全国通用2018-2019年六年级下册数学总复习知识点汇总
- 格式:docx
- 大小:1.32 MB
- 文档页数:34
完整版)六年级数学下册总复习知识点整理版六年级数学下册总复知识点归纳一、常用的数量关系式1.每份数 ×份数 = 总数,总数 ÷每份数 = 份数,总数 ÷份数 = 每份数。
2.速度 ×时间 = 路程,路程 ÷速度 = 时间,路程 ÷时间 = 速度。
3.单价 ×数量 = 总价,总价 ÷单价 = 数量,总价 ÷数量 = 单价。
4.工作效率 ×工作时间 = 工作总量,工作总量 ÷工作效率= 工作时间,工作总量 ÷工作时间 = 工作效率。
5.加数 + 加数 = 和,和 - 一个加数 = 另一个加数。
6.被减数 - 减数 = 差,被减数 - 差 = 减数,差 + 减数 = 被减数。
7.因数 ×因数 = 积,积 ÷一个因数 = 另一个因数。
8.被除数 ÷除数 = 商,被除数 ÷商 = 除数,商 ×除数 =被除数。
二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长):周长 = 边长× 4,C = 4a;面积 = 边长 ×边长,S = a × a。
2.正方体(V:体积,a:棱长):表面积 = 棱长 ×棱长 ×6,S表 = a × a × 6;体积 = 棱长 ×棱长 ×棱长,V = a × a × a。
3.长方形(C:周长,S:面积,a:长,b:宽):周长 = (长 + 宽) × 2,C = 2(a + b);面积 = 长 ×宽,S = ab。
4.长方体(V:体积,S:面积,a:长,b:宽,h:高):表面积 = (长 ×宽 + 长 ×高 + 宽 ×高) × 2,S = 2(ab + ah + bh);体积 = 长 ×宽 ×高,V = abh。
六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。
-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。
-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。
2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。
-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。
3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。
-百分数的应用,如折扣、税率、利率等问题的解决。
4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。
-圆心角、弧、扇形、圆锥和圆柱的相关计算。
-圆周率π的认识和应用。
5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。
-可能性的大小比较,简单事件发生的可能性计算。
6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。
-三角形、平行四边形、梯形的高线定义和画法。
-长方体、正方体、圆柱、圆锥的体积和表面积计算。
7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。
-解简易方程,包括一步方程和两步方程。
8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。
六年级下册数学复习重点归纳六年级下册数学复习重点归纳下面店铺给大家带来小学六年级数学下册的复习重点归纳,希望能够帮助大家,谢谢您的阅读!一、负数1.在熟悉的生活情境中初步认识负数,能正确的读.写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3.能借助数轴初步学会比较正数.0和负数之间的大小。
二、圆柱和圆锥1.认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面.侧面和高。
认识圆锥的底面和高。
2.探索并掌握圆柱的侧面积.表面积的计算方法,以及圆柱.圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3.通过观察.设计和制作圆柱.圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1.会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2.能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
六、整理和复习1.比较系统地掌握有关整数.小数.分数和百分数.负数.比和比例.方程的基础知识。
能比较熟练地进行整数.小数.分数的四则运算,能进行整数.小数加.减.乘.除的估算,会使用学过的简便算法,合理.灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。
在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。
六年级数学下册总复习资料六年级数学下册总复习资料在六年级数学下册的学习过程中,我们学习了许多重要的知识点和技能。
为了更好地复习这些内容,我们需要一份系统、全面的复习资料。
本文将为大家提供一份六年级数学下册的总复习资料,帮助大家巩固知识,为即将到来的考试做好准备。
一、整数与小数在这一部分,我们学习了整数的加减法、乘除法,以及小数的加减法、乘除法。
复习时,我们可以通过做一些练习题来巩固这些基本运算。
同时,还需要注意整数与小数之间的换算,例如将小数转化为整数或将整数转化为小数。
二、分数与比例分数与比例是六年级数学下册的重要内容。
我们需要复习分数的加减法、乘除法,以及分数与整数的运算。
同时,还需要掌握比例的概念和比例的计算方法。
在复习时,可以通过做一些应用题来提高解决问题的能力。
三、图形的认识与计算在这一部分,我们学习了各种图形的性质、名称和计算方法。
复习时,我们可以通过观察图形的特点,进行图形的分类和比较。
同时,还需要掌握计算图形的周长和面积的方法。
可以通过练习计算图形的周长和面积来提高计算能力。
四、数据的收集与处理数据的收集与处理是六年级数学下册的另一个重要内容。
在复习时,我们需要回顾数据的收集方法和数据的表示方法。
同时,还需要掌握数据的整理和分析方法,例如制作表格、绘制图表等。
通过做一些数据处理的练习题,可以提高数据分析和解决问题的能力。
五、方程与代数式方程与代数式是六年级数学下册的难点内容。
在复习时,我们需要掌握方程与代数式的基本概念和运算方法。
同时,还需要学习解一元一次方程和代数式的值的计算方法。
通过做一些方程和代数式的练习题,可以提高解决方程和代数式的能力。
六、几何变换几何变换是六年级数学下册的另一个重要内容。
在复习时,我们需要回顾平移、旋转和对称的定义和性质。
同时,还需要学习几何变换的基本操作和判断方法。
通过做一些几何变换的练习题,可以提高几何变换的能力和空间想象力。
七、应用题在六年级数学下册的学习中,我们还学习了许多应用题。
六年级数学下册必背知识点归纳1、0既不是正数,也不是负数,它是正数和负数的分界。
0大于所有负数,小于所有正数。
负数比较大小,不考虑负号,数字大的数反而小。
2、“+”能够省略不写,“-”不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
0左边的数差不多上负数,0右边的数差不多上正数百分数(二)知识点1、折扣:商品按原定价格的百分之几出售,叫做折扣。
通称“打折”。
几折就表示十分之几,也确实是百分之几十。
例如八折就表示十分之八,确实是按原价的80﹪出售。
2、成数:“几成”确实是十分之几,也确实是百分之几十。
三成五确实是十分之三点五,也确实是35%3、应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率4、利息=本金×利率×存期5、满100元减50元,确实是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优待。
圆、圆柱、圆柱必背公式1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C ÷π3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π4、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆 =πr25、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆 =π(d÷2)26、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s 侧÷h;圆柱的高=侧面积÷底面周长,公式h=S侧÷C。
7、圆柱的表面积=侧面积+2×底面积,公式 S表= S侧+2S底。
数学六年级下全部知识点数学是一门理科学科,对于学生来说,数学的学习既需要扎实的基础,又需要全面地掌握各个知识点。
下面将详细介绍数学六年级下的全部知识点。
一、小数1. 小数的读法及表示方法(例)读“0.5”的方法:“零点五”2. 小数的四则运算加法:小数的加法运算规则和整数的加法类似,先对齐小数点,然后从右往左逐位相加。
减法:小数的减法运算规则和整数的减法类似,先对齐小数点,然后从右往左逐位相减。
乘法:小数的乘法运算规则和整数的乘法类似,先按整数运算的乘法规则计算,最后确定小数点的位置。
除法:小数的除法运算规则和整数的除法类似,先将小数化为整数,然后按整数运算的除法规则计算,最后确定小数点的位置。
3. 小数的比较大小比较小数的大小时,首先比较整数部分的大小,整数部分相同再比较小数部分的大小。
二、分数1. 分数的基本概念分数是由分子和分母组成的形式,分子表示被分的份数,分母表示分成的总份数。
2. 分数的读法及表示方法(例)读“2/3”的方法:“二分之三”3. 分数的四则运算加法:分数的加法运算规则和整数的加法类似,先找到两个或多个分数的公共分母,再按整数运算的加法规则计算。
减法:分数的减法运算规则和整数的减法类似,先找到两个或多个分数的公共分母,再按整数运算的减法规则计算。
乘法:两个分数相乘时,将两个分数的分子和分母分别相乘,再简化分数。
除法:两个分数相除时,将除数倒置(即将除号改为乘号),再按乘法运算的规则计算。
4. 分数的化简将一个分数化为最简形式时,将分子和分母进行约分,即找到两者的最大公因数,然后将分子和分母同时除以最大公因数。
三、几何图形1. 平面图形的特点矩形:四条边两两相等且相互平行。
正方形:四条边相等且相互平行,四个内角为直角。
三角形:有三条边和三个内角,内角和为180度。
梯形:有两条平行边,被平行边分成的两个小三角形的内角和为180度。
圆形:由一个圆心和一条半径组成,圆心到圆上任意一点的距离都相等。
2018年最新版新课标人教版小学六年级下册数学毕业总复习知识点汇总D表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二、方法(一)数的读法和写法1、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把 1254300000 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。
2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如: 1302490015 省略亿后面的尾数是 13 亿。
3、大小比较(1)比较整数大小:(2)比较小数的大小:(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2、分数化成小数:用分母去除分子。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
六年级下册数学知识总结六年级下册数学主要包括数与式、图形与位置、数据与概率三个大的模块。
其中数与式包括了整数、分数、小数、百分数、正比例和反比例、代数式等内容;图形与位置包括了平面图形、三维图形、位置关系等内容;数据与概率包括了统计数据、概率等内容。
接下来我们将分模块进行总结。
一、数与式1.整数六年级下册的整数主要包括整数的加减法和乘除法、整数的大小比较、整数的乘方和除法、整数的倍数和因数、约数和公约数等内容。
学生需要掌握整数的运算规则,正确使用负数和正数的规则。
2.分数分数的认识和分数的加减法是六年级下册的主要内容。
学生需要通过综合应用的方式,掌握分数的加减法。
此外,分数的乘除法也是重要的知识点。
3.小数小数是从四年级开始学的数学概念,而六年级下册主要是关于小数的加减法、乘除法等应用题。
学生需要熟练掌握小数的运算。
4.百分数百分数是小数的一种表达方式。
学生需要了解百分数和小数之间的转换,并熟练掌握百分数的加减法、乘除法。
同时,应用题也是考察学生理解能力的重要手段。
5.正比例和反比例六年级下册学习了正比例和反比例的概念,并通过实际问题应用进行深入理解。
学生需要熟练掌握正比例和反比例的性质和运用。
6.代数式代数式是代数学中的基础,六年级下册主要是关于代数式的计算与应用。
学生需要熟练掌握单项式和多项式的加减法、乘除法,并能够根据实际问题建立代数式。
二、图形与位置1.平面图形六年级下册的平面图形主要包括了五芒星、五边形、六边形等图形的性质、面积和周长等知识。
学生需要了解各种图形的特征和性质,并能够计算图形的面积和周长。
2.三维图形三维图形主要包括了长方体、正方体、棱柱、棱锥等图形的性质、表面积和体积等知识。
学生需要掌握各种三维图形的性质,并能够计算三维图形的表面积和体积。
3.位置关系位置关系是关于平行线、垂直线、角的性质和测量、相交线、相似图形等知识。
学生需要能够判断和描述各种位置关系,并应用到实际问题中。
六年级下册数学知识点归纳数学知识点归纳一、分数1.分数的定义及表示分数是指用一个整数表示出一个数分的几份,分子表示分出来的几份,分母表示每份分成的份数。
通常表示为:$$\frac{a}{b}$$2.分数的大小比较(1)分母相同时,分数大小由分子大小决定。
(2)分母不同时,先通分,再比较分子大小。
3.分数的化简分数的化简就是把分子和分母同时除以一个相同的数,使它们的最大公约数为1。
如:$$\frac{6}{8}=\frac{3}{4}$$4.分数的加减乘除(1)相加减:通分后,把分子相加减,分母不变。
(2)相乘:把两个分数的分子和分母分别相乘即可。
(3)相除:把被除数乘以除数的倒数,即把除数化为分数的分子倒放,分母在写下去,再进行相乘运算。
二、小数1.小数的定义及表示小数是指数分的几份,每份分成的量相等。
通常用小数点表示,小数点左边的数表示整数部分,右边表示小数部分,数字前面加0不影响其原来的大小。
2.小数的大小比较(1)相同位数,大小由高位数决定。
(2)位数不同时,以比较到的位数为准,不够0补齐。
3.小数的四则运算(1)相加减:保留相同位数,竖式相加减。
(2)相乘:先把小数变成整数,再按整数的乘法进行运算,最后把结果的小数点后移。
(3)相除:把被除数和除数都扩大10、100、1000……倍,使除数变成整数,然后按整数的除法进行运算,最后把结果的小数点前移。
三、倍数和约数1.倍数若a,b为正整数,其中a ≤ b,则b是a的倍数,a是b的因数。
一个数的倍数有无穷多个。
2.约数若a,b为正整数,其中a ≤ b,则a能整除b,称a是b的因数,b是a的倍数。
一个数的因数是有限多个。
四、整数1.正数、负数正整数和0,统称为正数,用“+”表示;负整数,用“-”表示。
2.整数的大小比较(1)一正一负,正数大。
(2)同号但绝对值不同时,绝对值大的数大。
(3)同号且绝对值相同时,大小相同。
3.绝对值表示一个数到原点的距离,用“|”表示。
六年级下册数学知识汇总
下面是六年级下册数学的知识汇总:
1. 分数的运算:加法、减法、乘法、除法。
2. 小数的运算:加法、减法、乘法、除法。
3. 百分数的转换:百分数转换为小数或分数,小数或分数转换为百分数。
4. 长度单位换算:厘米、分米、米、千米之间的换算。
5. 质量单位换算:克、千克、吨之间的换算。
6. 容量单位换算:毫升、升之间的换算。
7. 三角形的性质:内角和为180度,等边三角形的特征。
8. 平行四边形的性质:对角线相等,相邻角互补。
9. 成比例关系:比例的概念,比例的计算和应用。
10. 图形的面积和周长:矩形、正方形、三角形、圆的面积和周长的计算。
11. 数据的收集和整理:图表的读取和表示,数据的统计和分析。
12. 时刻表和日历:时刻表的运用,日期的计算和推算。
六年级数学下册总复习知识点下面是格式错误的段落,需要删除:14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间14、相遇问题的解法:相遇路程等于速度和乘以相遇时间,相遇时间等于相遇路程除以速度和,速度和等于相遇路程除以相遇时间。
删除了格式错误的段落,并对其他段落进行了小幅度改写,如下:六年级下数学知识归纳六年级数学下册总复知识点归纳一、小学数学图形计算公式1、正方形的周长等于边长乘以4,面积等于边长的平方。
2、正方体的表面积等于棱长的平方乘以6,体积等于棱长的立方。
3、长方形的周长等于长和宽的和乘以2,面积等于长乘以宽。
4、长方体的表面积等于长乘以宽乘以2加上长乘以高乘以2加上宽乘以高乘以2,或者等于底面周长乘以高乘以2加上底面积乘以2,体积等于长乘以宽乘以高。
5、三角形的面积等于底边乘以高除以2,高等于面积乘以2除以底边,底边等于面积乘以2除以高。
6、平行四边形的面积等于底边乘以高。
7、梯形的面积等于上底加下底的和乘以高除以2.8、圆形的周长等于直径乘以π,面积等于半径的平方乘以π。
9、圆柱体的侧面积等于底面周长乘以高,表面积等于侧面积加上底面积的两倍,体积等于底面积乘以高。
10、圆锥体的体积等于底面积乘以高除以3.11、平均数等于总数除以总份数。
二、判断平年与闰年的方法:普通年份除以4,余数为0则为闰年,否则为平年;整百年份除以400,余数为0则为闰年,否则为平年。
三、数学思考1、找规律:n个点连成线段的条数等于从1开始前(n-1)个连续自然数的和。
2、多边形内角和等于180度乘以(边数-2)。
3、植树问题:两端都种的棵数等于段数加1,只种一端的棵数等于段数减去顶点数。
3、两端都不种:根据规律,棵树数目等于段数减1.在圆形区域内种树时也是同样的公式。
第3种情况则变成了锯木问题:锯木次数等于段数减1.例如,如果2分钟可以锯3段木头,那么锯6段需要多少时间呢?4、找次品:如果要称量4到9个物品,需要称2次。
小学六年级数学总复习知识点归纳一、常用的数量关系式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数二、小学数学图形计算公式1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长 S:面积 a:边长)周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5、三角形(s:面积 a:底 h:高)面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积 a:底 h:高)面积=底×高s=ah7、梯形(s:面积 a:上底 b:下底 h:高)面积=(上底+下底)×高÷2 s=(a+b)× h÷28、圆形(S:面积 C:周长л d=直径 r=半径)(1)周长=直径×л=2×л×半径C=лd=2лr(2)面积=半径×半径×л9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数14、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间15、利润与折扣问题利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%)三、常用单位换算1、长度单位换算1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米2、体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升重量单位换算1吨=1000 千克 1千克=1000克 1千克=1公斤人民币单位换算1元=10角 1角=10分 1元=100分3、时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒4、基本概念第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
负数必背知识点1、0既不是正数,也不是负数,它是正数和负数的分界。
0大于所有负数,小于所有正数。
负数比较大小,不考虑负号,数字大的数反而小。
2、“+”可以省略不写,“-”不能省略。
3、数轴的要素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。
0左边的数都是负数,0右边的数都是正数百分数(二)知识点1、折扣:商品按原定价格的百分之几出售,叫做折扣。
通称“打折”。
几折就表示十分之几,也就是百分之几十。
例如八折就表示十分之八,就是按原价的80﹪出售。
2、成数:“几成”就是十分之几,也就是百分之几十。
三成五就是十分之三点五,也就是35%3、应纳税额 = 总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率4、利息=本金×利率×存期5、满100元减50元,就是在总价中取整百元部分,每个100元减去50元,不满100元的零头部分不优惠。
圆、圆柱、圆柱必背公式1、在同圆或等圆内,直径的长度是半径的2倍,公式d=2r;半径的长度是直径的一半,公式r=d÷2.2、已知直径求周长:圆的周长=圆周率×直径,公式C=πd,直径=周长÷圆周率,公式d=C÷π3、已知半径求周长:圆的周长=2×圆周率×半径,公式C=2πr,半径=周长÷圆周率的2倍,公式r=C÷2π=πr24、已知半径求面积:圆的面积=圆周率×半径的平方,公式S圆=π(d÷5、已知直径求面积:圆的面积=圆周率×(直径÷2)的平方,公式S圆2)26、圆柱的侧面积=底面的周长×高,公式S侧=Ch;圆柱的底面周长=侧面积÷高,公式C=s侧÷h;圆柱的高=侧面积÷底面周长,公式h=S侧÷C。
7、圆柱的表面积=侧面积+2×底面积,公式 S表= S侧+2S底。
数学六年级下册的知识点归纳数学六年级下册的知识点一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。
例如:1/3×4/7表示求1/3的4/7是多少。
4×3/8表示求4的3/8是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。
(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。
(三)、乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
六年级下册知识点归纳总结数学
以下是六年级下册数学的一些重要知识点:
1. 负数:理解负数的概念,掌握比较负数大小的方法,能正确地读写负数。
2. 比例:理解比例的概念,掌握比例的基本性质,能应用比例的知识解决简单的问题。
3. 圆柱和圆锥:掌握圆柱和圆锥的各部分名称及特征,理解圆柱表面积、体积的计算方法,掌握圆锥体积的计算方法。
4. 正比例和反比例:理解正比例和反比例的概念,能正确判断成正比例的量和成反比例的量。
5. 统计:理解统计表和折线统计图的特点,掌握制作简单的统计表和折线统计图的方法,能根据统计图表进行简单的数据分析。
6. 解决问题的策略:能综合运用所学的数学知识、技能和方法解决一些简单的实际问题,增强应用意识,提高实践能力。
以上仅为基础知识点的大致概括,如需更详细的内容,建议查阅六年级下册数学教材或教辅书。
六年级下册数学全册知识点一、数与代数数与代数的学习内容包括数的认识、数的运算、常见的量、式与方程、正比例和反比例、探索规律等。
1.数的认识主要包括进一步理解和掌握整数、小数、分数、百分数的意义以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;理解和掌握自然数和整数、因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意识和能力,发展数感。
⑴整数和小数都是采用十进制计数法,整理计数单位、相应的数位顺序、相邻计数单位之间的进率,再现整数、小数的数位顺序表。
结合数位顺序表,重点理解:数位、计数单位、进率以及位值原则。
⑵整数的读、写注意点包括:分级读、写,从高位到低位依次读、写,数中间“0”的读、写,数末尾“0”的读、写等。
小数的读、写要注意:先读整数部分、后读小数部分,而且整数部分的读法和小数部分的读法不同。
⑶数的改写与省略尾数求近似数,学生容易混淆,要注意其中的联系与区别:⑷奇数与偶数、质数与合数、公因数与公倍数等,都是“因数与倍数”范围里的概念。
这部分的知识较多,学生容易混淆。
建议要求孩子回顾相关知识点后,引导他们建构知识网络图,将知识结构化:⑸分母是10、100、1000……的分数可以用小数表示,小数是分母为10、100、1000……的特殊分数。
分数的基本性质是分子与分母乘或除以同一个不为零的数,大小不变;小数的基本性质简述为小数的末尾可以增减零,小数的大小不变,小数的这个性质也可以理解为分子与分母同时乘或除以相同的数,只是扩大与缩小的倍数是10倍、100倍……如0.3表示十分之三,0.30表示百分之三十。
去掉小数末尾的零即是分子与分母同时除以10。
所以说,分数的基本性质和小数的基本性质本质上是一致的,只是适用的范围不同。
⑹百分数是特殊的分数。
理解分数与百分数的意义,我们要弄清它们之间的联系和区别:小数、分数、百分数之间怎样进行互相改写呢?2.常见的量小学阶段我们学习过长度、面积、体积(容积)、时间、质量等单位。
小学数学总复习第一部分数与代数1、整数和小数的意义正整数自然数整数0负整数有限小数小数循环小数无限小数不循环小数2、整数、小数和正、负数的读、写法(1)整数的读、写法(2)小数的读、写法(3)正、负数的读、写法3、小数的相关性质(1)小数的相关性质(2)小数点位置移动引起小数大小变化的规律4、数位顺序表5、数的改写及求近似数(1)把一个数改写成用“万”或“亿”作单位的数。
(2)求近似数6、分数(1)分数的意义(2)分数单位(3)分数的分类:真分数、假分数(4)分数的基本性质(5)分数与除法的关系(6)约分(7)最简分数:分母、分子是互质数的分数(8)通分(9)分数的基本性质和小数的基本性质的关系(10)倒数:乘积为1的两个数互为倒数。
(11)分数的读法和写法(12)百分数7、数的大小比较(1)整数的大小比较(2)小数的大小比较(3)正负数的大小比较(4)分数的大小比较8、各类数之间的联系(1)整数和分数之间的联系(2)小数和分数之间的关系(3)分数和百分数之间的关系(4)分数、小数和百分数之间的关系9、因数、倍数(1)因数、倍数的意义和特征(2)2、3、5的倍数的特征10、奇数、偶数11、质数、合数(1)质数:只有1和它本身两个因数的数。
(2)合数:除了1和它本身还有别的因数的数。
(3)质数、合数的判断(4)分解质因数:把一个合数写成几个质数相乘的形式。
(5)分解质因数的方法:短除法12、公因数、公倍数(1)公因数和最大公因数的意义、互质数(公因数只有1的两个数叫做互质数)(2)两个数最大公因数的求法:枚举法、缩小倍数法、短除法、分解质因数法(3)公倍数和最小公倍数的意义(4)两个数最小公倍数的求法:枚举法、扩大倍数法、短除法、分解质因数法(5)求两个数的最大公因数和最小公倍数的特殊方法A、两数为倍数关系,较小数是这两个数的最大公因数;较大数是这两个数的最小公倍数。
B、两数是互质数,它们的最大公因数是1,最小公倍数为它们的乘积。
第二部分数的运算1、四则运算的意义及计算方法整数、小数、分数的加法、减法、乘法、除法2、四则运算中各部分间的关系加法:和=加数+加数,加数=和-另一个加数减法:差=被减数-减数,减数=被减数-差,被减数=减数+差乘法:积=因数×因数,一个因数=积÷另一个因数除法:商=被除数÷除数,除数=被除数÷商,被除数=除数×商3、四则混合运算的顺序(1)四则混合运算分为两级:加法、减法叫做第一级运算,乘法、除法叫做第二级运算。
(2)四则混合运算的顺序A.在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,先算第二级运算,再算第一级运算。
B.在一个有括号的算式里,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
4、运算定律和运算性质(1)运算定律加法交换率:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c(2)运算性质A.减法的运算性质及变式应用a-b-c=a-(b+c) a-(b-c)=a-b+c a+(b-c)=a+b-cB.除法的运算性质(除数不为0)及变式运用a÷b÷c=a÷(b×c) a÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷cC.商不变的性质(a×m)÷(b×m)=a÷b(m≠0,b≠0)(a÷m)÷(b÷m)=a÷b(m≠0,b≠0)D.积不变的规律(a×m)×(b÷m)=a×b(m≠0)5、估算(1)估算的意义(2)常用的估算策略:a.凑整的方法;b.取一个中间数;c.根据特殊数的特点进行估算6、简便运算§6.1 提取公因式:这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)§6.2有借有还法:用此方法时,需要注意观察,发现规律。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
9999+999+99+9=9999+1+999+1+99+1+9+1—4§6.3 拆分法:顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×25§6.4 加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)§6.5 拆分法和乘法分配律结合:这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
34×9.9=34×(10-0.1)案例再现:57×101=?§6.6利用基准数:在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
2072+2052+2062+2042+2083=(2062x5)+10-10-20+21§6.7利用公式法(必背)(1)加法:交换律,a+b=b+a,结合律,(a+b)+c=a+(b+c).(2)减法运算性质:a-(b+c)=a-b-ca-(b-c)=a-b+c,a-b-c=a-c-b(a+b)-c=a-c+b=b-c+a.(3)乘法(与加法类似):交换律,a*b=b*a,结合律,(a*b)*c=a*(b*c),分配率,(a+b)xc=ac+bc, (a-b)*c=ac-bc.(4)除法运算性质(与减法类似)a÷(b*c)=a÷b÷c a÷(b÷c)=a÷bxc,a÷b÷c=a÷c÷b(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:283+52+117+148=(283+117)+(52+48)(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:657-263-257=657-257-263=400-263(运用减法性质,相当加法交换律。
)例3:195-(95+24)=195-95-24=100-24(运用减法性质)例4:150-(100-42)=150-100+42(同上)例5:(0.75+125)*8=0.75*8+125*8=6+1000.(运用乘法分配律))例6:(125-0.25)*8=125*8-0.25*8=1000-2例7:(1.125-0.75)÷0.25=1.125÷0.25-0.75÷0.25=4.5-3=1.5。
(运用除法性质)例8:(450+81)÷9=450÷9+81÷9=50+9=59.(同上,相当乘法分配律)例9:375÷(125÷0.5)=375÷125*0.5=3*0.5=1.5.例10:4.2÷(0。
6*0.35)=4.2÷0.6÷0.35=7÷0.35=20.例11:12*125*0.25*8=(125*8)*(12*0.25)=1000*3=3000.(运用乘法交换律和结合律) 例12:(175+45+55+27)-75=175-75+(45+55)+27=100+100+27=227.(运用加法性质和结合律)例13:(48*25*3)÷8=48÷8*25*3=6*25*3=450.(运用除法性质,相当加法性质)第三部分方程一、用字母表示数1、用字母表示数2、用字母表示数量关系3、用字母表示运算定律和运算性质4、用字母表示图形的计算公式5、用字母表示数在书写上的规定6、含字母的式子求值例如:当a=6,b=10时,求2ab。
二、简易方程1、方程:含有未知数的等式。
2、解方程(1)使方程左右两边相等的未知数的值,叫做方程的解。
(2)求方程的解的过程,叫做解方程(3)利用等式的性质解方程A、方程两边同时加上或减去同一个数,左右两边仍然相等。
B、方程两边同时乘以同一个数,左右两边仍然相等。
C、方程两边同时除以同一个不等于0的数,左右两边仍然相等(4)列方程解决问题的步骤:(a)设未知数(b)根据等量关系列方程(c)解方程(d)检验、写答第四部分单位换算1、时间§1.1 时间单位:世纪、年、月、日、时、分、秒;另有季度、旬、星期。
§1.2 年、月、日之间关系一年有12个月,平年365天,闰年366天。
大月:1月、3月、5月、7月、八月、十月、十二月小月:4月、6月、9月、11月二月既不是大月,也不是小月,平年28天,闰年29天。
§1.3 平年、闰年的判断方法根据公历年份判断,整百、整千的年份是400的倍数,其他年份是4的倍数的都是闰年,反之则为平年。
§1.4 日、时、分、秒等时间单位间的关系1世纪=100年,1日=24小时,1小时=60分钟,1分钟=60秒,1小时=3600秒一星期=7天,1年=12个月§1.5 24时计时法A.24时计时法的意义B.普通计时法与24时计时法的换算§1.6 时钟问题一、什么是钟面行程问题?钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:⑴研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题.在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.二、钟面问题有哪几种类型?第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。