火力发电厂过热汽温控制策略研究与分析
- 格式:pdf
- 大小:158.34 KB
- 文档页数:2
火电厂热工调试系统主汽温自动控制策略主汽温是火力发电机组的核心参数,主汽温超温容易造成金属温度超温,影响设备安全,主汽温过低时机组效率得不到保证,所以必须将主汽温严格控制在一定范围内。
主汽温控制由于受到的影响因素较多,如锅炉燃烧状况、汽机负荷、主蒸汽流量、给水流量等,往往会造成主汽温的大幅波动,特别是在机组RB等快速降负荷的情况下,主汽温往往难以控制,所以采用高精度的主汽温控制方法是火电机组稳定运行的关键步骤,针对火电机组主汽温控制策略。
一、热工调试系统现状及改进目前,国内外研究热工调节过程均采用系统阶跃响应特性整定调节参数,由于现场生产过程的复杂性,通过阶跃响应整定参数具有一定的局限性。
直接在生产现场进行热工过程的调试,由于不能确保调试系统的正确性和稳定性,会威胁到火电机组的安全运行,且需要消耗大量的人力物力,经济性和安全性都不高。
所以造成了许多先进的控制方法和策略无法在现场应用,解决这一问题的关键是建立一个可靠和有效的热工调试平台,基于该平台台,建立了热工对象动态仿真数学模型来模拟生产现场调节对象的动态特性,虚拟DPU与对象仿真模型间利用OPC协议进行通讯,组成了一个完整控制的回路,包括了控制方法和控制对象,可以利用该热工调试系统进行各种控制方法的研究。
基于虚拟DPU热工控制试验的系统是由虚拟DPU和一个全范围仿真系统组成,能够完成热工控制系统的调试任务,但是由于各子系统间相互影响,在进行子系统控制调试时达不到很好的调试结果。
这一问题的改进方法是将控制对象从全范围仿真系统中抽取出来,将现场生产过程分为若干个相互独立的子系统并分别建立仿真数学模型,根据不同需要加载到系统中去。
火电厂过热汽温存在滞后和非线性等问题,Simth预估控制是针对大时滞问题提出的一种解决方法,但这种策略碰到时变性控制对象时,微小的模型误差将会导致控制系统不稳定。
为此,一种带滤波器的史密斯预估控制策略被提出来,它很好地解决了上述问题,但这种带滤波器的史密斯预估也只是适用于线性控制或者是非线性较弱的对象,从而存在很大的局限性。
分析火力发电厂热控调试的常见问题及解决措施1. 温度异常问题火力发电厂中,常常会出现温度异常的问题,包括燃烧室温度过高或过低、锅炉水温异常等。
解决措施包括:- 检查燃料供给系统,排除供给不足或过多的问题;- 检查燃烧系统,确保燃烧效率正常;- 检查锅炉水系统,确保循环正常且供水充足;- 调整燃料供给和燃烧系统的参数,以达到温度的正常范围。
2. 蒸汽压力异常问题蒸汽压力异常可能导致设备的损坏或停机,解决措施包括:- 检查蒸汽发生器和汽轮机的运行状态,确保正常工作;- 检查蒸汽进出口阀门,确保调节功能正常;- 调整蒸汽发生器的供热面积,以达到稳定的蒸汽压力。
3. 冷却系统问题冷却系统是火力发电厂中的重要部分,常见问题包括冷却水流量异常、冷却塔堵塞等。
解决措施包括:- 检查冷却系统的水源,确保供水充足,水质合格;- 检查冷却塔的清洁程度,清除积聚物;- 调整冷却系统的流量控制,确保冷却效果良好。
4. 燃料质量问题火力发电厂的燃料质量直接影响设备的燃烧效率和排放水平,常见问题包括燃料含水率过高、灰分含量过多等。
解决措施包括:- 检查燃料供应商的质量合格证明,确保燃料质量符合要求;- 对燃料进行采样和检测,确保燃料的含水率和灰分含量在正常范围内;- 调整燃料供给系统和燃烧参数,以适应燃料质量的变化。
5. 投运问题火力发电厂的投运是一个关键环节,常见问题包括设备无法启动、停机过程中的问题等。
解决措施包括:- 检查设备的电气连接和安全系统,确保正常启动和停机;- 检查设备的润滑系统和冷却系统,确保投运过程中的正常运行;- 对设备的传动和控制系统进行调试和测试,确保投运过程中的稳定性。
火力发电厂热控调试中可能出现的问题多种多样,需要对设备进行全面的检查和分析,并采取相应的解决措施,以确保设备的正常运行和安全性。
试析火电厂锅炉主汽温度控制策略摘要:火电厂锅炉主汽温控制的大延时和大惯性特性使其一直以来都成为火电厂自动控制的难点。
本文综述了引起锅炉主汽温度变化的因素、控制的必要性、并且总结了国内主汽温度控制的几种方法及其优点。
关键词:火电厂锅炉主汽温度控制一、火电厂锅炉主汽温度控制的必要性及影响因素火电厂锅炉是火电厂非常重要的设备,其中主蒸汽温度是其最主要的输出变量之一。
主汽温度自动调节的主要任务是保证过热器出口的汽温在允许范围内,以确保机组运行的安全性和经济性。
如果该温度过高,会使锅炉受热面及蒸汽管道金属材料的蠕变速度加快,降低使用寿命。
若长期超温,则会导致过热器爆管,在汽机侧还会导致汽轮机的汽缸、汽阀、前几级喷嘴和叶片、高压缸前轴承等部件的寿命缩短,甚至损坏;假如该汽温过低,会降低机组的循环热效率,同时会使通过汽轮机最后几级的蒸汽湿度增加,引起叶片磨损;当汽温变化过大时,将导致锅炉和汽轮机金属管材及部件的疲劳,还将引起汽轮机汽缸和转子的胀差变化,甚至产生剧烈振动,危及机组的安全,所以有效精准的控制策略是十分必要的。
运行中引起汽温变化的主要因素是主蒸汽流量、烟气量和减温水流量。
影响因素众多,加上汽温控制的质量要求却非常严格,一般要求主汽温度稳定在±5℃的范围内,加上汽温对象的复杂性,致使主汽温的控制相对比较困难。
针对火电厂锅炉这个复杂的控制对象,人们不断地探索更为有效和精确的控制手段:经典控制理论、现代控制理论以及智能控制方法。
下面对相关控制方法的控制思想、控制方法作简要的介绍。
二、火电厂锅炉主汽温度控制的几种方法(一)基于经典控制理论的主汽温度控制方法PID控制器结构简单,能满足大量工业过程的要求,特别是PID控制的强鲁棒性使之能较好地适应过程工况的较大范围变动。
所以,PID控制至今仍然是应用最广泛的控制规律。
但是对于一些复杂过程,尤其是大时滞和大惯性系统,常规的PID参数不能实现实时在线调整,且难以取得更好的控制效果。
火力发电厂过热汽温控制策略研究与分析【摘要】过热蒸汽温度是火力发电厂中最为重要的控制对象之一,本文分析了火电厂过热汽温的静态特性及动态特性,并介绍了目前火电厂过热汽温调节的两种控制策略,并对两种策略进行了分析比较。
【关键词】过热蒸汽温度;串级;双回路;PID调节过热蒸汽温度是火力发电厂锅炉设备的重要参数,温度过高,则过热器易损坏,也会使汽轮机内部引起过度的热膨胀严重影响运行安全;温度过低则设备的效率将会降低,同时使通过汽轮机蒸汽湿度增加,引起叶片磨损。
锅炉过热蒸汽系统的控制任务就是维持过热器出口蒸汽温度在允许的范围内,保护过热器管壁温度不超过允许的工作温度。
1 过热汽温的特性1.1 过热汽温对象的静态特性过热汽温调节对象的静态特性指汽温随锅炉负荷变化的静态关系。
对流式过热器和辐射式过热器的静态特性完全相反:对于对流式过热器,出口汽温随负荷增加而升高;对于辐射式过热器,出口汽温随负荷增加而降低。
现代大容量锅炉的过热器系统都采用了对流式过热器、辐射式过热器和屏式(半辐射式)过热器交替串联布置的结构,这有利于减小过热器出口汽温的偏差,并改善了过热汽温调节对象的静态特性。
1.2 过热汽温对象的动态特性过热汽温调节对象的动态特性是指引起过热汽温变化的扰动与汽温之间的动态关系,引起过热蒸汽温度变化的原因很多,但主要有三种:蒸汽流量(负荷)、烟气扰动(热负荷)、过热器入口温度(减温水量)。
下面分别进行介绍。
1.2.1 锅炉蒸汽负荷的变化对过热蒸汽温度的影响锅炉蒸汽母管压力或汽轮机调速汽门开度的变化都会引起锅炉蒸汽量的变化。
当蒸汽量变化时,沿过热器管整个长度各点的温度几乎同时变化,过热器出口温度的阶跃反应曲线如图1所示,特点是:有迟延,有惯性,有自平衡能力。
虽然对流式和辐射式过热器的汽温特性是不一样的,但是通常锅炉过热器主要的换热方式以对流方式为主,因此总的出口汽温将随负荷的增加而升高。
图1 蒸汽量变化对过热汽温的动态特性1.2.2 烟气侧扰动对过热蒸汽温度的影响由于过热器是一个热交换器,过热器出口汽温反映了工质从过热器中带走的热量和从烟气侧吸收的热量之间的平衡关系。
火电660MW机组过热汽减温水阀异常分析与处理对策发布时间:2021-12-02T01:46:09.490Z 来源:《中国电业》2021年19期作者:吴慧玲[导读] 我公司锅炉过热汽减温水采用一、二级减温水喷水减温控制过热汽温度,一、二级内部采用串级控制策略实现参数自动控制。
吴慧玲马鞍山当涂发电有限公司,安徽马鞍山 2431021、概况我公司锅炉过热汽减温水采用一、二级减温水喷水减温控制过热汽温度,一、二级内部采用串级控制策略实现参数自动控制。
由于煤种的变化及燃烧方式的调整,原控制策略已不符合现在参数精细化调整的要求,自动调节品质劣化,直接影响机组运行的安全性和经济性。
1.1 参数劣化趋势现状分析以2号炉B侧一级过热汽减温水调节阀自动控制为例(下同),如图1所示:图中:1-机组负荷,2-B侧一级减温水调节阀指令,3- B侧一级减温水调节阀反馈,4-一级过热汽出口温度实际值,5-一级过热汽出口温度设定值。
机组负荷515MW,一级过热汽温度设定值为511.9℃,实际值在502℃~521℃之间振荡,最大偏差10℃,调节阀在10%-100%之间频繁动作,且控制参数无收敛趋势,属于典型的控制发散问题。
2、原因分析2.1阀门定位器死区设置问题从图1中可以看出,B侧一级减温水调节阀指令与反馈同步变化,对阀门定位器死区进行检查,发现该定位器的死区为0.5%,即指令变化时与反馈偏差大于0.5%,阀门开始动作,这是阀门动作频繁的主要原因之一。
2.2 PID参数设置不合理问题B侧一级减温水调节自动控制策略为串级控制方式,两个PID的控制参数不符合现工况要求,控制品质劣化。
PID参数设置问题也是导致调节阀动作频繁的主要原因之一。
2.3 过热度变化范围大的问题调用趋势分析过热度变化对过热汽温度变化的影响,如图2所示:图中:1-机组负荷,2-给水流量,3-过热度,4-一级减温水调节阀指令,5-一级过热汽出口温度实际值,6- 一级减温水调节阀反馈,7-一级过热汽出口温度设定值。
浅析过热汽温串级控制的控制方案过热汽温串级控制是一种重要的控制方式,可用于调节电站的发电过程。
本文将从两个方面浅析过热汽温串级控制的控制方案。
一、控制模型过热汽温串级控制是基于PID控制方法的,通过PID控制器对控制对象进行调节。
PID控制器包括三个部分,分别为比例、积分和微分。
其中,比例控制器根据误差信号与设定值之间的差别来计算输出量,积分控制器维护一个累积误差的变量,并将其与比例控制器计算出的输出量相加,最终输出调节量。
而微分控制器根据误差变化率的变化来计算输出量,用以预测未来的误差变化情况,从而更好地改善控制系统的稳定性。
过热汽温串级控制中,PID控制器通常通过串级的方式进行连接。
该控制方式通常是将一个PID控制器插入另一个PID 控制器的反馈路径中,以此方式逐层调节。
首先,我们需要使用第一级PID控制器来实现对主蒸汽温度的调节。
第二个PID 控制器负责进一步调节再热蒸汽温度,以保持其稳定性。
通过这种方式,系统可以快速地调整过热汽温度以保持其稳定性。
二、控制算法在过热汽温串级控制中,控制器的选择至关重要。
控制器需要具有快速响应、准确性和可靠性,以确保系统的稳定性。
目前,最常用的控制器算法是基于模型预测控制(MPC)的控制方式。
MPC控制器需要建立一个过热汽温度的动态模型,并通过该模型来预测未来的状态。
在预测过程中,MPC控制器考虑了过去、现在和未来三个时段,根据这些信息对控制系统进行调节,以实现最优的温度控制。
MPC控制器使用优化算法来搜索最优解,以尽可能地减小系统误差。
总体而言,MPC是一种有前途的过热汽温度控制方法,具有一定的优势和实用价值。
然而,对于普通电站和控制系统的实际应用,MPC控制器的计算复杂度很高,需要大量的计算资源。
因此,目前还需要针对MPC控制器展开更多的研究,以提高其效率和实用性。
综上所述,过热汽温串级控制是一种有效的控制方式,可以帮助调节电站发电过程的稳定性,优化系统的能耗效率。
汽温的控制与调整锅炉运行中,如果汽温过高,将引起过热器、再热器、蒸汽管道以及汽轮机汽缸、阀门、转子部分金属强度降低,导致设备使用寿命缩短,严重时甚至造成设备损坏事故。
从以往锅炉受热面爆管事故统计情况来看,绝大多数的炉管爆破是由于金属管壁严重超温或长期过热造成的,因而汽温过高对设备的安全是一个很大的威胁。
一、影响过热汽温变化的因素(主要针对汽包炉)1、燃料性质的变化:主要指燃料的挥发份、含碳量、发热量等的变化,当煤粉变粗时,燃料在炉内燃烬时间长,火焰中心上移,汽温将升高。
当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增加。
2、风量及其配比的变化:炉内氧量增大时,由于低温冷风吸热,炉膛温度降低,使炉膛出口温度升高。
在总风量不变的情况下,配风的变化也会引起汽温的变化,当下层风量不足时,部分煤粉燃烧不完全,使得火焰中心上移,炉膛出口烟温升高。
3、燃烧器及制粉系统运行方式的变化:上层制粉系统运行将造成汽温升高,燃烧器摆角的变化,使火焰中心发生变化,从而引起汽温的变化。
4、给水温度的变化:给水温度升高,蒸发受热面产汽量增多,从而使汽温降低。
反之,给水温度降低汽温将升高。
5、受热面清洁程度的变化:水冷壁和屏过积灰结焦或管内结垢时,受热面的吸热将减少,使炉膛出口温度升高,当过热器本身结焦或积灰时,由于传热不好,将使汽温降低。
6、锅炉负荷的变化:炉膛热负荷增加时,炉膛出口烟温升高,使对流受热面吸热量增大,辐射受热面吸热量降低。
7、饱和蒸汽温度和减温水量的变化:从汽包出来的饱和蒸汽含有少量水分,在正常工况下饱和温度变化很小,但由于某些原因造成饱和蒸汽温度较大变化时,如汽包水位突增,蒸汽带水量增大,在燃烧工况不变的情况下,这些水分在过热器中要吸热,将使汽温降低。
在用减温水调节汽温时,当减温水的温度或流量变化时将引起蒸汽侧总热量的变化,当烟气侧工况未变时,汽温将发生相应的变化。
引言过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度过高,可能造成过热其蒸汽管道和汽轮机的高压部分损坏;过热蒸汽温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大而造成推力轴承过载,还会引起汽轮机末级蒸汽湿度增加,从而降低汽轮机的内效率,加剧对叶片的腐蚀。
所以锅炉运行中必须保持过热汽温稳定在规定值附近。
因此,火电厂锅炉过热汽温,通常要求它保持在额定值±5℃范围内[1]。
而汽温调节过程是典型的大延迟热工过程,由于大延迟的存在使过程可控指数很低,受控对象为多容、大惯性系统,受控系统存在严重的非线性和时变特性,且影响汽温变化的扰动因素很多,如蒸汽负荷、火焰中心位置等。
这就给汽温调节带来很大的困难。
而一些常规的控制方案用于大机组汽温调节效果不够理想,因此研究火电厂的主蒸汽温度控制系统的新型控制策略具有重要的意义。
模糊控制是当今控制领域中令人瞩目的控制方法和技术,它通过把专家的经验和要求总结成若干规则,采用简便、快速、灵活的手段,来完成那些用经典和现代控制手段难以实现的自动化的目标,因而在多个领域中得到越来越广泛的应用。
由于常规模糊控制器的控制规则是根据现场操作人员或专家的经验总结出来的,其语言规则和合成推理往往是固定的,它假设控制过程不会产生超出这些经验范围的显著变化,从而有一定的局限性[2]。
对于一个非线性、大延迟的系统,使用常规的PID控制,或是简单的模糊控制将难以达到满意的控制效果。
大型火电厂锅护主蒸汽温度控制系统是提高电厂经济效益,保证机组安全运行的不可缺少的环节。
主蒸汽温度一般可看作多容分布参数受控对象,其动态特性表现为具有明显的滞后特性,因此对该对象的控制比较困难,本文结合模糊控制和串级控制的优点,提出主汽温FUZZY-PI串级控制方法,并且使用MATLAB 中的SIMULINK 软件进行仿真,仿真结果表明该控制器可以使系统具有很好的抗干扰性能和鲁棒性[3]。
第一章绪论1.1论文的选题背景和意义在火电厂中,热工对象普遍存在着大滞后和大惯性的特征,如电厂汽包锅炉蒸汽压力和燃料控制系统, 汽包锅炉过热蒸汽的温度控制系统 ,这给控制带来了一定的困难。
分析火力发电厂热控调试的常见问题及解决措施
火力发电厂是利用燃料进行热能转化,再将转化后的热能转化为电能的设备。
其中,
燃料的燃烧产生的热量需要通过热力循环系统进行调控和转化,这就需要对火力发电厂的
热控系统进行调试和优化。
以下就是火力发电厂热控调试的常见问题及解决措施:
1. 温度控制不精准或波动较大:这种问题通常是由于热控系统中传感器或调节阀的
故障造成的。
可以通过更换故障设备或重新校正传感器来解决问题。
2. 热力循环效率低:这种问题通常是由于管道阻力过大,或是泵的流量不足造成的。
可以通过清洗管道或是更换泵来改善热力循环效率。
3. 燃烧温度不稳定:这种问题通常是由于燃烧控制系统的故障,例如点火系统或是
燃烧控制阀门故障。
可以通过更换故障设备或重新调整参数来改善燃烧温度稳定性。
5. 热控系统自动化程度低:这种问题通常是由于热控系统设备过时或是调控软件陈
旧造成的。
可以通过升级设备或是更换新的调控软件来提高自动化程度。
总的来说,火力发电厂热控调试需要依靠科学的方法和手段进行,同时需要对热力循
环系统的各个环节进行全面的检测和优化。
只有这样才能保证火力发电厂的热能转化效率
优异,实现节能减排和资源利用的可持续发展。
浅析过热汽温串级控制的控制方案随着控制技术的不断发展,过热汽温串级控制方案被广泛应用于电力工业中,以提高部件性能和最大化效益。
过热汽温串级控制方案采用一系列关键设备和技术进行热控制,包括高温过热器、控制阀门、水冷却器和温度传感器等。
本文将浅析过热汽温串级控制的控制方案,以期探讨其主要特点和应用。
过热汽温串级控制方案的主要特点1.多级管道控制:过热汽温串级控制采用多级管道控制,以确保热平衡和温度稳定。
该方案可有序地将过热汽温度分配到各个段以满足系统的需求,实现了烟气热梯度的良好分配,提高了整个系统的热效益。
2.智能控制:过热汽温串级控制方案还采用智能控制技术,当出现异常情况时,自动进行告警,减少电站的维修和检测所需的时间和成本。
通过控制阀门,大大提高了系统的控制准确性和精确性,从而提高了电站的运行效率。
3.加热装置:过热汽温串级控制中加热装置是非常重要的组成部分,通过加热装置的设置,可以使过热器各区间间保持相对的稳定,必要时,可以进行快速响应和控制。
4.温度传感器:串联式的温度控制方案中,设备或部位之间的温度相互关联。
使用高质量的温度传感器,使得系统能够对温度变化作出即时响应。
过热汽温串级控制的应用领域过热汽温串级控制的应用领域非常广泛,主要应用于电力工业,如燃料电站和核电站等。
1.燃料电站:在燃料电站中,过热汽温串级控制方案可以帮助控制过热器的温度,提高燃烧效率,延长燃烧系统的使用寿命,同时能够降低燃料成本。
这种控制方式可以确保短时间内热管道的持续稳定运行,开启了大容量电站运行的先河。
2.核电站:在核电站中,过热器是核反应堆的关键部件之一,也是高效能发电的重要组成部分。
过热汽温串级控制技术可以帮助控制过热器的温度,确保反应堆在高温下的稳定运行,延长设备寿命,同时保证最小的关机时间和最佳的发电效率。
结论过热汽温串级控制方案是一种创新的、高效的控制方案。
它能够帮助电站管理人员实现精准控制、高效运营,同时能够提高热平衡和温度稳定性。
摘要过热蒸汽温度控制系统是单元机组不可缺少的重要组成部分,其性能和可靠性已成为保证单元机组安全性和经济性的重要因素。
过热蒸汽温度较高时,机组热效率则相对较高,但过高时,汽机的金属材料又无法承受,气温过低则影响机组效率。
过热蒸汽温度的稳定对机组的安全经济运行非常重要,所以对其控制有较高的要求。
但是由于过热蒸汽温度是一个典型的大迟延、大惯性、非线性和时变性的复杂系统,本次设计采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。
通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。
关键词:过热蒸汽温度,减温水,串级控制系统,PIDAbstractThe superheated steam temperature control system is an important and indispensable unit aircrew part, its performance and reliability has become ensure safety and economic behavior of the unit aircrew important factors. The superheated steam temperature is higher, the thermal efficiency is relatively high, but is high, the metal materials and the turbine unable to bear, the temperature is too low will influence the unit efficiency. The superheated steam temperature stability of the unit safe and economic operation is very important, so for the control have higher requirements. But because the superheated steam temperature is a typical time-delayed, large inertia, nonlinear and changeable complex system, this design USES the cascade control in order to improve the control performance of the system, in the system by the master-cascade control of switching device, make the system can be used in different working environment. By using this system, can make the boiler overheating export steam temperature in allowed within the scope of the change, and the protection of superheater wall temperature not more than allow the camp of working temperature.Key words: the superheated steam temperature, reduce warm water, cascade control system, PID目录摘要 (I)Abstract (II)1 绪论 (1)1.1 选题的背景及意义 (1)1.2 国内外研究现状 (2)1.3 本次设计的目的 (3)1.4 本次设计所做的工作 (3)2 汽温控制系统的组成与对象动态特性 (4)2.1汽温调节的概念和方法 (4)2.1.1 从蒸汽侧调节汽温 (4)2.1.2 从烟气侧调节汽温 (6)2.2过热器的分类及其基本结构 (8)2.2.1 过热器的分类 (8)2.2.2 过热器的基本结构 (11)2.3 过热蒸汽温度控制系统的基本结构和工作原理 (12)2.3.1 过热器一级减温控制系统 (12)2.3.2 过热器二级减温控制系统 (13)2.4 过热蒸汽温度控制对象的动静态特性 (15)2.4.1 静态特性 (15)2.4.2 动态特性 (15)3 过热汽温控制系统的基本方案 (19)3.1 串级汽温控制系统 (19)3.2 串级控制系统的基本结构和原理 (19)3.3 串级汽温控制系统的设计 (21)3.4 串级汽温控制系统的整定 (22)4 器件的选型 (25)4.1 温度检测变送器的选择 (25)4.2 控制器的选型 (27)4.3 执行器的选型 (28)4.4 阀门定位器的选型 (29)5 主蒸汽温度控制系统的仿真和改进 (31)5.1 串级PID系统仿真 (31)5.2 基于Smith预估计补偿器的串级汽温控制系统 (34)5.3 基于改进型Smith预估器的串级汽温控制系统 (38)结论 (42)致谢 (43)参考文献 (44)附录 (45)附录A (45)1 绪论1.1 选题的背景及意义过热汽温的控制就是维持过热出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
火电厂锅炉主汽温度控制策略研究摘要:直流炉是火电厂锅炉极其重要的基础设备,发挥着重要的作用。
主蒸汽温度是锅炉最主要的输出变量之一。
主汽温度在确保机组运行的安全性能和稳定性能方面具有极其重要的作用,因为主汽温度具有自动调节的作用,主要是通过维持过热器出口汽温的范围,以保持其在正常范围内进行运转。
本文分析了火电厂锅炉主汽温度控制策略。
关键词:火电厂锅炉;主汽温度;控制策略;火电厂的正常运行,需要各设备有效的发挥各自的性能,为了保证电能的有效供应,电厂在技术上有了很大的改变。
直流炉做为电厂正常生产运营的重要设备,其自身的正常运营是保证电能稳定供应的关键。
长期以来,在锅炉运行过程中其主蒸汽温度都是控制的难点。
一、引起主蒸汽温度变化的各种原因分析1.主蒸汽压力的变化。
主蒸汽压力对于过热汽温的影响是通过工质焓升分配和蒸汽比热容的变化实现的,过热蒸汽的比热容受压力影响较大,低压下额定汽温与饱和温度的差值增大,过热汽总焓升就会减小。
2.给水温度的影响。
当锅炉出力不变时,给水温度的高低对主蒸汽压力的影响是很大的。
当锅炉给水温度较低时,则需要较多的燃料,这时炉膛内燃料量较多,炉内总辐射热及出口烟温差则会有所增加,同会导致过热器出口的汽温增加,同时烟气量和传热温差的增加也会使出口的汽温升高,这二者相加起来则会导致过热汽温有大幅度的升高,而且升高的幅度比锅炉单纯增加负荷时要大得多,通常情况下给水温度降低 3℃,过热汽温就升高约 1℃。
3.炉膛火焰中心位置的影响。
炉膛出口烟的温度会随着炉膛火焰中心位置的移动而发生变化,越往上移,其出口的烟温则会越高。
通常在锅炉运行时,导致其火焰中心位置温度发生的变化的因素较多,大致有以下几点:第一,煤质。
煤质的好坏将会影响火焰燃烧的中心位置变化,大致的影响因素有水分、挥发性、发热量和煤粉细度等。
对于较差的煤质,其燃烧及燃尽时都较慢,不仅降低了发热量,同时还会导致最高火焰温度位置向上移动,需要较多的燃料,这样燃料一增加,所产生烟气量也会有所增加,从而使火焰中心的位置发生上移,另一方面,也会导致对流换热量的增加。
分析火力发电厂热控调试的常见问题及解决措施火力发电厂是利用燃煤、燃油或天然气等燃料,通过燃烧产生热能,再转换成电能的设备。
在火力发电厂的运行过程中,热控调试是一项非常重要的工作。
热控调试的好坏直接关系到火力发电厂的运行效率和安全性。
热控调试工作中也常常会遇到一些困扰工程师的常见问题。
本文将分析火力发电厂热控调试的常见问题,并提出解决措施。
1. 燃料供给不稳定燃料供给是火力发电厂正常运行的关键,而燃料供给的不稳定会导致燃烧不充分,从而影响热能的产生和传递。
造成燃料供给不稳定的原因可能是设备故障或操作不当。
解决措施:要对燃料供给系统进行全面检查,确保各个部件都处在正常工作状态。
要对操作人员进行培训,提高其对设备操作的熟练程度。
可以考虑增加备用燃料供给系统,以备不时之需。
2. 锅炉水位控制失效锅炉水位控制是保证锅炉正常运行的重要参数之一,而一旦失效,就会导致锅炉水位过高或过低,从而影响锅炉热能的传递和利用。
解决措施:要对水位控制系统进行调试,确保其灵敏度和准确性。
要对操作人员进行培训,提高其对水位控制的重视程度。
可以考虑增加水位监测系统,及时发现问题并进行处理。
3. 排烟温度过高排烟温度过高可能是由于燃烧不充分或过热器失效所导致,这会导致能源的浪费和设备的损坏。
解决措施:要对燃烧系统进行调试,确保燃烧效率达到最佳状态。
要对过热器进行检查,修复或更换损坏的部件。
要对排烟温度进行实时监测,及时发现问题并进行处理。
4. 高压蒸汽管道泄漏高压蒸汽管道泄漏会导致蒸汽能量的损失,从而影响发电效率并增加维护成本。
5. 热控设备故障热控设备故障会导致火力发电厂的运行不稳定,从而影响发电效率和安全性。
火力发电厂热控调试中的常见问题主要是由设备故障、操作不当等原因所导致的。
为了解决这些问题,需要对设备进行定期检查和维护,加强操作人员的培训,建立完善的监控系统等一系列措施。
只有这样,才能保证火力发电厂的安全稳定运行,提高发电效率,同时减少能源浪费。
火电厂锅炉主汽温度控制策略分析王磊发表时间:2018-04-18T09:58:18.617Z 来源:《电力设备》2017年第31期作者:王磊[导读] 摘要:锅炉是火电厂极其重要的基础设备,发挥着重要的作用。
(阜新金山煤矸石热电有限公司辽宁阜新 123000)摘要:锅炉是火电厂极其重要的基础设备,发挥着重要的作用。
主蒸汽温度是锅炉最主要的输出变量之一。
主汽温度在确保机组运行的安全性能和稳定性能方面具有极其重要的作用,因为主汽温度具有自动调节的作用,主要是通过维持过热器出口气温的范围,以保持其在正常范围内进行运转。
如果该温度过高会造成一些设备的损坏,锅炉受热面以及蒸汽管道金属材料的蠕变速度将会大大加快,这样会降低设备的使用寿命。
因此,有必要加强火电厂锅炉主汽温度控制策略的研究,以此提高锅炉的安全性,保证电能顺利的供给广大用户。
关键词:火电厂;锅炉;主汽温度;控制策略 1引起火电厂锅炉主蒸汽温度变化的因素 1.1主蒸汽压力的变化主蒸汽压力对于过热汽温的控制主要是通过蒸汽比热容和工质焓升分配的改变而实现的,通常情况下压力的大小会对热蒸汽的比热容产生影响,而低压下饱和温度与额定汽温的差值越大,其过热汽总焓升就越小。
1.2锅炉负荷的变化锅炉运行中负荷是经常变化的,过热汽温也会随之变化。
对于不同型号的过热器,其汽温随锅炉负荷变化的特性也不相同。
辐射过热器的汽温变化特性是负荷增加时汽温降低。
负荷减少时汽温升高。
对流过热器的汽温变化特性是负荷增加时汽温升高,负荷减少时汽温降低。
而半辐射过热器汽温随锅炉负荷变化比较平稳。
现代高压或超高压锅炉都采用联合式过热器,即整个过热器由若干级辐射、半辐射和对流过热器组成。
对于联合式过热器,当锅炉负荷变化时,对过热器出口汽温变化特性的最终影响结果,应视联合过热器本身的温度特性表现为对流特性或辐射特性而定。
我国多数锅炉采用的联合过热器中,主要是由受热面积较小的辐射、半辐射过热器和受热面积较大的对流过执器串联组成。