第0章 导言(Qchsh_2011)
- 格式:pdf
- 大小:347.28 KB
- 文档页数:11
学分:4 学时:72考试方式:闭卷考试内容:概念本课程的内容:主要介绍设计和构造分布式操作系统的基本原理和部分实现技术。
并且给出了两种描述并发程序验证的数学模型,时态逻辑和Petri网。
参考书:《分布式操作系统设计》何炎详编著海洋出版社《高级操作系统》何炎详宋文欣彭锋编著科学出版社《操作系统高等教程》郑衍德徐良贤主编上海交通大学出版社《高级操作系统》徐甲同编著西安电子科技大学出版社,1998, ISBN 7-5606-0551-6/TP.0273《CENTRALIZED AND DISTRIBUTED OPERATING SYSTEMS》GARY J. NUTT PRENTICE HALL《MODERN OPERATING SYSTEMS》Andrew S. Tanenbaum《分布式操作系统Distributed Operating Systems》ISBN 7-302-02411-1Andrew S. Tanenbaum 清华大学出版社 PRENTICE HALL 《DISTRIBUTED OPERATING SYSTEMS—The Logical Design》 ISBN 0-201-417049A. Goscinski ADDISON-WESLEY《ADVANCED CONCEPTS IN OPERATING SYSTEMS DISTRIBUTED, DATABASE, AND MULTIPROCESSOR OPERATING SYSTEMS》ISBN 0-07-057572-XMUKESH SINGHAL & NIRANJAN G. SHIVARATRI McGraw-Hill 《DISTRIBUTED OPERATING SYSTEMS: concepts and design》ISBNPradeep K. Sinha IEEE press第-i - 页第 - 1 - 页第一章 引论在本章中,我们研究操作系统的基本概念及其发展历史。
《操作系统导论》-书摘前⾔在真实系统上运⾏真实代码是了解操作系统的最佳⽅式,因此建议你尽可能这样做。
根据我们近15年来教授本课程的经验,学⽣很难理解并发问题是如何产⽣的,或者很难理解⼈们试图解决它的原因。
那是因为他们还不了解地址空间是什么、进程是什么,或者为什么上下⽂切换可以在任意时间点发⽣。
然⽽,⼀旦他们理解了这些概念,那么再引⼊线程的概念和由此产⽣的问题就变得相当容易,或者⾄少⽐较容易。
第1章关于本书的对话他讲的是物理学,⽽我们将探讨的主题是操作系统的3个简单部分。
这很合适,因为操作系统的难度差不多是物理学的⼀半。
第2章操作系统介绍由于操作系统提供这些调⽤来运⾏程序、访问内存和设备,并进⾏其他相关操作,我们有时也会说操作系统为应⽤程序提供了⼀个标准库(standard library)。
每个CPU、内存和磁盘都是系统的资源(resource),因此操作系统扮演的主要⾓⾊就是管理(manage)这些资源,以做到⾼效或公平,或者实际上考虑其他许多可能的⽬标。
遗憾的是,上⾯的程序中的关键部分是增加共享计数器的地⽅,它需要3条指令:⼀条将计数器的值从内存加载到寄存器,⼀条将其递增,另⼀条将其保存回内存。
你可能想知道操作系统为了实际写⼊磁盘⽽做了什么。
我们会告诉你,但你必须答应先闭上眼睛。
这是不愉快的。
⽂件系统必须做很多⼯作:⾸先确定新数据将驻留在磁盘上的哪个位置,然后在⽂件系统所维护的各种结构中对其进⾏记录。
这样做需要向底层存储设备发出I/O请求,以读取现有结构或更新(写⼊)它们。
⼀个最基本的⽬标,是建⽴⼀些抽象(abstraction),让系统⽅便和易于使⽤。
抽象对我们在计算机科学中做的每件事都很有帮助。
抽象使得编写⼀个⼤型程序成为可能,将其划分为⼩⽽且容易理解的部分,⽤C[SPAN]这样的⾼级语⾔编写这样的程序不⽤考虑汇编,⽤汇编写代码不⽤考虑逻辑门,⽤逻辑门来构建处理器不⽤太多考虑晶体管。
系统调⽤和过程调⽤之间的关键区别在于,系统调⽤将控制转移(跳转)到OS中,同时提⾼硬件特权级别(hardware privilege level)。
方案设计 险和发展费用的设计要求,有可能提出一套合理组合的设计要 、,八、求。
概念设计中设计师的经验和判断力起重要作试飞 法。
1 ____严i第三阶段是初步设计,它包括两部分内容:方案设计和打样设计。
方案设计,首先根据第一早绪言 飞机设计是一项复杂和周期很长的工作,在工业部门通常分成几个阶段进行。
从首先拟定设计要求,它是由使用方(军 方或民航)负责。
现代军用飞机根据国家的方针和将来面临的作战环境,经过分析提出作战技 术要求。
现代军用飞机从设计要求的制定到开始服役使用一般都需要10年以上的时间,要准 确预计10年后的政治、经济、技术环 境是相当困难的。
一架军用机的全寿命费用达数百亿元的 量级,因而军用飞机设计要求的研究和制定是一项非常重要和影响巨大的工作。
军用飞机设计 要求的研究和制定一般都由专门的机构和人员来进行。
民用飞机主要强调安全性、经济性和舒 糠今中 适性,其设计要求一般由飞机司提岀初步设想,经过与可能用户'心以 的商讨,并经过市场调查和分析讨论后制定的。
'第二阶段是概念设计,它与设计要求阶段有重叠,因为有时要通过概念设 、宀、八、计来使设计要求制定得更为合理和具体化。
概念设计的目的是对飞 初步设汁机的气动布局、性能、重量水平、航空电子、武器、所需新技 术、费用和市场前景等方面进行初步和方向性的探讨。
概念设计 屮还有对设计要求中各项目的指标进 行分析,适 当降低那些对性能影响不大,但可能降低技术风设计中充满着矛盾,通过各种方案的研究来评价、折衷和综合,不断进行改进,直到获得一个满足要求的综合最佳方案。
打样设计,在方案设计阶段主要是确定飞机总体布局,对结构和系统的考虑比较粗 略,在详细设计之前,结构和系统还需要一个初步设计的过程,这个过程为打样设计。
在打 样设计阶段要进行下列工作:(1) 气动分析和风洞试验,进行全机载荷计算,性能和飞行剖面计算,操纵性和稳定性分析和气 动弹性分析等。
a r X i v :c o n d -m a t /0606639v 6 [c o n d -m a t .m e s -h a l l ] 5 M a y 2007Quantum phase transitions in bilayer quantum Hall systemsJinwu Ye and Longhua JiangDepartment of Physics,The Pennsylvania State University,University Park,PA,16802(Dated:February 6,2008)We construct a quantum Ginsburg-Landau theory to study the quantum phase transition from the excitonic superfluid (ESF)to a possible pseudo-spin density wave (PSDW)at some intermediate distances driven by the magneto-roton minimum collapsing at a finite wavevector.We analyze the properties of the PSDW and explicitly show that a square lattice is the favorite lattice.We suggest that correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature dependent drag consistent with the experimental parisons with previous microscopic numerical calculations are made.Further experimental implications are given.Introduction.Spin-polarized Bilayer Quantum Hall systems at total filling factor νT =1have been un-der enormous experimental and theoretical investigations over the last decade [1,2].When the interlayer separa-tion d is sufficiently large,the bilayer system decouples into two separate compressible ν=1/2Fermi Liquid (FL)layers.However,when d is smaller than a crit-ical distance,even in the absence of interlayer tunnel-ing,the system undergoes a quantum phase transition into a novel spontaneous interlayer coherent incompress-ible phase which is an excitonic superfluid state (ESF)in the pseudospin channel [1,2,3,4].Although there are very little dissipations in both the ESF and FL,the experiment [5]discovered strong enhancement of drag and dissipations in an intermediate distance regime.One of the outstanding problems in BLQH is to understand novel phases and quantum phase transitions as the dis-tance between the two layers is changed.If the exper-imental observations indicate that there is an interme-diate phase between the two phases remains controver-sial.Even it exists,different scenarios are proposed for the nature of the intermediate phase [6,7,8,9].Using Hartree-Fock (HF)in the Lowest Landau Level (LLL)or trial wavefunctions approximations,many authors [6]proposed different kinds of translational symmetry break-ing ground states as candidates of the intermediate state.In this paper,we develop a quantum Ginsburg-Landau (QGL)theory [10]to study the nature of the intermedi-ate phase.We propose there are two critical distances d c 1<d c 2and three phases as the distance increases.When 0<d <d c 1,the system is in the phase ordered ESF state which breaks the internal U (1)symmetry,when d c 1<d <d c 2,the system is in a pseudo-spin den-sity wave (PSDW )state which breaks the translational symmetry,there is a first order transition at d c 1driven by magneto-roton minimum collapsing at a finite wavevec-tor in the pseudo-spin channel.When d c 2<d <∞,the system becomes two weakly coupled ν=1/2Composite Fermion Fermi Liquid (FL)state.There is also a first order transition at d =d c 2.However,disorders could smear the two first order transitions into two second order transitions.We construct a quantum Ginzburg-Landautheory to describe the ESF to the PSDW which break the two completely different symmetries and analyze in detail the properties of the PSDW.By using the QGL,we explicitly show that a square lattice is the favorite lattice.The correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature dependent drag consistent with the ex-perimental data in [5].Recently,the effects of small im-balance above the PSDW were studied in [11]and found to explain the experimental observations nicely in [12].Formalism in phase representation.Consider a bi-layer system with N 1(N 2)electrons in top (bottom )layer and with interlayer distance d in the presence ofmagnetic field B=∇× A :H =H 0+H int H 0= d 2xc †α( x )(−i ∇+e 2mc α( x )H int =1r 2+d 2where ǫis thedielectric constant.For simplicity,we only discuss the balanced case in this paper.The effects of imbalance were discussed in detail in [10,11].Performing a singular gauge transformation φa ( x )=e i Rd 2x ′arg ( x − x ′)ρ( x ′)c a ( x )where ρ( x )=c †1( x )c 1( x )+c †2(x )c 2( x )is the total density of the bi-layer system.We can transform the Hamiltonian Eqn.1into a Lagrangian of the Composite Boson φa coupled to a Chern-Simon gauge field a µ[10].We can write the two bosons in terms of magnitude and phase φa =√2the Lagrangian in the Coulomb gauge[10]:L =iδρ+(12m[12δρ+V +( q )δρ+−i 2δρ−∂τθ−+¯ρ2∇θ−)2+12.It was shown in [10]that the functional form in the spin sector in Eqn.2achieved from the CB theory is the same as the microscopic LLL+HF approximation achieved in[2].However,the spin stiffness ¯ρ2V E ( q )(12∇θ−)2(3)where the dispersion relation of the NGM includinghigher orders of momentum can be extracted:ω2=[2ρE V E ( q )]q 2=q 2(a −bq +cq 2)(4)Instability driven by the collapsing of magneto-roton minimum.As shown in [16]in the context ofpossible supersolid in Helium 4,the advantage to extend the dispersion relation beyond the leading order is that the QGL action can even capture possible phase transi-tions between competing orders due to competing inter-actions on microscopic length scales.In the following,we study the instability of the ESF state as the distance in-creases.It can be shown that the dispersion curve Eqn.4and V E (q )indeed has the shape shown in Fig.1a [13]and Fig.1b respectively.The phenomenon of the collapsing of the magento-roton minimum as the distance increases was clearly demonstrated in the numerical calculations in the LLL+HF approaches [3,14]and detected by inelastic light scattering [15].It was estimated that q 0l ∼1,so the lattice constant of the PSDW is of the same order of magnetic length l which is ∼100˚A .The critical distance d c 1is also of the same order of the magnetic length.In re-ality,the instability happens before the minimum touches zero.Effective action in the dual density representa-tion and a Feymann relation in the pseudo-spin channel.Because the original instability comes from the density-density interaction,it is convenient to integrateESF FLωωd< ψ>= 0< = 0>G < ψ>= 0< G = 0>c1c2EEPSDW (b)S (a)FIG.1:The zero temperature phase diagram in the balanced case as the distance between the two layers increases.ESF where <ψ>=0,<n G >=0stands for excitonic superfluid,PSDW where <ψ>=0,<n G >=0stands for pseudo-spin density wave phase,FL stands for Fermi Liquid.(a)Energy dispersion relation ω(q )in these phases.(b)V E (q )in these phases.The cross in the PSDW means the negative minimum value of V E (q )is replaced by the PSDW.The order parameters are also shown.In fact,the instability happens before the minimum touches zero.out the phase field in favor of the density operator.Ne-glecting the vortex excitations in θ−and integrating outthe θ−in Eqn.3leads to:L [δρ−]=12ρEq 2+V E ( q )]δρ−( q ,ωn )(5)where we can identify the dynamic pseudo-spin density-density correlation function S −( q ,ωn )=<δρ−(− q ,−ωn )δρ−( q ,ωn )>=2ρEq 2S −(q )(6)which takes exactly the same form as the Feymann relation in superfluid 4He .Obviously,the V E (q )in the Fig.1b leads to the magneto-roton dispersion ω2=q 2V E (q )in the Fig.1a.3 Because the instability is happening at q=q0insteadof at q=0,the vortex excitations inθ−remain uncriti-cal through the transition.Integrating them out will notgenerate any singularities except the interactions amongthe pseudo-spin densityδρ−.Expanding V E(q)near theminimum q0in the Fig.1leads to the quantum Ginsburg-Landau action to describe the ESF to the PSDW transi-tion:L[δρ−]=12ρE q2which is non-critical across the transition.While thecorresponding quantity Aθ∼S−(q)in the phase rep-resentation Eqn.3is divergent,so Eqn.3breaks down as q→q−0and may not be used to describe the ESF to the PSDW transition.In sharp contrast to the conventional classical normal liquid(NL)to normal solid(NS)transition[17],the pos-sible cubic interaction term(δρ−)3is forbidden by the Z2 exchange symmetry between the two layersδρ−→−δρ−. Note that theω2n term in thefirst term stands for the quantumfluctuations ofδρ−which is absent in the clas-sical NL to NS transition.In the following section,we will show that the most favorable lattice is a square lat-tice.Lattice structure of the PSDW phase.In Eqn.7, r which is the gap of V E(q)at the minimum tunes the transition from the ESF to the PSDW.In the ESF,r>0 and<δρ−>=0is uniform.In the PSDW,r<0and <δρ−>= G n( G)e i G· x,n(0)=0takes a lattice struc-ture with reciprocal lattice vectors G.It was shown that in the classical NL to NS transition,due to the cubic term,a triangular lattice is the favorite lattice.However, due to the absence of the cubic term in Eqn.7,in the fol-lowing,we will show that the favorite lattice is the square lattice.At meanfield level,we can ignore theωdepen-dence in Eqn.7.Substituting<δρ−>= G n( G)e i G· x into Eqn.7leads to:f n= G12rG|n G|2+uα|n G|4+vα|n G|6(9) where for the quadratic and quartic terms,all the con-tributions come from the paired reciprocal lattice vec-tors.After the scaling nG→m−1/2n G,the quadratic term become the same for both lattices,but the quar-tic terms are still different uα=3(1−1/m)u[17],so u =212u.For the sixth order term,in square lattice,all the contributions are still from the paired reciprocal lattice vectors,however,in triangu-lar lattice,there is an additional contribution from a triangle where G1+ G2+ G3=0.After very care-ful counting,wefind that v pα=5(3−9/m+8/m2)v from the paired contribution and v tri=5/6v from the additional contribution from the triangle in a triangu-lar lattice,so v =619v.The meanfield phase diagram of Eqn.9is well known:If u>0( u<0),there is2nd(1st)order transition,there is a tri-critical point at u=0.Minimizing f with re-spect to nGleads to n2α=(−2uα+108v,f (n)<f△(n).Because in the two lattice states,r<u2α/2vα,n2>−u 50v>n2c,n2△>−u△68v>n2c,so in this regime,we still have f (n )<f (n△)<f△(n△). So we conclude that in any case,the square lattice is the favorite lattice.It has three elastic constants in-stead of two.Neglecting zero-point quantumfluctua-tions,<δρ−>= iδ( x− R i)− iδ( x− R i− l)where the l=14The system is compressible with gapless phonon excita-tions determined by the3elastic constants.It is very interesting to see if in-plane soft X-ray or light scatter-ing experiments[2]can directly test the existence of the PSDW when d c1<d<d c2.Note that the light scatter-ing intensity may be diminished by a Debye-Waller factor due to the large zero-point quantumfluctuations in the PSDW[16].Vacancies,disorders and Coulomb Drag in the PSDW state.In principle,theδρ+mode in Eqn.2 should also be included.It stands for the translational (or sliding)motion of the PSDW lattice.However,any weak disorders will pin this PSDW state.Therefore,the δρ+mode can be neglected.Disorders will smear the1st order transition from the ESF to the PSDW into a2nd order transition.It was argued in[1]that disorders in real samples are so strong that they may even have de-stroyed the ESF state,so they may also transfer the long range lattice orders of the PSDW into short range ones. This fact makes the observation of the lattice structure by light scattering difficult.The two square lattices in the top and bottom layer are locked together,so it will show huge Coulomb drag.However,vacancies generated by the large zero-point quantumfluctuations may play important roles in the drag(Fig.2b).As the distance increases to the critical distance d c1in Fig.1,the ESF turns into the PSDW whose lattice constant a=√4πl.Assuming zero-point quantumfluc-tuations favor vacancies over interstitials[16],so there are vacancies n0even at T=0in each layer.Atfinite temperature,there are also thermally generated vacan-cies n a(T)∼e−∆v/T where∆v is the vacancy excitation energy.So the total number of vacancies at any T is n v(T)=n0+n a(T).Obviously,the vacancies in top layer are strongly correlated with those in the bottom layer.As shown in[18],the correlated character of hop-ping transports of the vacancies between the active and passive layers can lead to a very large drag.We can es-timate the resistance in the active layer as R∼1/n v(T). As shown in[18],the drag resistance in the passive layer is R D∼αD R whereαD should not be too small.This temperature dependence is indeed consistent with that found in the experiment[5]:starting from200mK,R D increases exponentially until to50mK and then satu-rates.This behavior is marked different than that at both small and large distance where the system is in the ESF and FL regimes respectively.These vacancies also lead to thefinite Hall drag in the PSDW.We conclude that in the presence of disorders,all the properties of the PSDW are consistent with the experimental observations in[5]on the intermediate phase.The effects of very small imbalance on the ESN phase was investigated in[11]and was also found to be consistent with the experimental data in[12].Discussions.We compare the results achieved from the QGL theory with those achieved from the microscopic LLL+HF approximation in[6].Especially,Cote,Brey and Macdonald in[6]numerically found that the lowest energy lattice structure of the PSDW is a square lat-tice.But it is not known if the HF+LLL calculations can describe the transition from the ESF to the PSDW. The QGL theory presented in this paper circumvents the difficulty associated with the unknown wavefunction at anyfinite d[19]and treat both the interlayer and the intralayer correlations on the same footing,so can be used to capture competing orders on microscopic length scales and naturally leads to the PSDW as the interme-diate state which breaks translational symmetry.The theory puts the ESF state and the PSDW state on the same footing,characterize the symmetry breaking pat-terns in the two states by corresponding order parame-ters and describe the universality class of the quantum phase transition between the two states.We explicitly showed that the square lattice is the most favorite lat-tice.There are quantumfluctuation generated vacancies in the PSDW which lead to the unusual temperature de-pendence of the Coulomb drag observed in the exper-iment[5].The QGL theory is complementary to and goes well beyond the previous microscopic calculations. Recent experiments[20]found the real spin also plays important roles in some BLQH samples with large tun-neling gaps.Putting the spin into the theory remains an important open problem.J.Ye thank B.Halperin for helpful discussions and J. K.Jain for pointing out Ref.[18]to us.[1]I.B.Spielman et al,Phys.Rev.Lett.84,5808(2000).ibid,87,036803(2001);M.Kellogg,et al,Phys.Rev.Lett.88,126804(2002);M.Kellogg,et al, cond-mat/0401521;For a review,see J.P.Eisenstein andA.H.MacDonald,cond-mat/0404113.[2]For reviews of bilayer quantum Hall systems,see S.M.Girvin and A.H.Macdonald,in Perspectives in Quantum Hall Effects,edited by S.Das Sarma and Aron Pinczuk (Wiley,New York,1997).[3]H.Fertig,Phys.Rev.B40,1087(1989)[4]X.G.Wen and A.Zee,Phys.Rev.Lett.69,1811(1992);Z.F.Ezawa and A.Iwazaki,Phys.Rev.B.48,15189 (1993);Kun Yang et al,Phys.Rev.Lett.72,732(1994);K.Moon et al,Phys.Rev.B51,5138(1995);Ziqiang Wang,Phys.Rev.Lett.92,136803(2004);ibid94, 176804(2005);H.A.Fertig and Ganpathy Murthy,Phys.Rev.Lett.95,156802(2005).[5]M.Kellogg,et al,Phys.Rev.Lett.90,246801(2003).5[6]L.Brey,Phys.Rev.Lett,65,903(1990);R.Cote,L.Breyand A.H.Macdonald,Phys.Rev.B46,10239(1992);X.M.Chen and J.J.Quinn,Phys.Rev.Lett,67,895 (1991),Phys.Rev.B45,11054(1992),Phys.Rev.B47, 3999(1993);L.Zheng and H.A.Fertig,Phys.Rev.B 52,12282(1995)S.Narasimhan and Tin-Lun Ho,Phys.Rev.B52,12291(1995).[7]J.Schliemann,S.M.Girvin,and A.H.MacDonald,Phys.Rev.Lett.86,1849(2001).[8]A.Stern and B.I.Halperin,Phys.Rev.Lett.88,106801(2002).[9]S.Simon,E.H.Rezayi and ovanovic,Phys.Rev.Lett.91,046803(2003).Z.Papic and o-vanovic,cond-mat/0702042.[10]Jinwu Ye,cond-mat/0310512.[11]Jinwu Ye,Phys.Rev.Lett.97,236803(2006).[12]I.B.Spielman,et al,Phys.Rev.B70,081303(2004).[13]For a similar phenomenon which drives the edge recon-struction in SLQH,see Kun Yang et al,Phys.Rev.Lett.91,036802(2003).[14]Y.N.Joglekar and A.H.Macdonald,Phys.Rev.B65,235319(2002).[15]S.Luin,et.al,Phys.Rev.Lett.90,236802(2003).[16]Jinwu Ye,Phys.Rev.Lett.97,125302(2006);cond-mat/0603269.[17]P.M.Chaikin and T.C.Lubensky,Principles of Con-densed Matter Physics,Cambridge university press,1995.The counting6u for the4th order term from the paired contributions in Eqn.(4.7.8)is heavily overcounted. [18]M.E.Raikh and F.von Oppen,Phys.Rev.Lett.89,106601(2002).V.M.Apalkov and M.E.Raikh,Phys.Rev.B71,245109(2005).[19]Gun Sang Jeon and Jinwu Ye,Phys.Rev.B71,035348(2005);Longhua Jiang and Jinwu Ye,Phys.Rev.B74, 245311(2006).[20]S.Luin et al,Phys.Rev.Lett.94,146804(2005);ibid,97,216802(2006);B.Karmakar,et al,cond-mat/0702317.。
第1章导言第1章导言媒介就是消息。
——Marshall McLuhan1.1 程序设计语言在计算机编程中,程序设计语言是作为表达的媒介。
一个理想的程序设计语言能让程序员轻松地编写出简洁、清晰的程序。
由于程序在其生存期中必须易于理解、修改和维护,一个好的程序设计语言还要让其他人易于阅读程序并理解它们是怎样工作的。
软件的设计和构造是一项复杂的工作。
许多软件系统都由相互作用的多个部分组成。
这些部分,或者说是软件的构件,它们之间的交互可能非常复杂。
为了控制复杂性,必须仔细地定义这些构件之间的接口和消息传送。
一个适于大规模编程的、好的程序设计语言将会帮助程序员高效地管理软件组件之间的交互。
当我们评价程序设计语言的时候,必须考虑到设计、实现、测试和维护软件的工作,看看每种语言对软件生命周期中的各个部分是如何提供支持的。
在程序设计语言的设计过程中有很多时候需要折衷利弊,这是项困难的工作。
有些语言的特色使得我们能够很快地编写出程序,但是在设计测试工具和方法的时候却要困难得多。
而有些语言的构造方式使得编译器能够容易地对程序进行优化,但又会使得编程过程烦琐。
由于不同的计算环境和应用需要不同的程序特性,于是不同的程序语言设计者选择了不同的折衷办法。
实际上所有成功的程序语言最初都是为某一特殊用途而设计的。
这并不是说每种语言都只适于一种目的。
然而,把注意力集中在某一应用上能够帮助语言设计者作出一致的、有目的的决定。
单一应用还有利于解决语言设计的最难对付的问题:遗漏好的想法。
即使你不使用本书中的许多程序设计语言,你仍能运用这些语言所体现的概念框架。
在20世纪70年代中期,当我还是学生的时候,所有“严谨”的程序员(至少在我所在的大学)都使用Fortran语言。
Fortran语言不允许递归,而大家普遍认为递归的效率太低,对“实际的编程”不实用。
然而,我选修的一门课程的讲师认为递归是一个非常重要的思想,并向我们解释在Fortran语言中可以怎样利用递归技术管理数组数据。
第一章绪言一、信息及其特征1、信息:是反映一切事物属性及动态的消息、情报、指令、数据和信号中所包含的内容。
2、信息的作用:信息是用来消除不确定的东西(香农)。
为决策提供依据的作用,可被用于控制的作用,有告知作用。
3、信息的本质:信息是区别于物质与能量的第三类信息(维纳)。
4、信息的内涵:信息是事物运动的状态与方式(钟义信)。
5、信息、物质和能量是构成人类社会资源的三大支柱。
信息既是人类生存的基本条件,也是人类生存的基本要素。
6、信息的一般特征:普遍性、载体依附性、价值性、时效性、共享性、真伪性、或可转换性等。
二、信息技术及其发展简史1、信息技术:一切与信息的获取、加工、表达、交流、管理和评价等有关的技术都称之为信息技术,简称IT。
现代信息技术是以电子技术,尤其是微电子技术为基础,以计算机技术为核心,以通信技术为支柱,以信息技术应用为目的的科学群。
2、信息技术发展经历的五次革命第一次革命——语言的产生;第二次革命——文字的发明;第三次革命——造纸术和印刷术的发明;第四次革命——电报、电话、广播、电视的发明和普及应用;第五次革命——电子计算机的普及使用和计算机与通信技术的结合。
3、信息技术的发展趋势总体上是朝着大众化和人性化的方向发展。
①越来越友好的人机界面(GUI):友好的人机界面意味着技术工具的简单易学和易于操作;②越来越个性化的功能设计:信息技术产品正向个性化和集成化的方向发展;③越来越高的性能价格比:信息技术正向低消耗、高速度的方向发展。
4、神奇的计算机技术:虚拟现实、语音技术、智能代理技术等。
完善本章思维导图一、填空1.物质、能量和_________是构成人类社会资源的三大支柱。
2.请列举信息的基本特征,各举说明其特征的一个例子。
1)_______________________。
例:_______________________。
2)_______________________。
例:_______________________。