三角形练习一
- 格式:doc
- 大小:110.50 KB
- 文档页数:2
八年级上册数学:第十一章三角形练习题(一)一.选择题1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm2.已知△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),那么()A.M>0 B.M≥0 C.M=0 D.M<03.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7 C.n=8 D.n=94.下列各图中,正确画出AC边上的高的是()A.B.C.D.5.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°6.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°7.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形8.若三角形三个内角度数比为2:3:4,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.下列各线段中,能与长为4,6的两线段组成三角形的是()A.2 B.8 C.10 D.1210.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°11.如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于()A.30°B.35°C.60°D.70°12.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°二.填空题13.三角形两边长分别是2,4,第三边长为偶数,第三边长为.14.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.15.八边形的内角和为,外角和为.16.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,与BD 交于点D,若∠D=28°,则∠A=.17.在△ABC中,AD为BC边上的高,∠BAD=55°,∠CAD=25°,则∠BAC=.18.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.三.解答题19.如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.20.如图,在△ABC中,分别作其内角∠ACB与外角∠DAC的角平分线,且两条角平分线所在的直线交于点E(1)填空:①如图1,若∠B=60°,则∠E=;②如图2,若∠B=90°,则∠E=;(2)如图3,若∠B=α,求∠E的度数;(3)如图4,仿照(2)中的方法,在(2)的条件下分别作∠EAB与∠ECB的角平分线,且两条角平分线交于点G,求∠G的度数.21.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,∠A =40°,则∠ABX +∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =40°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =133°,∠BG 1C =70°,求∠A 的度数.22.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.23.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,(1)∠BAC=,∠DAC=.(填度数)(2)求∠EAD的度数.24.(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.参考答案一.选择题1.解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.2.解:∵△ABC的三边长分别为a、b、c,且M=(a+b+c)(a+b﹣c)(a﹣b﹣c),∴a+b+c>0,a+b﹣c>0,a﹣b﹣c<0,∴M<0.故选:D.3.解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.4.解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.5.解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.6.解:∵∠A+∠B+∠ACB=180°,∠ACB=100°,∠A=20°,∴∠B=60°,根据翻折不变性可知:∠CB′D=∠B=60°,∵∠DB′C=∠A+∠ADB′,∴60°=20°+∠ADB′,∴∠ADB′=40°,故选:A.7.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.8.解:设三个内角度数为2x、3x、4x,由三角形内角和定理得,2x+3x+4x=180°,解得,x=20°,则三个内角度数为40°、60°、80°,则这个三角形一定是锐角三角形,故选:A.9.解:设组成三角形的第三边长为x,由题意得:6﹣4<x<6+4,即:2<x<10,故选:B.10.解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选:B.11.解:∵∠A′EC=40°,∴∠AEC+∠A′EC=180°+40°=220°,由翻折可知:∠AED=∠A′ED=×220°=110°,∵∠A′DB=110°,∴∠A′DA=70°,由翻折可知:∠ADE=∠A′DE=A′DA=35°,∴∠A=180°﹣∠ADE﹣∠AED=35°.故选:B.12.解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.二.填空题(共6小题)13.解:设第三边为a,根据三角形的三边关系知,4﹣2<a<4+2.即2<a<6,由周长为偶数,则a为4.故答案为:4.14.解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.15.解:八边形的内角和为(8﹣2)•180°=1080°;外角和为360°.故答案为:1080°,360°.16.解:∵BD为∠ABC的平分线,CD为∠ACE的平分线,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠DCE=∠DBC+∠D,∠ACE=∠ABC+∠A,∴∠DBC+∠D=(∠ABC+∠A),∴∠D=∠A,∴∠A=2∠D=2×28°=56°.故答案为56°.17.解:画图如下:①如左图:∠BAC=∠BAD+∠CAD=55°+25°=80°;②如右图:∠BAC=∠BAD﹣∠CAD=55°﹣25°=30°.故答案为:80°或30°.18.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.三.解答题(共6小题)19.解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×68°=34°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°﹣90°﹣72°=18°,∴∠DCE=∠BCE﹣∠BCD=34°﹣18°=16°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°﹣90°﹣16°=74°.20.解:(1)①∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=30°;②∠DAC﹣∠ACB=∠B=60°,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=45°;(2)∠DAC﹣∠ACB=∠B=α,∵EA平分∠DAC,EC平分∠ACB,∴∠FAC=∠DAC,∠ACE=∠ACB,∴∠E=∠FAC﹣∠ACE=∠B=α;(3)∵AG,CG分别是∠EAB与∠ECB的角平分线,∴∠G=∠HAC﹣∠ACG=∠FAC﹣∠ACE=(∠FAC﹣∠ACE)=×∠B=α.21.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°,故答案为:50.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;C=(∠ABD+∠ACD)+∠A,③∠BG1C=70°,∵∠BG1∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63,即∠A的度数为63°.22.解:(1)如图(1),∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.23.解:(1)∠BAC=60°,∠DAC=20°,在△ABC中∠B=50°,∠C=70°,∠BAC=180°﹣∠B﹣∠C=60°,∵AD是高,∠C=70°,∴∠DAC=90°﹣70°=20°,故答案为:60°;20°;(2)∵AE是角平分线,∴∠EAC=∠BAC=30°又∵AD是高,∴∠DAC+∠C=90°,∠DAC=90°﹣70°=20°,∴∠EAD=∠EAC﹣∠DAC=10°.24.解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)如图,由三角形的外角性质,∠A+∠D=∠1,∵∠1+∠DBE+∠C+∠E=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°;(3)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(4)如图,延长CE与AD相交,由三角形的外角性质,∠A+∠C=∠1,∠B+∠E=∠2,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。
三角形练习题含答案一、选择题1.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是.A.3B.C.5D..下面四个图形中,线段BE是⊿ABC的高的图是3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是 A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C 相等的角的个数是A、3个 B、4个 C、5个 D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=A、90B、120C、160D、180第5题图第6题图7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是1个2个3个4个 8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD=。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________. 11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度。
12.如图,∠1=_____.ACABED第10题图C第11题图2第12题图第14题图16题图13.若三角形三个内角度数的比为2:3:4,则相应的外角比是 . 14.如图,⊿ABC中,∠A =0°,∠B =2°,CE 平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =度。
1. 什么是三角形?三角形是由三条不在同一直线上的线段首尾顺次连结所组成的图形叫做三角形。
2. 三角形的性质和特点。
三角形具有三个角、三条边、三个顶点、三条高。
三角形具有稳定性。
3. 三角形的三条边关系:三角形的任意两边之和大于第三边。
(通常情况下判断三条线段是否能组成一个三角形,采用这种方法:取最小的两边之和与最长的一条边做比较,只要最小的两边之和大于最长的边,就一定能构成三角形。
)4. 三角形的高:就是从底边所对应的顶点,到底边上垂直距离,叫做三角形的高。
5. 三角形的周长=三条边相加三角形的面积=底×高÷26. 三角形的内角和等于180度。
7. 三角形的分类。
锐角三角形:三个角全都是锐角的三角形叫做锐角三角形。
直角三角形:其中有一个角为90度的三角形叫做直角三角形。
钝角三角形:其中有一个角为钝角的三角形叫做钝角三角形。
8. 等腰三角形:在一个三角形中,有两条边一样长(或有两个角相等)的三角形叫做等腰三角形。
等腰三角形的特点:①两条腰的长度相等;②两个底角的度数相等;③两条腰上的高长度相等。
9. 等边三角形:在一个三角形中,三条边都一样长(或三个角的度数都相等)的三角形叫做等边三角形。
等边三角形的特点:①三条边的长度相等;②三个角的度数相等且都等于60度;③三条边上的高长度都相等。
10.①顶角为60度的等腰三角形一定是等边三角形。
②有一个底角为60度的等腰三角形一定等边三角形。
《三角形》专项训练一、填空1、一个三角形,其中两个角分别是40°和60°,这个三角形是( )三角形。
2、一个三角形最多可以画( )条高。
3、一个等腰三角形,从它的顶点向对边作垂线,分成的每个小三角形的内角和是( )。
4、由三条( )围成的图形叫三角形。
5、一个等腰三角形,其中一个角是40°,它的另个两个角可能是( )和( ),也可能是( )和( )。
6、三角形按角可分为( )三角形、( )三角形、( )三角形。
《三角形》练习一、三角形三边关系的应用:三角形的 大于 , 小于 。
1、两根木棒长为7cm 和10cm ,要选择第三根木棒,将它们订成三角形框架,那么第三根木棒的长x(cm)的取值范围是 2、在△ABC 中,AB=8,BC=6,则第三边AC 的长度m 的取值范围是 3、在一个三角形中,有两边的长分别是2和10,第三边长是一个奇数,第三边为 4、若在一个三角形中,有两边的长分别是3和7,且三角形的周长是偶数,则这个三角形周长是 5、三角形的两边长分别为4和9,且周长为偶数,则第三边取值可以有 种。
6、三角形的三边分别是3,8,x ,若x 的值为偶数,则x 的值为 个。
7、三角形的三边长为3,4,x-1,则x 的取值范围是 8、下列各组线段的长,能够组成三角形的是①6、10、4 ②5、4、8 ③6、10、5④21、41、51 ⑤三条线段的比是3:4:5 ⑥1+a,2+a,3+a(a >0) 9、四条线段的长度分别为5cm ,6cm,8cm,13cm ,以其中任意三条为边构成三角形的是 10、用12根火柴棒(等长)拼成一个三角形,火柴棒不许剩余,重叠,折断,则能摆出不同形状的三角形的个数是 二、等腰三角形:(注意分类讨论) 1、等腰三角形的两条边是7和3,则第三条边的长是 ;若两条边是5和8,则第三条边的长是 2、等腰三角形的两边长分别为4cm ,7cm ,则该三角形的周长是 3、等腰三角形的两边长分别为6cm ,3cm ,则该三角形的周长是 3、一个等腰三角形的周长为25cm ,其中一边长为10cm ,则另两边长是 4、如果三角形的两边长分别是23cm 和10cm,第三边与其中一边的长相等,那么第三边的长为 5、等腰三角形的周长是12cm ,一边与另一边的差是3cm ,则三边长是 6、等腰三角形的周长是14cm ,底边与腰的比是3:2,则各边长分别是 三、利用三角形中线计算 1、如图1:AD 是△ABC 的中线, ①若BC=10cm ,则BD= =21 = cm ②若CD=7cm ,则BD= = cm ③若BD=5cm ,则BC=2 = cm ④△ABD 与△ACD 面积的大小关系是 (等底等高的两个三角形面积相等) 2、如图2:在△ABC 中,D ,E 分别是BC 、AD 的中点,△ABC 的面积是4cm 2,则S △ABD = = =21 = cm 2, S △ABE = = =21 = 41 = cm 2 3、如图3:在△ABC 中,D ,E 、F 分别是BC 、AD 、EC 的中点,△ABC的面积是16cm 2,则 S △BEF =21 = S △ABC = cm2 4、如图4:AD 是△ABC 的中线,AB=6cm ,AC=5cm ,则△ABD 与△ACD 的周长差是5、若AD 是△ABC 的中线,△ABD 的周长比△ACD 的周长大2,且AB=5,则AC 长是6、等腰三角形一腰上的中线把三角形的周长分为9和15两部分,则三角形的三边长是7、如图5:△ABC 的周长为18cm ,BE 、CF 、AD 分别为AC 、AB 、BC 边上的中线,AF=3cm ,AE=2cm, 则BD 的长为 四、三角形的角平分线 1、若AE 是△ABC 的角平分线,∠BAC=70°,则,∠BAE= =21 = 2、如图6:AD 、AE 分别是△ABC 的角平分线和中线,若∠BAD=30°,CE=3cm ,则∠BAC= BC=3、如图7:D 是△ABC 的边AB 上一点,D E ∥AC 交BC 于点E ,若∠DEA=∠EAD ,说明AE 是△ABC 的角平分线4、如图8:AD 是角平分线,D E ∥AC 交AB 于E ,EF ∥AD 交BC 于F ,说明EF 是△BED 的角平分线五、三角形的高 1、若AD 、BE 分别是△ABC 中BC 、AC 边上的高,AD=4cm, BC=6cm,AC=5cm , 则BE= (等积法的应用) 2、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为 3、如图9:AB ⊥BD 于B ,AC ⊥CD 于C ,则△ADE 的边DE 上的高为 ,边AE 上的高为 ,若AE=5,DE=2, CD=59,则AB= 3、如图10,AD 是△ABC 的高,BE 平分∠ABC 交AD 于E ,若∠C=70°,∠BED=64°,求∠BAC 的度数 4、①画出下面各三角形三边上的高。
A D CCAB C <三角形>全章基础练习(一)1、图中共有()个三角形。
A:5 B:6 C:7D:82、如图,AE⊥BC,BF⊥AC,CD⊥AB,则△ABC中AC边上的高是()A:AE B:CD C:BF D:AF3、三角形一边上的高()。
A:必在三角形内部B:必在三角形的边上C:必在三角形外部D:以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是()。
A:三角形的角平分线B:三角形的中线C:三角形的高线D:以上都不对6、具备下列条件的三角形中,不是直角三角形的是()。
A:∠A+∠B=∠C B:∠A=∠B=12∠CC:∠A=90°-∠B D:∠A-∠B=907、一个三角形最多有个直角,有个钝角,有个锐角。
8、△ABC的周长是12 cm ,边长分别为a ,b , c , 且a=b+1 , b=c+1 ,则a= cm , b= cm , c= cm。
9、如图,AB∥CD,∠ABD、∠BDC的平分线交于E,试判断△BED的形状?并说明理由. (二)1、三角形的三个外角中,钝角最多有()。
A:1个B:2个C:3 个D:4 个2、下列说法错误的是()。
A:一个三角形中至少有两个锐角B:一个三角形中,一定有一个外角大于其中的一个内角C:在一个三角形中至少有一个角大于60°D:锐角三角形,任何两个内角的和均大于90°3、一个三角形的外角恰好等于和它相邻的内角,则这个三角形是()。
A:锐角三角形B:直角三角形C:钝角三角形D:不能确定4、直角三角形两锐角的平分线相交所成的钝角是()。
A:120°B:135°C:150°D:165°5、△ABC中,BCA∠=∠=∠3,1000,则.___________=∠B6、在△ABC中,∠A=100°,∠B-∠C=40°,则∠B= ,∠C= 。
7、如图,∠B=50°,∠C=60°,AD为△ABC的角平分线,求∠ADB的度数。
三角形练习(1)1、一个等腰三角形的一边长为6cm ,周长为20cm ,求其他两边的长。
2、已知等腰三角形的一边长等于5,一边长等于6,求他的周长。
3、已知等腰三角形的一边长等于4,一边长等于9,求他的周长。
4、在△ABC 中,AB=2,BC=4. △ABC 的AD 高与CE 的比是多少?5、如图,AD 是△ABC 的角平分线。
DE ∥AC ,DE 交AB 于E 。
DF ∥AB ,DF 交AC 于F 。
图中∠1与∠2有什么关系?请说明理由。
三角形练习(3)1、分别画出锐角三角形、直角三角形、钝角三角形的高。
2.如图7.2.1-2,将一副三角板按图示的方法叠在一起,则图中∠α等于________度.3.如图7.2.1-3所示,∠A =40°,∠1+∠2+∠3+∠4=_________.4.在△ABC 中,∠A =90°,∠C =55°,则∠B =_____;若∠C =4∠A ,∠A +∠B =100°,则∠B =________.5.如图7.2.1-4所示,BC 、AD 相交于点O ,∠A =∠C =90°,∠B =25°,则∠D =______度.6.如图7.2.1-5,AB ∥CD ,直线l 平分∠AOE ,∠1=40°,∠2=______.图7. 2.1-2 图7. 2.1- 3 图7.2.1-4 图7.2.1-5 7. △ABC 中,若∠A+∠B=∠C ,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定8.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形9.如图7.2.1-7所示,将三角形纸片ABC 的一个角折叠,折痕为EF ,若∠A =80°,∠B =68°,∠CFE =78°,求∠CEF 的度数.三角形练习(4)1.如图7.2.2-1所示,图中的∠1=________.图7.2.2-1 图7.2.2-2 图7.2.2-3 2.如图7.2.2-2,∠3=120°,则∠1-∠2=________. 3.已知,如图7.2.2-3,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为________度. 4.如图7.2.2-4所示,∠a =________.5.在△ABC 中,∠A =53°,∠B =63°,那△ABC 的最小外角是( ) A.117°B.63°C.116°D.53图7.2.2-46.下列各图形中∠1=60°的是( )7.如图7.2.2-6,直线a ∥b ,则∠A 的度数为( ) A.28° B .31°C.39° D.42°A BCDFE12图7.2.2-68. 一个零件的形状如图7.2.2-7所示,按规定∠A 应等于 87°,∠B 、∠D 应分别为25°、29°,工人师傅量得 ∠BCD =139°,就断定这个零件不合格,你能说明道理 吗?图7.2.2-7三角形练习(2)1、 △ABC 的周长为24cm ,三条边满足a:b=3:4,c=2b-a.求△ABC 的三边长。
ir全等三角形练习一、填空题:1.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为 .2.如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△,理由是,△ABE≌△,理由是 .(第1题)(第2题)(第4题)3.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是cm.4.如图,AD、A´D´分别是锐角△ABC和△A´B´C´中BC与B´C´边上的高,且AB= A´B´,AD=A´D´,若使△ABC≌△A´B´C´,请你补充条件(只需填写一个你认为适当的条件)5. 若两个图形全等,则其中一个图形可通过平移、或与另一个三角形完全重合.6. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=___________度(第6题)(第7题)(第8题)7.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为__________.8.如图,在△ABC中,∠B=90o,D是斜边AC的垂直平分线与BC的交点,连结AD,若∠DAC:∠DAB=2:5,则∠DAC=___________.9.如图,等腰直角三角形ABC中,∠BAC=90o,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为___________.MNDCBAEDCBAHEDCBAB ′C ′D ′O ′A ′ODC BA(第1410.如图,锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第9题) (第10题)13题)二、选择题:11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<AD <7B .2<AD <14C .2.5<AD <5.5 D .5<AD <1113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .1014.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是A .(S .S .S .)B .(S .A .S .)C .(A .S .A .)D .(A .A .S .15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角16. △ABC 与△A´B´C ´中,条件①AB =A´B´,②BC = B´C´,③AC=A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥17.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形()A .7对B .6对C .5对D .4对D CBAn h18.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm19.如图,△ABC 与△BDE 均为等边三角形,AB <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .AE >CDC .AE <CD D .无法确定20.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( )A .10°B .80°C .100°D .80°或100°三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为,你得到的一对全等三角形是 .∆∆≅(第21题)22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF ,已知:EG ∥AF , = , = ,求证:证明:(第22题)ECD BAEA BD FC23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明;(2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)E DAC4321FB26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF 、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.OPAMNEB CD FACEFBD图①图②图③28.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现)ACF BE ACFB图a 图b参考答案一、1.∠DBE, CA 2.△ACE, SAS,△ACD, ASA(或SAS)3. 64.CD=C´D´(或AC=A´C´,或∠C=∠C´或∠CAD=∠C´A´D´)5.平移,翻折6. 907. 10 8. 20º 9. 10. 4548-2二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到△ACE≌△ADE∠=、∠=、BDBCDABCABDECE=或△ACB≌△ADB等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选①AB=AC,②DE=DF,作为已知条件,③BE=CF作为结论;推理过程为:∵EG∥AF,∴∠GED=∠CFD,∠BGE=∠BCA,∵AB=AC,∴∠B=∠BCA,∴∠B=∠BGE∴BE=EG,在△DEG和△DFC中,∠GED=∠CFD,DE=DF,∠EDG=∠FDC,∴△DEG≌△DFC,∴EG=CF,而EG=BE,∴BE=CF;若选①AB=AC,③BE=CF为条件,同样可以推得②DE=DF,23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:①AB=DE,②AC=DF,④BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断③∠ABC=∠DEF,同样可选①AB=DE,③∠ABC=∠DEF,④BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC≌△DEF,进而推得论断②AC=DF.24. (1)如果①②③,那么④⑤证明:如图,延长AE交BC的延长线于F因为AD∥BC 所以∠1=∠F又因为∠AED=∠CEF,DE=EC所以△ADE≌△FCE,所以AD=CF,AE=EF因为∠1=∠F,∠1=∠2所以∠2=∠F所以AB=BF.所以∠3=∠4所以AD+BC=CF+BC=BF=AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④.(3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C 在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF . (2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°,∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图②证法一:如图1,在AC 上截取AG =AE ,连接FG∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作FG ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EGF ≌△DHF ∴ FE =FD28. (1)AF =BE . 证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB.图⑤ 即∠ACF=∠BCE. ∴△AFC≌△BEC. ∴AF=BE. (3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE. 。
错例分析例1:画出三角形ABC 的高。
A解析:学生在作图时往往会因为怕麻烦而不使用作图工具,不采用标准的作图方法,相信自己的眼睛大致的做出一条垂直线段,就容易出现不经过顶点,不与底边垂直的情况。
画三角形的高通常用三角尺做工具来画:把三角尺的一条边与指定的底边重合,沿底边平移三角尺,直到另一条边通过与该底边相对的顶点,再从顶点起沿直角边向底边画线段,此线段便是三角形的高,最后标上直角符号。
答案 如图所示:例2:下图中,∠2 = 50o ,∠4 =110o ,求∠1的度数。
A B C DBCD 1∠1 =180o—∠2 —∠4= 180o —50o —110o = 20o错因分析:没有看懂题目中每个角的关系,没有理解三角形内角和等于180度这句话的含义,只是盲目的运用所学的知识进行解题。
答案:方法1此题可应用三角形内角和知识进行解答。
已知∠2 = 50o,∠3 的度数没有直接给出,但是∠4和∠3合起来正好是一个平角,等于180o,与这个三角形的内角和相等,即∠3 + ∠4 = ∠1 + ∠2 + ∠3 ,所以∠4 = ∠1 + ∠2 ,由此可知∠1的度数。
因为∠4 = ∠1 + ∠2,故∠1 = ∠4 —∠2 = 110o —50o = 60o 方法2∠3和∠4组成了一个平角,已知∠4 =110o,所以∠3通过180o —∠4可求出,再利用三角形内角和180o减去∠2和∠3,就可求出∠1的度数。
∠3 = 180o—∠4 = 180o—110o = 70o∠1 =180o—∠2 —∠3= 180o —50o —70o = 60o归纳总结三角形的内角和是180o,三角形三个角中已知两个角的度数,求第三个角的度数,用内角和(180o)连续减去已知的两个角的度数或减去这两个角的度数之和即可。
思路拓展1、三角形的一个外角等于不相邻的两个内角之和。
2、三角形内角和的应用:利用三角形内角和可求出任意一个多边形的内角和。
第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为().A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是().A.a∶b=∠A∶∠B B.a∶b=sin A∶sin BC.a∶b=sin B∶sin A D.a sin A=b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A.1∶2∶3 B.1∶3∶2C.1∶4∶9 D.1∶2∶34.在△ABC中,a=5,b=15,∠A=30°,则c等于( ).A.25B.5C.25或5D.10或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小 ( ).A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=( ).A.3B.23C.3或23D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为23,那么b=().A.231+B.1+3C.232+D.2+39.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好3km,那么x的值是( ).A.3B.23C.3或23D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米 二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .13.在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= . 14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = .16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= .三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)A a cos =B b cos =Cc cos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为, 由cos =k k k k k 85249-64+25222⨯⨯=21,得 =60°,∴最大角和最小角之和为180°-60°=120°.2.B 3.B4.C5.C6.C7.C8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac b c a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22 代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B .9.C10.A二、填空题11.56.12.2.13.23.解析:设A a sin =B b sin =C c sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23. 14.32π.15.43.16.-41.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =Aa sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.解法2:由余弦定理得b 2+(6)2-26b cos 45°=4,∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°,所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解. 解:∵B b sin =Cc sin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21. ∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(acc b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0, ∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =-2∠B ,∠A ,∠B ∈(0,)⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=BB R cos sin 2=C C R cos sin 2, ∴A A cos sin =B B cos sin =CC cos sin , 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c . 解:由正弦定理A a sin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=Cc sin , ∴cos C =ca 2. 由余弦定理cos C =abc b a 2222-+, ∵b =4,a +c =8,∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5, ∴c a 2=ac a 43-5, 整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c . 又∵a +c =8,∴a =524,c =516.。
三角形的练习题1.已知三角形ABC,角A=60°,边AB=5cm,边BC=7cm,求边AC的长度。
解:根据余弦定理,有:AC²=AB²+BC²-2×AB×BC×cosA=5²+7²-2×5×7×cos60°=25+49-70=4所以,边AC的长度为2cm。
2.已知三角形DEF,角D=45°,边DE=8cm,边DF=10cm,求边EF的长度。
解:根据余弦定理,有:EF²=DE²+DF²-2×DE×DF×cosD=8²+10²-2×8×10×cos45°=64+100-160=4所以,边EF的长度为2cm。
3.已知三角形GHI,角G=90°,边GH=4cm,边GI=5cm,求边HI 的长度。
解:根据勾股定理,有:HI²=GH²+GI²=4²+5²=16+25=41所以,边HI的长度为√41cm。
4.已知三角形JKL,角J=45°,边JK=6cm,边KL=8cm,求边LJ的长度。
解:根据余弦定理,有:LJ²=JK²+KL²-2×JK×KL×cosJ=6²+8²-2×6×8×cos45°=36+64-96=4所以,边LJ的长度为2cm。
5.已知三角形MNO,角M=30°,边MN=3cm,边NO=4cm,求边MO的长度。
解:根据余弦定理,有:MO²=MN²+NO²-2×MN×NO×cosM=3²+4²-2×3×4×cos30°=9+16-12=13所以,边MO的长度为√13cm。
一、填空:1、由( )围成的图形叫作三角形,三角形有( )条边,( )个角,()个顶点。
2、三角形按角可以分为()三角形、()三角形、()三角形。
3、等边三角形的三个内角(),都是()度,等边三角形又叫()三角形。
4这条边叫做三角形的()5、三角形一个内角的度数是108°,这个三角形是()三角形6、一个三角形三条边的长度分别为7厘米,8厘米,7厘米,这个三角形是()三角形。
7、一个三角形两个内角的分别为35°,67°,另一个内角的度数是(),这是一个()三角形。
8、等腰三角形的底角是75°,顶角是(),9、在一个直角三角形中,一个锐角是75°,另一个锐角是()。
10、一个等腰三角形的一条边是5厘米,另一条边长4厘米,围成这个等腰至少要()厘米的绳子。
11.一个三角形最多有( )个直角,最少要有( )个锐角。
12.如果一个三角形有两个内角的度数之和等于900,那么这个三角形就是( )三角形。
13、如右图,一块三角形纸片被撕去了一个角。
这个角是()度,原来这块纸片的形状是(三角形,也是()三角形。
二、判断题:(正确的打“∨”,错误的打“×”)1、一个钝角三角形里最多有两个钝角。
()2、两个一样的三角形可以拼成一个平行四边形。
()3.有一个内角是600的等腰三角形一定是等边三角形。
( )4.等腰直角三角形的底角一定是450 ()5.底和高都分别相等的两个三角形,它们的形状一定相同。
()6、用三根长度分别为5厘米、5厘米和11厘米的绳子可以围成一个等腰三角形。
()7、直角三角形、钝角三角形只有一条高。
()1、等边三角形是()三角形。
①锐角②直角③钝角2、一个三角形的三个内角都不小于60°,这个三角形一定是()三角形。
①等边②直角③钝角3、一个三角形的三个内角分别是75°、30°、75°,这个三角形是()。
练习一与三角形有关的边一、选择题:1. 已知三角形的两边长分别为2cm和7cm,第三边的长为ccm,则c的取值范围是().A.2<c<7 B.7<c<9 C.5<c<7 D .5<c<92. 在△ABC中,若AB=AC,其周长为12,则AB的取值范围是().A.AB>6 B.AB<3 C.4<AB<7 D.3<AB<63. 现有长度分别为2cm,3cm,4cm,5cm的木棒,从中任取三根,能组成三角形的个数为().A.1 B.2C.3D.44. 如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是().A.锐角三角形B.钝角三角形C.直角三角形D.不能确定5. 如图,图中共有不同的三角形的个数是().A.4 B.6C.8 D.10二、填空题:6. △ABC中,AB=AC,且BC=8,BD是AC边长上的中线,分△ABC的周长为两部分,已知它们的差为2,则AB边的长为_____________.7. 工人师傅在做完门框后,为防止变形常常像右图中所示的那样上两条斜拉的木条(即图中的AB、CD两根木条),这样做根据的数学道理是___________.8. 已知,△ABC中,D、E分别为BC边上顺次两点,且BD=DE=EC,连结AD、AE,则图中面积相等的三角形有____________对.三、解答题:9. 已知,钝角△ABC,分别画出AC边上的高BD,BC边上的中线AE及△ABC的角平分线CF.10. 在平面直角坐标系下描出下列各点,并求△ABC的面积:(1)已知,A(-4,-5)、B(-2,0)、C(4,0);(2)已知,A(-5,4)、B(-2,-2)、C(0,2).11. 已知,AD、AE分别是△ABC的高和中线,AB=6cm,BC=10 cm,AC=8 cm,∠CAB=90º.求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE周长的差.12. 已知,如图,D为△ABC内任意一点,求证:AB+AC BD+CD.练习二三角形的内角一、选择题:1.如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为( )A.60°,90°,75°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°4.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为( )A.100°B.120°C.140°D.160°5.已知三角形两个内角的差等于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形6.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角7.在△ABC中,∠A=∠B=∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题:8.三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20°,则此三角形的最小内角的度数是________.9.在△ABC中,若∠A+∠B=∠C,则此三角形为_______三角形;若∠A+∠B<∠C,则此三角形是_____三角形.10.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.11.在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=_______度.12.如图所示,已知∠1=20°,∠2=25,∠A=35°,则∠BDC的度数为________.三、解答题:13.如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC(∠C>∠B),试说明∠EAD=(∠C-∠B).14.在△ABC中,已知∠B-∠A=5°,∠C-∠B=20°,求三角形各内角的度数.15.如图所示,已知∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠P的度数.16.如图所示,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的关系.练习三三角形的外角一、选择题:1.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定2.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A.30°B.60°C.90°D.120°3.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100°D.120°4.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形;B.一般的等腰三角形;C.等边三角形;D.等腰钝角三角形5.如图1所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )A.120°B.115°C.110°D.105°图1 图2图36.如图2所示,在△ABC中,E,F分别在AB,AC上,则下列各式不能成立的是( )A.∠BOC=∠2+∠6+∠A;B.∠2=∠5-∠A;C.∠5=∠1+∠4;D.∠1=∠ABC+∠4二、填空题:7.三角形的三个外角中,最多有_______个锐角.8.如图3所示,∠1=_______.9.如果一个三角形的内角和与一个外角的和是225°,则与这个外角相邻的内角是____度.10.已知等腰三角形的一个外角为150°,则它的底角为_____.11.如图4所示,∠ABC,∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点D,∠ABC与∠ACB的相邻外角平分线交于点E,且∠A=60°, 则∠BOC=_______,∠D=_____,∠E=_______.12.如图5所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC=________.图4 图5三、解答题:13.如图所示,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.14.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC的度数.15.如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P, 且∠P=β,试探求下列各图中α与β的关系,并加以说明.练习四多边形及其内角和一、填空题:1. 过五边形的一个顶点,可以作_________条对角线,把这个五边形分成_____________个三角形,则五边形的内角和为_____________.2. n(n≥3)边形的内角和为_____________,外角和为_____________.3. 四边形的内角和为________,六边形的内角和为________,七边形的内角和为________,九边形的内角和为_____________.4. 一个多边形的内角和等于它的外角和的三倍,则这个多边形是_____________边形.5. 一个多边形的内角和与它的外角和的总和为1080°,则它的边数是_____________.6. 一个多边形的各内角都等于144°,则这个多边形是_____________边形.7. 一个多边形的内角和为2340°,若每个内角都相等,则每个外角的度数是____.8. 在四边形ABCD中,∠A=120°,∠D=90°,∠C=∠D,那么∠B=___.9. 一个正多边形的内角和比一个五边形的内角和多540°,则这个多边形的每个外角的度数是_____.10. 一个多边形,除去一个内角外,其余各角之和是3290°,则这个内角的度数是_____________.二、选择题:11. 若一个多边形从一个顶点,只能引出四条对角线,那么这个多边形是()边形.A.六B.七C.八D.九12. 六边形有()条对角线.A.7B.8 C.9 D.1013. 如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是()边形.A.四B.五C.六D.七14. 如果一个多边形的边数增加1,那么它的内角和增加().A.0°B.90°C.180°D.360°三、解答题:15. 四边形ABCD中,如果∠A+∠C=180°,∠A:∠B:∠C=2:3:7,求∠A、∠B、∠C、∠D的度数.16. 已知,如图,四边形ABCD中,∠A=∠C=90°,E是AB上一点,且∠ADC=∠DEB,求证:(1)DE//BC;(2)∠EDC=90°.17. 如图,求∠A+∠B+∠C+∠D+∠E+∠F.18.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.练习五镶嵌一、选择题:1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( )A.等腰三角形B.正方形C.正五边形D.正六边形2.下列图形中,能镶嵌成平面图案的是( )A.正六边形B.正七边形C.正八边形D.正九边形3.不能镶嵌成平面图案的正多边形组合为( )A.正八边形和正方形B.正五边形和正十边形C.正六边形和正三角形D.正六边形和正八边形4.如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于( )A.60°B.120°C.90°D.45°5.用正三角形和正十二边形镶嵌,可能情况有( )A.1种B.2种C.3种 C.4种6.用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n 个正六边形,则m,n满足的关系式是( )A.2m+3n=12B.m+n=8C.2m+n=6D.m+2n=6二、填空题:7.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形.8.用正多边形镶嵌,设在一个顶点周围有m个正方形、n个正八边形,则m=_____,n=______.9.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能”或“不能”)三、解答题:10.计算用一种正多边形拼成平整、无隙的图案,你能设计出几种方案?画出草图.11.用一个正方形、一个正五边形、一个正二十边形能否镶嵌成平面图案? 说明理由.12.请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案?13.如图所示的地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无隙的地面?(2)像上面那样铺地砖,能否全用正十边形的材料?为什么?(3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图14.用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成若干个图案.(1)第四个图案中有白色地砖_______块;(2)第n个图案中有白色地砖________块.练习六三角形综合练习一、选择题1. 下列说法中正确的是().A.三角形的外角大于任何一个内角B.三角形的内角和小于外角和C.三角形的外角和小于四边形的外角和D.三角形的一个外角等于两个内角的和2. △ABC中,若AB=2,BC=3,周长为偶数,则AC的长为().A.1 B.2 C.3 D.43. 若一个多边形的内角和是外角和的2倍,则此多边形的边数是().A.3B.4C.5 D.64. 三角形中最大的内角不能小于().A.30°B.45°C.60°D.90°二、填空题5. 若一个三角形的三个内角的比为3:4:5,则这个三角形是_____________三角形.6. 若等腰三角形的两边长为3和8,则它的周长是_____________.7. 若等腰三角形的一个外角等于100°,则顶角等于_____________.8. 如图,△ABC中,∠C=90°,∠CAB、∠CBA的平分线相交于D点,BD的延长线交AC于E,则∠ADE=___.9. 如图,△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D,若∠D=20°,则∠A=________.10.如图,△ABC中的两个外角平分线交于D点,若∠B=50°,则∠D=_____________.三、解答题11. 如图,D是△ABC的BC边上一点,∠B=∠BAD,∠ADC = 80°,∠BAC = 70°,求(1)∠B的度数;(2)∠C的度数.12. 如图,线段AD,BC交于Q,OD平分∠CDA且交BC于H,OB平分∠ABC且交AD于G,求(∠A+∠C):∠O.12. 如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于点G,若∠BDC=140°,∠BGC=110°,求∠A.14.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=____________度,∠XBC+∠XCB=_____________度;(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过点B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX的大小.参考答案:练习一一、1、D 2、D 3、C 4、C 5、C二、6、6或10 7、三角形的稳定性8、4三、9、如右图10、(1)15;(2)1211、(1)4.8 cm,提示:面积法(2)12(3)2cm 12、提示:延长BD,与AC交于点E,则有AB+AE﹥BE=BD+DE,DE+CE﹥CD,所以AB+AE+DE+CE﹥BD+DE+CD,即AB+AC﹥BD+CD练习二一、1.A 2.C 3.B 4.B 5.C 6.C 7.B二、8.40°9.直角钝角10.36°或90°11.84 12.80°三、13.解:∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B,又∵AE 平分∠BAC,∴∠BAE=∠BAC=(180°-∠B-∠C),∴∠EAD=∠BAD-∠BAE=90°-∠B-(180°-∠B-∠C)=90°-∠B-90°+∠B+∠C=∠C-∠B=(∠C-∠B).14.∠A=50°,∠B=55°,∠C=75.15.∠P=30°16.解:∵∠1=180°-2∠CEF,∠2=180°-2∠CFE,∴∠1+∠2=360°-2(∠CEF+ ∠CFE)=360°-2(180°-∠C)=360°-360°+2∠C=2∠C.练习三一、1.C 2.C 3.C 4.C 5.B 6.C二、7.1 8.120°9. 135°10.30°或75°11.120°30°60°12.120°三、13.∠BOC=125°14.∠DAC=24°15.(说明略)练习四一、1、2,3,540°2、(n-2)·180°,360°3、360°,720°,900°,1260°4、八5、66、十7、24°8、60°9、45°10、130°二、11、B12、C13、C 14、C三、15、∠A=40°、∠B=60°、∠C=140°、∠D=120°16、提示:∠DEB=90°+∠ADE,∠ADC=∠EDC+∠ADE,所以∠EDC=90°,所以DE//BC17、360°提示:连结CD.18、边数为,n=1或2.(提示:充分利用边数是正整数,m,n是互质的正整数的条件)练习五一、1.C 2.A 3.C 4.A(提示:过B作AE的平行线,可证出四边形ACDE是菱形,从而得三角形ABC是等边三角形)5.A 6.D二、7.2 2 4 1 8.1 2 9.不能三、10.略11.略12.略13.(1)每个顶点周围有6个正三角形的内角,恰好组成一个周角.(2)不能,因为正十边形的内角不能组成360°.(3)能(图略)14.(1)18 (2)4n+2.练习六一、1、B 2、C 3、D 4、C二、5、锐角6、19 7、80°或20°8、45°9、40°10、65°三、11、(1)40°;(2)70°12、2 13、80°14、(1) 150°, 90°(2)不变,60°。
第七章三角形复习练习(一)1.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为.2. 锐角三角形的三条高都在,钝角三角形有条高在三角形外,直角三角形有两条高恰是它的。
3. 在△ABC中,若∠A=∠C=13∠B,则∠A= ,∠B= ,这个三角形是。
4、三角形有两条边的长度分别是5和7,则第三条边a的取值范围是___________。
5. 已知三角形的两边长为4,8,则第三边的长度可以是(写出一个即可).6.两根木棒的长分别为7cm和10cm.要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x(cm)的范围是____________.7.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..8.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.9.已知△ABC的周长是偶数,且a=2,b=7,则此三角形的周长是_________。
10.等腰△ABC的两边长分别为2和5,则第三边长为.11.若等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数为.12.已知等腰三角形的一个角为70°,则它的顶角为度.13.若等腰三角形的一个外角为70°,则它的底角为度.14.等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_____________________.15.在等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6 两部分,则这个三角形的腰长及底边长分别是_____________________________________.16.将一个三角形截去一个角后,所形成的一个新的多边形的内角和__________。
十一章三角形习题课练习一.选择题(共12小题)1.一副三角板如图叠放在一起,则图中∠α的度数为()A.35°B.30°C.25°D.15°2.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F为多少度()A.360°B.720° C.540° D.240°3.在△ABC中,∠A+∠B=134°,∠B+∠C=136°,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形4.如图,AD是△ABC的高,已知∠B=44°,则∠BAD的度数是()A.44°B.46°C.54°D.56°5.如图,把△ABC纸片沿DE折叠,使点A落在四边形BCDE的内部,则∠A与∠1、∠2的关系为()A.∠A=∠1+∠2 B.3∠A=2(∠1+∠2)C.3∠A=2∠1+∠2 D.2∠A=∠1+∠26.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50°B.60°C.70°D.80°7.如图,点C在AD上,CA=CB,∠A=20°,则∠BCD=()A.20°B.40°C.50°D.140°8.如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB 的度数是()A.70°B.80°C.100° D.110°9.在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5个 B.6个 C.7个 D.8个10.六边形的内角和是()A.1080°B.900°C.720° D.540°11.若一个多边形的内角和为720°,则该多边形为()边形.A.四B.五C.六D.七12.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9二.填空题(共10小题)13.如图①AD是△ABC的角平分线,则∠=∠=∠,②AE是△ABC的中线,则==,③AF是△ABC的高线,则∠=∠=90°.14.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为cm.15.如图,已知在△ABC中,∠A=40°,将一块直角三角板放在△ABC上使三角板的两条直角边分别经过B、C,直角顶点D落在△ABC的内部,那么∠ABD+∠ACD=度.16.在△ABC中,若∠A=2∠B=∠C,则按角分类△ABC是三角形.17.如图,△ABC中,∠A=60°,∠B=80°,CD是∠ACB的平分线,DE⊥AC于点E,EF∥CD交AB于F,则∠DEF的度数为°.18.如图,P是△ABC两个外角∠DBC与∠ECB平分线的交点,∠A=80°,则∠BPC=.19.把一副三角板按如图叠放在一起,则∠1=度.20.已知正n边形的一个内角为135°,则边数n的值是.21.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是边形.22.十边形的内角和是度.三.解答题(共8小题)23.如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.24.如图,CD、CE分别是△ABC的高和角平分线,∠A=50°,∠B=70°,EF∥BC 交于点F,求∠FEC和∠DCE的度数.25.如图,在△ABC中,点D是∠ACB的平分线与∠ABC的平分线的交点,BD 的延长线交AC于点E.(1)∠AEB、∠EDC、∠DCB的大小关系是,理由是.(2)已知∠EDC=60°,求∠A的度数.26.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.27.如图所示,在△ACB中,∠ACB=90°,∠1=∠B.(1)求证:CD⊥AB;(2)如果AC=8,BC=6,AB=10,求CD的长.28.如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P,已知∠EPD=125°,求∠BAD的度数.29.一个多边形的外角和是内角和的,求这个多边形的边数.30.一个多边形的各个内角与它的某个外角和是1456°,求它的边数和这个外角的度数.十一章三角形习题课练习参考答案与试题解析一.选择题(共12小题)1.一副三角板如图叠放在一起,则图中∠α的度数为()A.35°B.30°C.25°D.15°【解答】解:∠α=60°﹣45°=15°,故选:D.2.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F为多少度()A.360°B.720° C.540° D.240°【解答】解:如图,根据三角形的外角性质,∠1=∠A+∠C,∠2=∠B+∠D,∵∠BOF=120°,∴∠3=180°﹣120°=60°,根据三角形内角和定理,∠E+∠1=180°﹣60°=120°,∠F+∠2=180°﹣60°=120°,所以,∠1+∠2+∠E+∠F=120°+120°=240°,即∠A+∠B+∠C+∠D+∠E+∠F=240°.故选D3.在△ABC中,∠A+∠B=134°,∠B+∠C=136°,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【解答】解:∵在△ABC中,∠A+∠B=134°,∠B+∠C=136°,∴∠A+∠B+∠B+∠C=134°+136°=270°①,∵∠A+∠B+∠C=180°②,①﹣②得,∠B=90°,∴△ABC的形状是直角三角形,故选:B.4.如图,AD是△ABC的高,已知∠B=44°,则∠BAD的度数是()A.44°B.46°C.54°D.56°【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠B=44°,∴∠BAD=90°﹣44°=46°,故选B.5.如图,把△ABC纸片沿DE折叠,使点A落在四边形BCDE的内部,则∠A与∠1、∠2的关系为()A.∠A=∠1+∠2 B.3∠A=2(∠1+∠2)C.3∠A=2∠1+∠2 D.2∠A=∠1+∠2【解答】解:根据题意得∠FED=∠AED,∠FDE=∠ADE,由三角形内角和定理可得,∠FED+∠EDF=180°﹣∠F=180°﹣∠A,∴∠AEF+∠ADF=2(180°﹣∠A),∴∠1+∠2=360°﹣(∠AEF+∠ADF)=360°﹣2(180°﹣∠A)=2∠A.所以2∠A=∠1+∠2.故选D.6.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50°B.60°C.70°D.80°【解答】解:∵CE⊥AF于E,∴∠FED=90°,∵∠F=40°,∴∠EDF=180°﹣∠FED﹣∠F=180°﹣90°﹣40°=50°,∵∠EDF=∠CDB,∴∠CDB=50°,∵∠C=20°,∠FBA是△BDC的外角,∴∠FBA=∠CDB+∠C=50°+20°=70°.故选C.7.如图,点C在AD上,CA=CB,∠A=20°,则∠BCD=()A.20°B.40°C.50°D.140°【解答】解:∵CA=CB,∠A=20°,∴∠A=∠B=20°,∴∠BCD=∠A+∠B=20°+20°=40°.故选B.8.如图,AD是△ABC的外角∠CAE的平分线,∠B=40°,∠DAE=55°,则∠ACB 的度数是()A.70°B.80°C.100° D.110°【解答】解:∵AD是△ABC的外角∠CAE的平分线,∴∠CAE=2∠DAE=2×55°=110°,由三角形的外角性质得,∠ACB=∠CAE﹣∠B=110°﹣40°=70°.故选A.9.在八边形内任取一点,把这个点与八边形各顶点分别连接可得到几个三角形()A.5个 B.6个 C.7个 D.8个【解答】解:如图,故选:D.10.六边形的内角和是()A.1080°B.900°C.720° D.540°【解答】解:(6﹣2)•180°=720°.故选C.11.若一个多边形的内角和为720°,则该多边形为()边形.A.四B.五C.六D.七【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=720°,解得n=6,故选:C.12.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【解答】解:设这个多边形的边数为n,由题意可得:(n﹣2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.二.填空题(共10小题)13.如图①AD是△ABC的角平分线,则∠BAD=∠DAC=∠BAC,②AE是△ABC的中线,则BE=EC=BC,③AF是△ABC的高线,则∠AFB=∠AFC=90°.【解答】解:①AD是△ABC的角平分线,则∠BAD=∠DAC=∠BAC,②AE是△ABC的中线,则BE=EC=BC,③AF是△ABC的高线,则∠AFB=∠AFC=90°,故答案为:BAD;DAC;BAC;BE;EC;BC;AFB;AFC14.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为2cm.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=6﹣4=2cm.故答案为:2.15.如图,已知在△ABC中,∠A=40°,将一块直角三角板放在△ABC上使三角板的两条直角边分别经过B、C,直角顶点D落在△ABC的内部,那么∠ABD+∠ACD=50度.【解答】解:在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案是:50.16.在△ABC中,若∠A=2∠B=∠C,则按角分类△ABC是钝角三角形.【解答】解:设∠B=x°,则∠A=2x°,∠C=4x°,由三角形内角和定理得,x+2x+4x=180°,解得,x=,则4x°=()°>90°,∴△ABC是钝角三角形,故答案为:钝角.17.如图,△ABC中,∠A=60°,∠B=80°,CD是∠ACB的平分线,DE⊥AC于点E,EF∥CD交AB于F,则∠DEF的度数为70°.【解答】解:∵∠A=60°,∠B=80°,∴∠ACB=40°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=20°,∵DE⊥AC,∴∠CDE=90°﹣20°=70°,∵EF∥CD,∴∠FED=∠CDE=70°.故答案为:70°.18.如图,P是△ABC两个外角∠DBC与∠ECB平分线的交点,∠A=80°,则∠BPC= 50°.【解答】解:∵∠BCP=∠BCE=(∠A+∠CBA),∠CBP=∠CBD=(∠A+∠ACB),∴∠BCP+∠CBP=∠A+(∠CBA+∠ACB),又∵∠BCP+∠CBP=180°﹣∠BPC,∠CBA+∠ACB=180°﹣∠A,∴180°﹣∠BCP=∠A+(180°﹣∠A),∴∠BCP=90°﹣A,∵∠A=80°,∴∠BPC=50°.故答案为:50°.19.把一副三角板按如图叠放在一起,则∠1=75度.【解答】解:∵∠2=∠3=45°,∴∠1=∠2+30°=75°,故答案为:75.20.已知正n边形的一个内角为135°,则边数n的值是8.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,n=360°÷45°=8.故答案为:8.21.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是六边形.【解答】解:设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.22.十边形的内角和是1440度.【解答】解:十边形的内角和是(10﹣2)•180°=1440°.三.解答题(共8小题)23.如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.【解答】解:∵CD是AB边上高,∴∠BDF=90°,∠ABE=∠BFC﹣∠BDF=113°﹣90°=23°,∵BE为角平分线,∴∠CBF=∠ABE=23°,∴∠BCF=180°﹣∠BFC﹣∠CBF=44°.24.如图,CD、CE分别是△ABC的高和角平分线,∠A=50°,∠B=70°,EF∥BC 交于点F,求∠FEC和∠DCE的度数.【解答】解:∵∠A=50°,∠B=70°,∴∠BCA=60°,∵EF∥BC,∴∠FEC=∠BCE,∵CE是角平分线,∴∠BCE=∠BCA=30°,∴∠FEC=30°,∵CD是△ABC的高,∴∠CDB=90°,∵∠B=70°,∴∠BCD=20°,∴∠DCE=10°.25.如图,在△ABC中,点D是∠ACB的平分线与∠ABC的平分线的交点,BD 的延长线交AC于点E.(1)∠AEB、∠EDC、∠DCB的大小关系是∠AEB>∠EDC>∠DCB,理由是三角形的一个外角大于任何一个和它不相邻的内角.(2)已知∠EDC=60°,求∠A的度数.【解答】解:(1)∵∠AEB是△EBC的外角,∴∠AEB>∠EDC,∵∠EDC是△DBC的外角,∴∠EDC>∠DCB,∴∠AEB>∠EDC>∠DCB,故答案为:∠AEB>∠EDC>∠DCB;三角形的一个外角大于任何一个和它不相邻的内角.(2)∵∠EDC是△CDB的一个外角,∴∠EDC=∠DCB+∠DBC.∵∠EDC=60°,∴∠DCB+∠DBC=60°.∵DC平分∠ACB,DB平分∠ABC,∴∠ACB=2∠DCB,∠ABC=2∠DBC,∴∠ACB+∠ABC=2(∠DCB+∠DBC)=2×600=1200.∴∠A=180°﹣(∠ACB+∠ABC)=1800﹣1200=600.26.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.【解答】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE是△ABC的外角∠ACD的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.27.如图所示,在△ACB中,∠ACB=90°,∠1=∠B.(1)求证:CD⊥AB;(2)如果AC=8,BC=6,AB=10,求CD的长.【解答】(1)证明:∵∠ACB=90°,∴∠1+∠BCD=90°,∵∠1=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;=AB•CD=AC•BC,(2)解:∵S△ABC∴CD===4.8.28.如图,△ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P,已知∠EPD=125°,求∠BAD的度数.【解答】解:∵AD是BC边上的高线,∠EPD=125°,∴∠CBE=∠EPD﹣∠ADB=125°﹣90°=35°,∵BE是一条角平分线,∴∠ABD=2∠CBE=2×35°=70°,在Rt△ABD中,∠BAD=90°﹣∠ABD=90°﹣70°=20°.故答案为:20°.29.一个多边形的外角和是内角和的,求这个多边形的边数.【解答】解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.30.一个多边形的各个内角与它的某个外角和是1456°,求它的边数和这个外角的度数.【解答】解:1456÷180=8‥‥‥16,则n﹣2=8,解得n=10.答:它的边数是十,外角度数为16°.。
直角三角形练习题(一)填空1.如图3-100,在直角三角形ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D点,AC=4厘米,则AD= ______ 厘米,AB= ______ 厘米.2.若直角三角形斜边与斜边中线之和是3厘米,那么斜边的长是 ______ 厘米.3.若一个三角形的一个角等于其他两个角的差,那么这个三角形是 ______ 三角形.4.在直角三角形中,若有一锐角是30°,而斜边与较小的直角边长之和是6厘米,那么斜边的中线是 ______ 厘米.5.已知在△ABC中,AB=AC=4厘米,∠A∶∠B=2∶5,过C点作△ABC的高CD,与AB交于D点,则CD= ______ 厘米.6.顶角为x°的等腰三角形一腰的高线与底边所成的角等于 ______ .7.若在直角三角形ABC中,∠C=90°,∠A+2∠B=105°,则∠B= ______ .8.如图3-101,已知D是直角三角形ABC中BC边的延长线上的一点,CD=AC,∠ACB=60°,则BC∶CD= ______ .9.如图3-102,已知在直角三角形ABC中,∠C=90°,CA=CB,AD平分∠BAC,DE⊥AB 于E点,BE=3厘米,则CD= ______ = ______ = ______ 厘米.10.等腰三角形一腰上的高是腰长的一半时,则底角的大小是 ______ .(二)选择11.如图3-103,已知△ABC中,∠B=∠C,CD⊥AB于D,那么下列两角关系正确的是[ ].A.∠A=∠B;B.∠A=∠ACD; C.∠A=∠DCB; D.∠A=2∠BCD.12.如图3-104,△ABC中,∠C=90°,AC=BC,∠CAD=∠EAD,DE⊥AB于E,且AB=6厘米,则△DEB的周长为 [ ].A.4厘米; B.6厘米;C.10厘米;D.以上全不对.(三)计算且AD=2厘米,求AB的长.14.如图3-105,已知∠C=90°,∠DBC=36°,且AD=DB,求∠A的大小.15.如图3-106,已知∠ABC=86°,∠C=90°,AB=BD=8厘米,CD=4厘米.求∠A的大小.16.如图3-107,已知D是CA延长线上一点,∠BDC=15°,AD=AB=4厘米,求BC的长.17.如图3-108,已知△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D点,交AB于E点,且BD=16厘米,求AC的长.18.如图3-109,已知∠ABC=∠ACB,CD∥AB,AD⊥CD19.如图3-110,已知△ABC中,∠ACB=90°,CD⊥AB于D点,BC=2BD,且BD=2厘米,求AD的长.20.如图3-111,AB=AC,FD⊥BC于D点,DE⊥AB于E点,∠AFD=155°,求∠EDF的大小.21.如图3-112,已知△ABC中,∠ACB=90°,∠A=25°,D是AB的中点,BE=BC,求∠DBE的大小.22.如图3-113,已知△ABC中,AD是高线,∠B=∠DAC=60°,DC=24厘米,求AB的长.23.如图3-114,已知AD是BC边上的高,BE是AC边上的中线,BC=8厘米,AC=3厘米,∠C=60°,求BD和DE的长.24.如图3-115,已知△ABC 中,∠ACB >90°,∠B=25°,CD ⊥BC 于点C ,BD=2AC ,点E 在BC 的延长线上,求∠ACE 的大小.25.如图3-116,在△ABC 中,∠C -∠B=∠A ,∠B=15°,AB 的中垂线交BC 于D 点,交AB 于E 点,BD=16厘米,求AC 的长.26.如图3-117,已知△ABC 中,AB=AC ,∠BAC=120°,DE 垂直平分AC 于E 点,DE=2厘米,求BC 的长.27.如图3-118,若在等边△ABC 的三边上各取一点M ,N ,P ,并有MN ⊥AC ,NP ⊥AB ,MP ⊥BC ,AB=3厘米,求MC 的长度.29.如图3-120,D 为直角三角形ABC 斜边上一点,DE ⊥BC 于E 点,BE=AC .若BD=21厘米,DE +BC=1厘米,试求∠B 的大小.30.如图3-121,已知∠C=90°,∠1=∠2,D到AB的距离是31.如图3-122,已知O是AB,AC边中垂线的交点,I是∠ABC,∠ACB平分线的交点,∠O+∠I=180°,求∠A的大小.(四)证明32.已知:如图3-123,在△ABC中,∠C=∠BDC=90°.求证:∠A=∠BCD.33.已知:如图3-124,AE⊥CE,AE平分∠CAB,CE平分∠ACD.求证:AB∥CD.34.已知:如图3-125,在△ABC中,∠BAC=90°,AD⊥BC于D点,BF是∠ABC的平分线,交AD于E点,交AC于F点.求证:AE=AF.35.已知:如图3-126,在△ABC中,∠ACB=2∠B,过点A作AD⊥AB,与BC的延长线交于D点.求证:36.已知:如图3-127,AF=AD,FD的延长线交BC于E,且FE⊥BC.求证:∠ADF+∠B=90°,AB=AC.37.已知:如图3-128,在△ABC中,BE,CF分别是△ABC的两条高线,在BE,CF的延长线上分别截BD=AC,CG=AB.求证:AD⊥AG.38.已知:如图3-129,∠ABC=2∠C,AD⊥BC于D点,E是AC的中点,ED的延长线交AB的延长线于F点.求证:BD=BF.39.已知:如图3-130,∠ACB=90°,CE⊥AB于E点,AD=AC,AF平分∠CAE且交CE 于F点.求证:FD∥CB.40.已知:如图3-131,在直角三角形ABC中,∠ACB=90°,AB=2AC,CD,CE分别是△ABC的中线和高线.求证:∠ACE=∠ECD=∠DCB.41.已知:如图3-132,△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC.求证:BD=2CD.42.已知:如图3-133,在△ABC中,AB=AC,BE⊥AC于E,CD⊥AB于D,BE,CD相交于G.求证:AG平分∠BAC.43.已知:如图3-134,△ABC为等腰直角三角形,∠ACB=90°,D为BC延长线上一点,CD=CE,E点在AC上,且BE的延长线交AD于F点.求证:BF⊥AD.44.已知:如图3-135,在直角三角形ABC中,AB=AC,∠A=90°,∠B的平分线BD交AC 于D点,从C点向BD的延长线作垂线,垂足为E.求证:BD=2CE.45.已知:如图3-136,在△ABC中,∠C=90°,AC=BC,M是AB的中点,D,E分别在CA,CB上,且CD=BE.求证:ME=MD,ME⊥MD.46.已知:如图3-137,D为等腰直角三角形ABC的斜边AB的中点,P为AB上任意一点,过P点作PE⊥AC,PF⊥BC,垂足分别为E,F.求证:ED⊥FD.47.已知:如图3-138,∠1=∠2,BD=DC.求证:AB=AC.48.已知:如图3-139,∠BAC=90°,AD⊥BC,∠1=∠2,EF⊥BC,FM⊥AC.求证:FM=FD.。
12.2 第1课时 “边边边”一、选择题1.如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( ) A .ABD ACD △≌△ B .ABE ACE △≌△ C .BDE CDE △≌△D .以上答案都不对2.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是( )A.AC=BDB.AC=BCC.BE=CED.AE=DE3.如图,已知AB=AC ,BD=DC ,那么下列结论中不正确的是( ) A .△ABD ≌△ACD B .∠ADB=90° C .∠BAD 是∠B 的一半D .AD 平分∠BAC4. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )EDCB AA EB D C第1题图第2题图第3题图A.120°B.125°C.127°D.104°第4题图第5题图5. 如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D6. 如图,AB=CD,BC=DA,E、F是AC上的两点,且AE=CF,DE=BF,,那么图中全等三角形共有()对A.4对 B.3对 C.2对 D.1对7. 如图,AB=CD,BC=AD,则下列结论不一定正确的是().A.AB∥DCB. ∠B=∠DC. ∠A=∠CD. AB=BC第7题图8. 如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x -1,若这两个三角形全等,则x 等于( )A .73B .3C .4D .5二、填空题9.(2011湖北十堰)工人师傅常用角尺平分一个任意角。
做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺 两边相同的刻度分别与M ,N 重合,过角尺顶点C 作射线OC 。
第十一章三角形复习练习一一、选择题(每小题2分,共20分)1.在如图所示的图形中,三角形的个数共有()A.1个B.2个C.3个D.4个2.五边形内角和的度数是().A.180°B.360°C.540°D.720°3.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°第1题第3题第7题4.现有两根笔直的木棍,它们的长度分别是40cm和50cm,若不改变木棍的长度,要钉成一个三角形木框,则第三根木棍应选取的长度为().A.10cm B.90cm C.60cm D.100cm5.△ABC中,a=3xcm,b=4xcm,c=14cm,则x的取值范围是()A.2<x<14 B.x>2 C.x<14 D.7<x<146.已知等腰三角形的一个内角为70°,则另外两个内角的度数是()A.55°,55°B.70°,40°C.55°,55°或70°,40°D.以上都不对7.如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是()A.61°B.60°C.37°D.39°8.下列命题:(1)满足cba>+的cba、、三条线段一定能组成三角形;(2)过三角形一顶点作对边的垂线叫做三角形的高;(3)三角形的外角大于它的任何一个内角;(4)直角三角形的两条高和边重合.其中假命题的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,D、E分别在AB、BC上,AE、CD相交于点O,下面结论中不能成立的是()A.∠AOC=∠1+∠2+∠B B.∠1-∠2=∠3-∠4C.∠2=∠4-∠B D.∠3=∠1+∠410.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为().A.24°B.25°C.30°D.35°AOB CED3241第9题第10题第11题二、填空题(每小题3分,共30分)11.如图,△ABC的高AD、BE、CF相交于点I,△BIC的BI边上的高是________12.在△ABC中,∠A=60°,∠C=2∠B,则∠C=_____°.13.一个多边形只有27条对角线,则这个多边形的边数为_____________.14.如图△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=________。
第10题第9题图第一章三角形练习题基础题★一、选择题1.一个三角形的三个内角中,锐角的个数最少为 ( )A.0 B.1 C.2 D.3 2.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点3.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线4.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是( )A.∠ 1 B.∠ 2 C.∠ B D.∠1、∠2和∠B5.一个三角形的两边长分别为 3 cm和7 cm,则此三角形的第三边的长可能是()A.3 cm B.4 cm C.7 cm D.11 cm6.如图所示,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()7.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8.小华在电话中问小明:“已知一个三角形的三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A. B. C. D.9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角 B.∠A=∠2C.△ABC≌△CED D.∠1=∠2二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC中,AB=6,AC=10,那么BC边的取值范围是________,周长的取值范围是___________.3.一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.一个等腰三角形的两边长分别为5和6,则它的周长是 .4.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.第7题图OD C BA③①② B AB A 第24题图 第25题图C B AED图6A DB C E FD 图7B FA C E 5.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.6.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.7.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有_________ 对全等三角形.8.如图,△ABC ≌△ADE ,则,AB=_________,∠E=∠_________ .若∠BAE=120°,∠BAD=40°, 则∠BAC= _________.第7题 第8题 第9题 第10题 9.如图,AE=BF ,AD ∥BC ,AD=BC ,则有ΔADF ≌_________,且DF=_________ .10.如图,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠_________=∠_________, 或_________∥_________,就可证明ΔABC ≌ΔDEF .11.△ABC ≌△DEF ,且△ABC 的周长为12,若AB=3,EF=4,则AC= _________ .12.△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB=8cm ,BD=•6cm ,AD=5cm ,则BC=________cm . 13.如图,已知AC =BD ,21∠=∠,那么△ABC ≌________,其判定根据是__________. 14.如图,已知AC =BD ,D A ∠=∠,请你添一个直接条件,________=________,使△AFC ≌△DEB .15.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是________________16.把两根钢条BA ´、AB ´的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 如图,若测得AB =5厘米,则槽宽为 米.三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.ADEBFCABCD12第13题图 第14题图BCDDCBA2.如图5—20,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5cm ,AB 与AC 的和为11cm ,求AC 的长.3.如上右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中∵⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( )4.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .5.一个飞机零件的形状如图5—19所示,按规定∠A 应等于90°,∠B ,∠D 应分别是20°和30°,康师傅量得∠BCD =143°,就能断定这个零件不合格,你能说出其中的道理吗?第7题图 提升题 一、选择题★★1.已知两个直角三角形全等,其中一个直角三角形的面积为3,斜边为4,则另一个直角三角形斜边上的高为( )A.23 B.34 C.32 D.6★★2.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14★★3.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个 B .4个 C .3个 D .2个★★4.如图所示,两条笔直的公路l 1、l 2相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A 、B 、D ,已知AB =BC =CD =DA =5 km ,村庄C 到公路l 1的距离为4 km ,则村庄C 到公路l 2的距离是( ) A.3 km B.4 km C.5 km D.6 km 二、填空题★★1.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.★★2.△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.★★3.△ABC 中,∠B =60°,∠C =80°,O 是三条角平分线的交点,则∠OAC =______,∠BOC =________.★★4.如图所示,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,则下面结论中①DA 平分∠EDF ;②AE =AF ,DE =DF ;③AD 上的点到B 、C 两点的距离相等;④图中共有3对全等三角形,正确的有: ★★5.如图所示,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2,则∠BPC =________.★★6.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= . ★★★7.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= . ★★★8.将一张长方形纸片按如图所示的方式进行折叠,其中BC BD ,为折痕,则BCD ∠的度数为 .★★★★9.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________.第6题图第5题图三、解答题★★1.如图5—21,△ABC 中,∠B =34°,∠ACB =104°,AD 是BC 边上的高,AE 是∠BAC 的平分线,求∠DAE 的度数.★★2.如图5—22,在△ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =13cm ,BC =12cm ,AC =5cm ,求:(1)△ABC 的面积;(2)CD 的长.★★3.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.★★4.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .★★5.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.★★6.如图所示,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABC ≌△BAD . 求证:(1)OA =OB ;(2)AB ∥CD .AC B DE F654321E D CBA第7题图★★7.如图所示,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°, ∠EAB =120°,求∠E,∠DFB 和∠DGB 的度数.★★★8.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .★★★9.如图,A 、B 两建筑物位于河的两岸,要测得它们之间的距离,可以从B 点出发沿河岸画一条射线BF ,在BF 上截取BC =CD ,过D 作DE ∥AB ,使E 、C 、A 在同一直线上,则DE 的长就是A 、B 之间的距离,请你说明道理.10.★★★★认真阅读下面关于三角形内、外角平分线的探究片段,完成所提出的问题.探究1:如图(1),在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+12∠A ,理由如下:因为BO 和CO 分别是∠ABC 和∠ACB 的平分线,所以∠1=12∠ABC , ∠2=12∠ACB ,所以∠1+∠2=12∠ABC +12∠ACB .又因为∠ABC +∠ACB =180°-∠A , 所以∠1+∠2=12×(180°−∠A).所以∠BOC =180°-(∠1+∠2)=180°-(90°-12∠A )=90°-12∠A.探究2:如图(2)中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系?请说明理由.探究3:如图(3)中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明) 结论: .。
三角形分类练习题一、选择题1. 一个三角形的三个内角分别为45度、45度和90度,这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形2. 如果一个三角形的两边长分别为3厘米和4厘米,且第三边长小于7厘米,这个三角形的类型可能是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个三角形的两边长分别为5厘米和7厘米,第三边长为6厘米,这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 不规则三角形4. 根据三角形的边长,不能确定三角形类型的是:A. 两边长分别为2厘米和3厘米B. 两边长分别为5厘米和5厘米C. 三边长分别为3厘米、4厘米和5厘米D. 三边长分别为6厘米、8厘米和10厘米5. 一个三角形的三个内角都小于90度,这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形二、填空题6. 在一个三角形中,如果有一个角大于90度,这个三角形被称为_________。
7. 如果一个三角形的两边相等,那么这个三角形被称为_________。
8. 当一个三角形的三边长度相等时,这个三角形被称为_________。
9. 根据三角形的边长关系,如果任意两边之和大于第三边,这个三角形被称为_________。
10. 如果一个三角形的最长边的平方等于另外两边平方和,这个三角形被称为_________。
三、判断题11. 一个三角形的内角和总是等于180度。
()12. 等腰三角形的两个底角相等。
()13. 直角三角形的斜边总是最长的边。
()14. 钝角三角形至少有两个锐角。
()15. 等边三角形的每个内角都是60度。
()四、解答题16. 给定一个三角形ABC,其中∠A=60度,∠B=40度,求∠C的度数。
17. 如果一个三角形的三边长分别为a、b和c,且满足a^2 + b^2 =c^2,这个三角形是什么类型的三角形?18. 一个三角形的两边长分别为10厘米和24厘米,如果这个三角形是直角三角形,求第三边的长度。
A B C A B C D E F E
D C B A 初一数学课堂练习(三角形1)
命题人:赵冬玲 05.3.20
例1 如图,在ABC ∆中画出角平分线AD,中线CE 及高线BF 来; 如果ABC ∆的面积为16cm 2,AC=6cm,求AC 边上的高线BF 的长。
例2 (1)ABC ∆中,若C B A ∠=∠+∠,则ABC ∆是 三角形。
(2) 如果三角形的一个外角是锐角,那么这个三角形是( ) A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 无法判断
例 3 (2001,天津)如图,ABC ∆中,C B ∠=∠,BC FD ⊥,AB DE ⊥,︒=∠158AFD ,则=∠EDF 。
例4 (2003,云南)如图,︒=∠︒=∠50,125A ABD ,则AC E ∠的度数是 。
(例3图) (例4图)
例5 等腰三角形(有两条边相等的三角形)一腰上的中线把该三角形的周长分为13.5cm 和11.5cm 两部分。
求这个等腰三角形各边的长。
练习:
一、选择题:
1、有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是( ) A. 18 B. 15 C. 18或15 D.无法确定
2、下列命题:(1)平分三角形内角的射线叫做三角形的角平分线;(2)三角形的中线、角平分线都是线段;(3)一个三角形有三条中线、三条角平分线、三条高线;(4)三角形的三条中线相交于一点,但三条高线未必相交于同一点。
其中说法正确的是( )
A.(1) (2) (3) (4)
B. (2) (3) (4)
C. (1) (4)
D. (2) (3) 3、下列语句正确的个数是( ) (1)直角三角形只有一条高;(2)钝角三角形的高线可以都在三角形内;(3)三角形的高线相交于一点,这点不在三角形内部,就在三角形外部;(4)三角形的三条中线,三条角平分线必在三角形内部。
A. 1个
B. 2个
C. 3个
D. 4个
4、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )
A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 不能确定
A B
D 5、在ABC
∆中,︒
=
∠
=
∠75
2B
A,则=
∠C()
A.︒
30 B. '
30
67︒ C. ︒
105 D. ︒
135
6、一个三角形的三个内角中至少有()
A. 一个锐角
B. 一个直角
C. 一个钝角
D. 两个锐角
二、填空题:
7、已知ABC
∆中,︒
=
∠
-
∠
︒
=
∠40
,
100C
B
A,则=
∠C。
8、如图,=
∠
+
∠
+
∠
+
∠
+
∠
+
∠6
5
4
3
2
1。
9、如图,已知︒
=
∠
︒
=
∠
︒
=
∠35
,
25
2
,
20
1A,则BDC
∠的度数为。
10、若一个三角形的三个内角之比为4:3:2,则这个三角形的最大内角为。
11、如图,在ABC
∆中,I是三条角平分线的交点,︒
=
∠130
BIC,则A
∠的度数
是。
(8题图)(9题图) (11题图)
12、如图,4
3
2
1∠
∠
∠
∠、
、
、满足
的关系式是()
A. 4
3
2
1∠
+
∠
=
∠
+
∠
B. 3
4
2
1∠
-
∠
=
∠
+
∠
C. 3
2
4
1∠
+
∠
=
∠
+
∠
D. 3
2
4
1∠
-
∠
=
∠
+
∠
(12题图)
三、解答题:
如图,在等腰∆ABC中,AB=AC,周长为16cm,AC边上的中线BD把∆ABC
分成周长差为4cm的两个三角形,求∆ABC各边的长。