种方式二、填空题1.抽样推断是在随机抽样的基础上,利用样本资料计算样本指标,并据以推算总体数量特征的一种统计分析方法。
2.从全部总体单位中随机抽选样本单位的方法有两种,即重复抽样和不重复抽样。
3.常用的抽样组织形式有简单随机抽样、类型抽样、等距抽样、整群抽样等四种。
4.影响抽样误差大小的因素有总体各单位标志值的差异程度、抽样单位数的多少、抽样方法和抽样调查的组织形式。
5.总体参数区间估计必须具备估计值、概率保证程度或概率度、抽样极限误差等三个要素。
6.从总体单位数为N的总体中抽取容量为n的样本,在重复抽样和不重复抽样条件下,可能的样本个数分别是______________和_____________。
7.简单随机_抽样是最基本的抽样组织方式,也是其他复杂抽样设计的基础。
8.影响样本容量的主要因素包括总体各单位标志变异程度_、__允许的极限误差Δ的大小、_抽样方法_、抽样方式、抽样推断的可靠程度F(t)的大小等。
三、选择题1.抽样调查需要遵守的基本原则是( B )。
A.准确性原则 B.随机性原则 C.代表性原则 D.可靠性原则2.抽样调查的主要目的是( A )。
A.用样本指标推断总体指标 B.用总体指标推断样本指标C.弥补普查资料的不足 D.节约经费开支3.抽样平均误差反映了样本指标与总体指标之间的( B )。
A.实际误差 B.实际误差的平均数C.可能的误差范围 D.实际的误差范围4.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。
A.简单随机抽样 B.类型抽样 C.等距抽样 D.整群抽样5.在其他情况一定的情况下,样本单位数与抽样误差之间的关系是( B )。
第5章参数估计及点估计5.1考点归纳一、点估计1.矩估计法(1)定义设X为连续型随机变量,其概率密度为,或X为离散型随机变量,其分布律为,其中为待估参数,,,,是来自X的样本,假设总体X的前k阶矩或(X离散型)存在,其中,=1,2,…,k.一般来说,它们是的函数,基于样本矩依概率收敛于相应的总体矩(=1,2,,k),样本矩的连续函数依概率收敛于相应的总体矩的连续函数,我们就用样本矩作为相应的总体矩的估计量,而以样本矩的连续函数作为相应的总体矩的连续函数的估计量,这种估计方法称为矩估计法.(2)矩估计法的具体做法设这是一个包含k个未知参数的联立方程组,一般来说,可以从中解出,得到以分别代替上式中的,i=1,2,…,k,就以,i=1,2,…,k,分别作为,=1,2,…,k的估计量,这种估计量称为矩估计量,矩估计量的观察值称为矩估计值.2.克拉默-拉奥(Cramer-Rao)不等式(1)克拉默一拉奥不等式克拉默一拉奥不等式设ξ1,ξ2,…,ξn为取自具有概率函数f(x;0),θ∈Θ={θ:a<0<b}的母体ξ的一个子样,a,b为已知常数,a可以取-∞,b可以取+∞。
又η=u(ξ1,ξ2,…,ξn)是g(θ)的一个无偏估计,且满足正则条件:①集合{x:f(x;0)>0}与0无关;②与存在,且对一切θ∈Θ,;③令称为信息量,则等式成立的充要条件为存在一个不依赖于但可能依赖于θ的K,使得等式依概率1成立。
特别当g(θ)=θ时,上式可化为:称它为克拉默—拉奥不等式。
也称为信息不等式。
(2)重要性质及定义①性质:若则②定义a.若θ的一个无偏估计使克拉默一拉奥不等式中等式:成立,则称的有效估计。
b.若的一个无偏估计,且克拉默一拉奥不等式下界存在,则称下界与的比为估计的有效率,这里。
c.若当时,一个估计的有效率则称为参数的渐近有效估计。
3.拉奥-勃拉克维尔(Rao-Blackwell)定理(1)拉奥-勃拉克维尔定理设ξ与η是两个随机变量,且Eη=μ,Dη>0.设ξ=x条件下叼的条件期望,则(2)相关定理设ξ1,ξ2,…,ξn是取自一个母体ξ的子样,ξ有概率函数,且是θ的一个充分统计量,不仅是η的函数,且Eη2=θ,则是θ的充分统计量的函数,其均值=0,方差。