(6)聚类分析例子
- 格式:doc
- 大小:196.00 KB
- 文档页数:8
生活中聚类的例子1、基于用户位置信息的商业选址随着信息技术的快速发展,移动设备和移动互联网已经普及到千家万户。
在用户使用移动网络时,会自然的留下用户的位置信息。
随着近年来GIS地理信息技术的不断完善普及,结合用户位置和GIS地理信息将带来创新应用。
如百度与万达进行合作,通过定位用户的位置,结合万达的商户信息,向用户推送位置营销服务,提升商户效益。
希望通过大量移动设备用户的位置信息,为某连锁餐饮机构提供新店选址。
2、中文地址标准化处理地址是一个涵盖丰富信息的变量,但长期以来由于中文处理的复杂性、国内中文地址命名的不规范性,使地址中蕴含的丰富信息不能被深度分析挖掘。
通过对地址进行标准化的处理,使基于地址的多维度量化挖掘分析成为可能,为不同场景模式下的电子商务应用挖掘提供了更加丰富的方法和手段,因此具有重要的现实意义。
3、国家电网用户画像随着电力体制改革向纵深推进,售电侧逐步向社会资本放开,当下的粗放式经营和统一式客户服务内容及模式,难以应对日益增长的个性化、精准化客户服务体验要求。
如何充分利用现有数据资源,深入挖掘客户潜在需求,改善供电服务质量,增强客户黏性,对公司未来发展至关重要。
对电力服务具有较强敏感度的客户对于电费计量、供电质量、电力营销等各方面服务的质量及方式上往往具备更高的要求,成为各级电力公司关注的重点客户。
经过多年的发展与沉淀,目前国家电网积累了全网4亿多客户档案数据和海量供电服务信息,以及公司营销、电网生产等数据,可以有效的支撑海量电力数据分析。
因此,国家电网公司希望通过大数据分析技术,科学的开展电力敏感客户分析,以准确地识别敏感客户,并量化敏感程度,进而支撑有针对性的精细化客户服务策略,控制电力服务人工成本、提升企业公众形象。
4、非人恶意流量识别2016年第一季度Facebook发文称,其Atlas DSP平台半年的流量质量测试结果显示,由机器人模拟和黑IP等手段导致的非人恶意流量高达75% . 仅2016上半年,AdMaster反作弊解决方案认定平均每天能有高达28% 的作弊流量。
聚类分析的应用案例聚类分析是一种常用的数据分析方法,它可以帮助我们对数据进行分类和分组,发现数据中的潜在模式和规律。
在现实生活和工作中,聚类分析有着广泛的应用,下面我们将介绍几个聚类分析的应用案例。
首先,聚类分析在市场营销领域有着重要的应用。
在市场营销中,我们常常需要对顾客进行分类,以便针对不同类别的顾客制定不同的营销策略。
通过聚类分析,我们可以根据顾客的消费行为、偏好等特征将顾客进行分类,从而更好地理解顾客群体的特点,并针对性地开展营销活动,提高营销效果。
其次,聚类分析在医学领域也有着重要的应用。
在医学研究中,我们常常需要对疾病患者进行分类,以便更好地了解不同类型患者的病情特点和治疗效果。
通过聚类分析,我们可以根据患者的临床表现、病情指标等特征将患者进行分类,从而更好地指导临床诊断和治疗方案的制定,提高治疗效果和患者生存率。
此外,聚类分析还在推荐系统中有着重要的应用。
在电子商务平台和社交媒体平台上,推荐系统可以根据用户的行为和偏好向其推荐商品、信息等内容。
而聚类分析可以帮助推荐系统对用户进行分类,从而更好地理解用户的兴趣和偏好,提高推荐的准确性和个性化程度,增强用户体验。
最后,聚类分析还在金融领域有着重要的应用。
在金融风控和信用评估中,我们常常需要对客户进行分类,以便更好地评估客户的信用风险和制定个性化的信贷方案。
通过聚类分析,我们可以根据客户的财务状况、信用记录等特征将客户进行分类,从而更好地了解客户的信用状况,提高风险控制的精准度和效果。
总之,聚类分析在各个领域都有着重要的应用,它可以帮助我们更好地理解数据和问题的本质,发现数据中的潜在规律和价值信息,为决策提供科学依据。
随着数据科学和人工智能技术的不断发展,相信聚类分析的应用领域会越来越广泛,对我们的生活和工作产生越来越大的影响。
分类和聚类的生活例子
入门级
聚类:
一个班级有30学生,每个学生10张不同照片,将这300张照片打乱,聚类就是在不告诉机器任何学生信息,仅凭对300张照片的学习,然后把它分成10类;
分类
一个班级有30学生,每个学生10张不同照片,每张照片上面写了该同学的名字,分类就是机器对这300张照片和照片上的名字进行学习,形成一个包含10个类的模型,用该模型来预测未知照片属于哪个类。
进阶级
聚类:
无监督学习,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。
分类:
有监督学习,就是按照某种标准给对象贴标签,再根据标签来区分归类。
注:入门级是本人对聚类和分类的粗浅认识,帮助刚接触分类和聚类的人快速了解区别。
当然,本人认识还比较粗浅,可能表达有不准确的地方,望大牛海涵!谢谢。
第1页共1页。
聚类分析案例范文聚类分析是一种无监督机器学习算法,它通过将数据集中的观测值分成不同的组或簇来发现数据之间的内在结构和相似性。
这种方法可以帮助我们理解数据集,发现隐藏的模式和关联性,并且可以应用于各种领域,包括市场细分、社交网络分析、生物信息学和图像处理等。
以下是一个关于使用聚类分析方法的案例研究,该案例介绍了如何使用聚类分析来帮助一家电商企业在众多商品中挖掘潜在的市场细分。
背景介绍:电商企业销售了大量商品,这些商品拥有不同的特征和属性。
该企业希望利用这些数据来了解他们的客户,并为不同的产品类型制定个性化的推广和营销策略。
为了实现这一目标,他们决定使用聚类分析方法来将客户细分成不同的群组,并理解他们的相似性和差异性。
数据收集:该企业从其销售系统中收集了一份包含多个属性的数据集。
这些属性包括:年龄、性别、购买历史、购买频率、平均订单金额等。
这些属性可以反映客户的购买行为和偏好。
数据预处理:在进行聚类分析之前,需要对数据进行预处理。
这包括对缺失值进行处理、进行数值归一化等。
然后,根据业务需求,选择适当的聚类算法和合适的距离度量方法。
聚类分析过程:在本案例中,采用了一种常见的聚类方法--K均值聚类算法,该算法通过计算数据点之间的欧氏距离来度量它们之间的相似度。
首先,选择合适的K值(聚类簇的个数)。
然后,在初始阶段,随机选择K个点作为聚类中心。
再通过计算每个数据点与聚类中心的距离,并将其归类到最近的聚类簇。
接下来,根据已经分配到每个聚类中的数据点,重新计算新的聚类中心。
这个过程将迭代,直到达到停止准则,如聚类中心不再变化或达到最大迭代次数。
聚类结果分析:在完成聚类过程后,可以根据每个聚类中心的特征和属性,对数据集进行可视化和解释。
这将帮助企业理解各个群组的特征和差异,并从中提取有价值的洞察力。
进而,企业可以根据不同群组的特征制定个性化的营销策略,提高销售和客户满意度。
总结:通过使用聚类分析方法,该电商企业成功地将其客户细分为几个不同的群组。
聚类分析案例聚类分析是一种常见的数据分析方法,它能够将数据集中的观测值划分为若干个类别,使得同一类别内的观测值相似度较高,不同类别之间的观测值相似度较低。
聚类分析在市场细分、社交网络分析、医学图像分析等领域都有着广泛的应用。
本文将以一个实际的案例来介绍聚类分析的应用过程。
案例背景:某电商平台希望对其用户进行细分,以便更好地了解用户需求,精准推荐商品。
为此,他们收集了用户的浏览、购买、评价等行为数据,希望通过聚类分析将用户分成不同的群体。
数据准备:首先,我们需要对数据进行清洗和整理。
去除缺失值、异常值,对数据进行标准化处理,以便消除不同维度之间的量纲影响。
然后,我们可以利用主成分分析(PCA)等方法对数据进行降维,以便更好地展现数据的内在结构。
模型选择:在数据准备完成后,我们需要选择合适的聚类算法。
常见的聚类算法包括K均值聚类、层次聚类、密度聚类等。
在本案例中,我们选择了K均值聚类算法,因为该算法简单易实现,并且适用于大规模数据。
聚类分析:经过数据准备和模型选择后,我们开始进行聚类分析。
首先,我们需要确定聚类的数量K。
这里我们可以采用肘部法则、轮廓系数等方法来确定最佳的K值。
然后,我们利用K均值聚类算法对数据进行分组,得到每个用户所属的类别。
结果解释:得到聚类结果后,我们需要对每个类别进行解释和分析。
通过对每个类别的特征进行比较,我们可以揭示出不同类别用户的行为特点和偏好。
比如,某一类用户可能更倾向于购买高价值商品,而另一类用户更注重商品的品质和口碑。
应用建议:最后,我们可以根据聚类结果给出相应的应用建议。
比如,对于高价值用户群体,电商平台可以加大对其的推荐力度,提供更多的个性化服务;对于偏好品质和口碑的用户群体,可以加强品牌营销和口碑传播,以吸引更多类似用户。
总结:通过本案例的介绍,我们可以看到聚类分析在用户细分和个性化推荐方面的重要作用。
通过对用户行为数据的聚类分析,电商平台可以更好地了解用户需求,提供更精准的推荐服务,从而提升用户满意度和交易量。
《应用多元统计分析》——报告班级:学号:姓名:聚类分析的案例分析摘要本文主要用SPSS软件对实验数据运用系统聚类法和K均值聚类法进行聚类分析,从而实现聚类分析及其运用。
利用聚类分析研究某化工厂周围的几个地区的气体浓度的情况,从而判断出这几个地区的污染程度。
经过聚类分析可以得到,样本6这一地区的气体浓度值最高,污染程度是最严重的,样本3和样本4气体浓度较高,污染程度也比较严重,因此要给予及时的控制和改善。
关键词:SPSS软件聚类分析学生成绩一、数学模型聚类分析的基本思想是认为各个样本与所选择的指标之间存在着不同程度的相似性。
可以根据这些相似性把相似程度较高的归为一类,从而对其总体进行分析和总结,判断其之间的差距。
系统聚类法的基本思想是在这几个样本之间定义其之间的距离,在多个变量之间定义其相似系数,距离或者相似系数代表着样本或者变量之间的相似程度。
根据相似程度的不同大小,将样本进行归类,将关系较为密切的归为一类,关系较为疏远的后归为一类,用不同的方法将所有的样本都聚到合适的类中,这里我们用的是最近距离法,形成一个聚类树形图,可据此清楚的看出样本的分类情况。
K均值法是将每个样品分配给最近中心的类中,只产生指定类数的聚类结果。
二、数据来源《应用多元统计分析》第一版164页第6题我国山区有一某大型化工厂,在该厂区的邻近地区中挑选其中最具有代表性的8个大气取样点,在固定的时间点每日4次抽取6种大气样本,测定其中包含的8个取样点中每种气体的平均浓度,数据如下表。
试用聚类分析方法对取样点及大气污染气体进行分类。
三、建立数学模型一、运行过程(一)系统聚类分析在SPSS界面对上述数据进行系统聚类分析如图1和图2所示,进行最近距离分类。
图1图2(二)K均值聚类分析对数据进行K均值聚类分析,如下图所示:图3图4图5 二、运行结果(一)聚类树形图图6由图可以看出,将数据进行聚类分析,根据设定的分为了二类到三类。
若分为两类则样本6为一类,其他为一类;若分为三类则将样本四分离出来,其他分为一类。
聚类分析应用案例
简介
聚类分析是一种无监督研究方法,旨在将数据样本划分为具有相似特征的群组或类别。
在许多领域中,聚类分析被广泛应用于数据分析、模式识别和信息检索等任务。
本文将介绍聚类分析在实际应用中的一些案例。
零售行业中的市场细分
零售行业需要了解其客户群体的特征以制定有效的营销策略。
通过聚类分析,可以将顾客细分为不同的群组,例如消费惯相似的群体、购买力相近的群体等。
基于这些细分结果,零售商可以有针对性地开展宣传活动、提供个性化服务,从而提高市场竞争力。
医疗领域中的疾病分类
在医疗领域,聚类分析可以用于疾病分类和诊断。
通过对患者的症状、体征和病史等信息进行聚类,可以将患者群体划分为具有相似疾病特征的子群。
这有助于医生进行更精确的诊断和制定个性化的治疗方案。
社交媒体分析中的用户群体划分
在社交媒体分析中,聚类分析可用于划分用户群体,了解不同用户的兴趣、行为模式和需求。
以这些群体为基础,企业可以更好地理解目标用户,并设计出更精准的推广活动和产品策略。
金融领域中的风险管理
在金融领域,聚类分析可以用于风险管理。
通过对客户的财务信息、投资偏好和风险承受能力等进行聚类,可以将客户划分为不同的风险群体。
这可以帮助金融机构识别高风险客户,并采取相应的风险控制措施。
总结
聚类分析是一种强大而灵活的数据分析工具,在各个领域都有广泛的应用。
本文介绍了其在零售行业、医疗领域、社交媒体分析和金融领域中的应用案例。
聚类分析可以帮助我们理解数据的内在结构、找到相似的群体,并基于这些群体进行个性化的决策和策略制定。
聚类分析的应用案例聚类分析是一种常用的数据分析方法,它可以将数据集中的对象分成不同的类别或簇,使得同一类内的对象相似度较高,而不同类别之间的对象相似度较低。
聚类分析广泛应用于市场分析、社交网络分析、生物信息学、医学诊断等领域。
本文将介绍几个聚类分析的应用案例,以便更好地理解聚类分析在实际问题中的应用。
首先,聚类分析在市场分析中的应用。
在市场营销中,企业需要了解消费者的偏好和行为,以便更好地制定营销策略。
通过对消费者数据进行聚类分析,可以将消费者分成不同的群体,从而更好地理解他们的需求和行为模式。
例如,一家零售商可以通过聚类分析将消费者分成价格敏感型、品牌忠诚型、功能导向型等不同的群体,从而有针对性地进行促销活动和产品定位。
其次,聚类分析在社交网络分析中的应用。
随着社交网络的兴起,人们在社交网络上的行为数据变得越来越丰富。
通过对社交网络数据进行聚类分析,可以发现不同的社交群体和用户行为模式。
例如,一家社交网络平台可以通过聚类分析将用户分成信息分享型、社交互动型、内容创作型等不同的群体,从而更好地满足用户需求,提高用户留存和活跃度。
再次,聚类分析在生物信息学中的应用。
生物信息学是研究生物学数据的计算机科学领域,其中大量的生物数据需要进行分析和挖掘。
通过对生物数据进行聚类分析,可以发现不同的基因型、蛋白质结构等生物特征。
例如,通过对癌症患者的基因数据进行聚类分析,可以发现不同的癌症亚型和治疗方案,为临床诊断和治疗提供重要参考。
最后,聚类分析在医学诊断中的应用。
在医学诊断中,医生需要根据患者的症状和检查数据进行疾病诊断。
通过对患者数据进行聚类分析,可以发现不同的疾病类型和临床表现。
例如,通过对心脏病患者的临床数据进行聚类分析,可以发现不同的心脏病亚型和治疗方案,为临床诊断和治疗提供重要参考。
综上所述,聚类分析在市场分析、社交网络分析、生物信息学、医学诊断等领域都有重要的应用价值。
通过对不同领域的应用案例进行分析,可以更好地理解聚类分析的原理和方法,为实际问题的解决提供重要参考。
聚类分析的应用案例
聚类分析是一种常用的数据挖掘技术,可以将大量类似的数据(称为“元组”)组合在一起,并基于某种规则(称为聚类标准)把它们分为一些稳定的、有意义的类别。
它是一种用于实现数据探索性分析(EDA)和关联性分析(CA)的有效方法。
聚类分析强调在样本空间中发现和识别分组的模式。
目前,聚类分析在商业分析、市场营销、生物学和医学分析等领域中广泛应用。
它的目的是弄清楚如何把一组数据分成多个不同的类别,并给出类别之间的相似度。
聚类分析可以应用于不同领域和行业。
比如,在银行行业,可以使用聚类分析来分析客户价值,从而分析客户购买意向,帮助改善营销策略。
在零售行业中,可以利用聚类分析来预测消费者对特定商品的偏好,从而帮助改善产品营销策略。
还可以用聚类分析来分析一个组织的客户,以便更好地掌握客户的需求,从而提高客户满意度。
此外,聚类分析在生物学和医学研究中也被广泛应用。
比如,可以用聚类分析来进行基因分析,以发现不同细胞类型,从而帮助研究人员了解疾病发展的机理。
聚类分析还可以用于诊断和预测,帮助医疗团队识别有病的病人,并根据历史临床数据和患者特征,预测疾病的发展过程,从而更好地规划治疗的方案。
聚类分析有许多应用,可以极大地提高个体和团体的效率,同时提供更多洞见和信息,以帮助指导业务决策。
因此,聚类分析是一种重要的工具,如果能够更好地应用,可以显著提高个人和团体的工作效率,实现更好的成果。
聚类分析法经典案例
聚类分析是一种常用的数据分析方法,它能够将相似的观察对象分为一组,并将不相似的对象分为不同的组。
下面将介绍一个经典的聚类分析案例。
在电信行业,客户流失是一个非常重要的问题。
为了降低客户流失率,一家电信公司希望通过聚类分析来识别客户流失的特征,以便进行有针对性的营销策略。
首先,该公司收集了一些客户数据,如客户的年龄、性别、月平均消费金额、通话时长等。
然后,利用聚类分析方法,将客户分为不同的组。
在这个案例中,我们可以采用k-means聚类算法。
通过聚类分析,该公司发现了三个客户群体。
第一组客户是高消费高通话客户,他们的平均消费金额和通话时长都很高。
第二组客户是低消费低通话客户,他们的平均消费金额和通话时长都很低。
第三组客户是高消费低通话客户,他们的平均消费金额很高,但通话时长很低。
利用聚类分析的结果,该公司能够采取有针对性的营销策略。
对于高消费高通话客户,他们可能是该公司的忠诚客户,可以通过提供一些优惠或奖励来保持他们的忠诚度。
对于低消费低通话客户,可以通过提供更具吸引力的套餐或增加服务内容来激发他们的消费需求。
对于高消费低通话客户,可以通过了解他们的通话行为,推出更适合他们的通话套餐,以增加他们的通话时长。
通过这个案例,我们可以看到聚类分析在客户流失预测和营销策略中的重要作用。
它可以帮助企业快速识别不同类型的客户,有针对性地制定相应的营销策略,提高客户满意度和忠诚度,降低客户流失率。
聚类分析还可以应用于其他领域,如金融、医疗等,具有广泛的应用前景。
聚类分析法经典案例聚类分析法是一种常用的数据分析方法,它通过对数据进行分类和分组,帮助我们发现数据中的内在规律和特征。
在实际应用中,聚类分析法被广泛运用于市场营销、社交网络分析、医学诊断、图像处理等领域。
下面,我们将介绍一些聚类分析法的经典案例,帮助大家更好地理解和应用这一方法。
首先,我们来看一个市场营销领域的案例。
某公司想要对其客户进行分类,以便更好地制定营销策略。
他们收集了客户的消费行为、年龄、性别、地理位置等数据,并利用聚类分析法对客户进行了分组。
通过分析,他们发现客户可以被分为三大类,高消费高端用户、中等消费稳定用户和低消费新用户。
有了这些分类信息,公司可以针对不同类型的客户制定不同的营销策略,提高市场营销效率。
其次,我们来看一个社交网络分析的案例。
一家社交媒体公司希望了解用户在平台上的行为和兴趣,以便更好地推荐内容和广告。
他们利用用户的浏览记录、点赞行为、评论信息等数据,通过聚类分析法将用户分为几个群体。
通过分析,他们发现用户可以被分为电影爱好者、音乐迷、美食达人等不同类型的群体。
有了这些分类信息,社交媒体公司可以更精准地为用户推荐内容和广告,提高用户满意度和广告点击率。
再次,我们来看一个医学诊断的案例。
医院收集了患者的临床症状、实验室检查结果、病史等数据,希望通过聚类分析法对患者进行分类,以便更好地制定治疗方案。
通过分析,他们发现患者可以被分为几个病情严重程度不同的群体。
有了这些分类信息,医生可以更好地制定个性化的治疗方案,提高治疗效果和患者生存率。
最后,我们来看一个图像处理的案例。
一家无人驾驶车辆公司希望通过图像识别技术对道路上的车辆和行人进行分类,以便更好地进行交通管理和安全预警。
他们利用摄像头采集的图像数据,通过聚类分析法将道路上的车辆和行人进行分类。
通过分析,他们可以更准确地识别不同类型的车辆和行人,并做出相应的交通管理和安全预警措施。
通过以上经典案例的介绍,我们可以看到聚类分析法在不同领域的广泛应用。
聚类分析的应用案例聚类分析是一种常用的数据挖掘技术,它可以将数据集中的对象按照其相似性进行分类,从而找出数据中的潜在模式和结构。
聚类分析在各个领域都有着广泛的应用,例如市场营销、医学诊断、社交网络分析等。
本文将介绍几个聚类分析在实际应用中的案例,帮助读者更好地理解和应用这一技术。
首先,聚类分析在市场营销中的应用案例。
假设一个公司希望对其客户进行细分,以便更好地定制营销策略。
通过聚类分析,可以将客户按照其购买行为、偏好等特征进行分类,从而识别出不同的客户群体。
比如,通过聚类分析可以将客户分为价值型客户、潜在客户、忠诚客户等不同的群体,然后针对不同的群体制定相应的营销策略,提高营销效果。
其次,聚类分析在医学诊断中的应用案例也非常广泛。
医学领域的数据往往包含大量的特征和变量,通过聚类分析可以将患者按照其症状、生理指标等特征进行分类,从而辅助医生进行诊断和治疗。
例如,通过聚类分析可以将患者分为不同的疾病类型或病情严重程度,帮助医生更好地制定个性化的治疗方案,提高治疗效果。
另外,聚类分析在社交网络分析中也有着重要的应用价值。
随着社交网络的快速发展,人们在社交网络上产生了大量的数据,通过聚类分析可以将用户按照其兴趣、行为等特征进行分类,从而挖掘出不同的用户群体和社交圈子。
这对于社交网络平台来说,可以帮助他们更好地推荐好友、内容等,提高用户的粘性和使用体验。
综上所述,聚类分析在市场营销、医学诊断、社交网络分析等领域都有着重要的应用价值。
通过聚类分析,可以帮助人们更好地理解和利用数据,发现数据中的潜在模式和结构,为决策提供科学依据。
随着数据挖掘技术的不断发展,相信聚类分析在更多的领域将会有着更广泛的应用。
一、案例背景随着现代人力资源管理理论的迅速开展,绩效考评技术水平也在不断提高。
绩效的多因性、多维性,要求对绩效实施多标准大样本科学有效的评价。
对企业来说,对上千人进展多达50~60个标准的考核是很常见的现象。
但是,目前多标准大样本大型企业绩效考评问题仍然困扰着许多人力资源管理从业人员。
为此,有必要将当今国际上最流行的视窗统计软件SPSS应用于绩效考评之中。
在分析企业员工绩效水平时,由于员工绩效水平的指标很多,各指标之间还有一定的关联性,缺乏有效的方法进展比拟。
目前较理想的方法是非参数统计方法。
本文将列举某企业的具体情况确定适当的考核标准,采用主成分分析以及聚类分析方法,比拟出各员工绩效水平,从而为企业绩效管理提供一定的科学依据。
最后采用判别分析建立判别函数,同时与原分类进展比拟。
聚类分析二、绩效考评的模型建立1、为了分析某企业绩效水平,按照综合性、可比性、实用性和易操作性的选取指标原那么,本文选择了影响某企业绩效水平的成果、行为、态度等6个经济指标(见表1)。
2、对某企业,搜集整理了28名员工2021年第1季度的数据资料。
构建1个28×6维的矩阵(见表2)。
3、应用SPSS数据统计分析系统首先对变量进展及主成分分析,找到样本的主成分及各变量在成分中的得分。
去结果中的表3、表4、表5备用。
表 5成份得分系数矩阵a成份1 2Zscore(X1) .227Zscore(X2) .228Zscore(X3) .224Zscore(X4) .177Zscore(X5) .186 .572Zscore(X6) .185 .587提取方法 :主成份。
构成得分。
a. 系数已被标准化。
4、从表3中可得到前两个成分的特征值大于1,分别为3.944和1.08,所以选取两个主成分。
根据累计奉献率超过80%的一般选取原那么,主成分1和主成分2的累计奉献率已到达了83.74%的水平,说明原来6个变量反映的信息可由两个主成分反映83.74%。
聚类分析实例讲解Lab 6 聚类分析一、分析背景Chrysler公司为了赢得市场竞争地位,打算推出新产品Viper,该种产品的目标客户是雅皮士阶层。
为了进一步了解这种人群的心理特征,定位自己的产品,吸引目标客户,Chrysler公司举行了一次市场调研。
讨论者使用九点量表测量400名被试者对30项陈述的态度,从而了解这些目标客户的心理特征。
调研还咨询被试者对Dodge Viper型汽车的态度来测量标准变量,标准变量的测量通过九点量表来测试消费者对“我情愿购买Chrysler公司生产的Dodge Viper型汽车”的态度。
本次分析的目的是:通过聚类分析,将原始变量分离聚成三类和四类,比较两种办法的效果。
同时,比较使用原始变量得到的聚类结果和使用因子得分得到的聚类结果,看哪一种办法能更好地解释数据。
二、分析结果1、按照原始变量举行的聚类分析首先按照原始变量举行聚类分析,因为样本数较大,采纳迭代聚类法,分离将样本聚为三类和四类,下面是聚类分析的结果比较。
表1 聚为三类后的组重心表2 聚为四类后的组重心表3 聚为三类的每组样本数表聚为四类的每组样本数表5 聚为三类后组重心之间的距离表6 聚为四类后组重心之间的距离由方差分析的结果(结果略)可知,在聚为三类和四类的分析中,V8,V9,V18,V19,V20和V27的组间差异均大于0.05,结果不显著。
2、按照因子得分举行的聚类分析以下是按照因子得分,采纳迭代法将样本聚为三类和四类的结果:表7 聚为三类后的组重心-.45298 .16364 .29950 .36038 -.22794 -.15239 .28739-.32881 .00765 .25444 .70915 -.87203 .52946 -.29355-.26021 .18363 .11953 -.28471 .00228 .20936 -.18616 .56772-.64844.01414消费因子时尚因子社会因子爱国因子期望因子偏好因子共性因子家庭因子12 3 Cluster表8 聚为三类时的样本数137.000 123.000 140.000400.000 .0001 2 3ClusterValidMissing以下是按照因子得分聚为四类的结果:从以上用因子得分的结果可以看出,聚为三类和四类时八个因子的组间差异都很显著。
聚类分析例子Word版案例数据源:有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。
【一】问题一:选择那些变量进行聚类?——采用“R型聚类”1、现在我们有4个变量用来对啤酒分类2、先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,将来的相似性矩阵里的数字为相关系数。
若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。
3、只输出“树状图”就可以了,从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。
至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。
(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。
)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。
【二】问题二:20中啤酒能分为几类?——采用“Q型聚类”1、现在开始对20中啤酒进行聚类。
开始不确定应该分为几类,暂时用一个3-5类范围来试探,这一回用欧式距离平方进行测度。
2、主要通过树状图和冰柱图来理解类别。
最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。
我这里试着确定分为4类。
选择“保存”,则在数据区域内会自动生成聚类结果。
【三】问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。
2、这个过程一般用单因素方差分析来判断。
注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。
方差分析结果显示,三个聚类变量sig值均极显著,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。
聚类分析案例聚类分析是一种数据分析方法,用于将数据集中的对象分成不同的群组,使得群组内的对象相似度较高,而不同群组之间的相似度较低。
以下是一个聚类分析的案例。
假设一个公司试图了解他们的客户群体,以便更好地进行市场细分和定位。
该公司采集了一系列与客户相关的特征,比如年龄、性别、购买行为等。
他们打算使用聚类分析来将这些客户划分为不同的群组,以便更好地了解每个群组的特征和需求。
首先,该公司需要对数据进行预处理。
他们将删除一些不相关或重复的特征,并对缺失数据进行填充。
然后,他们需要选择一个合适的聚类算法来检测潜在的群组结构。
在这个案例中,他们选择了k-means算法,因为它是一个简单而高效的方法,适用于大规模数据集。
接下来,他们需要选择聚类的数量。
为了确定最佳的聚类数量,他们使用了“肘部法则”。
该方法计算了不同聚类数量下的聚类误差平方和(SSE),并绘制了一个聚类数量和SSE的折线图。
根据折线图,他们选择了一个聚类数量,使得SSE的降幅明显减缓的那个点。
在这个案例中,他们选择了5个聚类。
最后,他们使用选定的聚类数量运行k-means算法,并获取每个客户所属的聚类。
然后,他们对每个聚类进行分析,比如计算平均年龄、男女比例、购买偏好等。
通过对聚类结果的比较,他们可以发现不同群组之间的差异和相似之处,从而得出关于每个群组的特征和需求的结论。
通过这个聚类分析,该公司发现客户群体可以分为以下几个群组:青年女性购买群体、中年男性购买群体、中老年女性购买群体、青年男性购买群体和普通购买群体。
他们发现不同群组的平均年龄、男女比例和购买偏好存在显著差异,这为他们的市场细分和推广战略提供了有力的支持。
综上所述,聚类分析是一个有用的数据分析方法,可以帮助企业了解客户群体的特征和需求,从而更好地进行市场细分和定位。
通过对数据的预处理、选择合适的聚类算法和聚类数量,以及对聚类结果的分析,企业可以获得有关客户群体的深入洞察,并为营销决策提供有力的支持。
聚类分析案例聚类分析是一种常用的数据挖掘技术,它可以帮助我们将数据集中具有相似特征的对象进行分组,从而揭示数据内在的结构和规律。
在本文中,我们将通过一个实际的案例来介绍聚类分析的应用。
案例背景:某电商平台希望对其用户进行分群,以便更好地了解用户的特征和行为习惯,从而精准推荐商品、提高用户满意度和促进销售额的增长。
为了实现这一目标,我们将运用聚类分析技术对用户数据进行分析。
数据准备:我们收集了一定时间内的用户行为数据,包括用户的浏览记录、购买记录、点击广告的次数、收藏商品的数量等信息。
这些数据将作为聚类分析的输入。
聚类分析步骤:1. 数据预处理,首先,我们需要对收集到的原始数据进行清洗和预处理,包括去除异常值、缺失值处理、数据标准化等工作,以确保数据的质量和可靠性。
2. 特征选择,在进行聚类分析之前,我们需要对数据进行特征选择,选择能够代表用户特征和行为的变量作为聚类的特征,例如购买频率、浏览深度、活跃时段等。
3. 模型选择,根据业务需求和数据特点,我们可以选择合适的聚类分析模型,常用的包括K均值聚类、层次聚类、密度聚类等。
4. 聚类分析,在选择好模型后,我们可以利用数据挖掘工具(如Python中的scikit-learn库)进行聚类分析,将用户分成若干个群体,并对每个群体的特征进行分析和解释。
案例结果:经过聚类分析,我们将用户分成了三个群体,高消费用户、低消费用户和潜在用户。
高消费用户的购买频率和客单价较高,对促销活动和新品推荐比较敏感;低消费用户购买频率较低,但对特价商品和折扣活动有一定的响应;潜在用户则具有较高的点击广告次数和浏览深度,但购买行为较少。
通过对不同群体的特征分析,电商平台可以有针对性地制定营销策略,提高用户的满意度和促进销售额的增长。
结论:通过本案例的聚类分析,我们可以看到聚类分析在电商领域的重要应用价值。
通过对用户行为数据的聚类分析,电商平台可以更好地了解用户的特征和行为习惯,从而精准推荐商品、提高用户满意度和促进销售额的增长。
例题1:下表是我国16个地区农民在1982年支出情况的抽样调查数据的汇总资料,每个地区都调查了反映每人平均生活消费支出情况的六个指标。
试利用调查资料对16个地区进行分类。
地区食品衣着燃料住房
生活用品及其
他文化生活服务支出
北京190.33 43.77 9.73 60.54 49.01 9.04 天津135.2 36.4 10.47 44.16 36.49 3.94 河北95.21 22.83 9.3 22.44 22.81 2.8 山西104.78 25.11 6.4 9.89 18.17 3.25 内蒙古128.41 27.63 8.94 12.58 23.99 3.27 辽宁145.68 32.83 17.19 27.29 39.09 3.47 吉林159.37 33.38 18.37 11.81 25.29 5.52 黑龙江116.22 29.57 13.24 13.76 21.75 6.04 上海221.11 38.64 12.53 115.65 50.82 5.89 江苏144.98 29.12 11.67 42.6 27.3 5.74 浙江169.92 32.75 12.72 47.12 34.35 5
安徽153.11 23.09 15.62 23.54 18.18 6.39 福建144.92 21.26 16.96 19.52 21.75 6.73 江西140.51 21.5 17.64 19.19 15.97 4.94 山东115.84 30.26 12.2 33.61 33.77 3.85 河南101.18 23.26 8.46 20.2 20.5 4.3
下面用统计学软件 SAS(Statistical Analysis System) data dfdf;
input city $ x1 x2 x3 x4 x5 x6;cards;
beijing 190.33 43.77 9.73 60.54 49.01 9.04
tianjing 135.20 36.40 10.47 44.16 36.49 3.94
hebei 95.21 22.83 9.30 22.44 22.81 2.80
shanxi 104.78 25.11 6.40 9.89 18.17 3.25 neimenggu 128.41 27.63 8.94 12.58 23.99 3.27 liaoning 145.68 32.83 17.19 27.29 39.09 3.47
jilin 159.37 33.38 18.37 11.81 25.29 5.22 heilongjiang 116.22 29.57 13.24 13.76 21.75 6.04 shanghai 221.11 38.64 12.53 115.65 50.82 5.89 jiangsu 144.98 29.12 11.67 42.60 27.30 5.74 zhejiang 169.92 32.75 12.72 47.12 34.35 5.00
anhui 153.11 23.09 15.62 23.54 18.18 6.39
fujian 144.92 21.26 16.96 19.52 21.75 6.73
jiangxi 140.54 21.50 17.64 19.19 15.97 4.94 shandong 115.84 30.26 12.20 33.61 33.77 3.85
henan 101.18 23.26 8.46 20.20 20.50 4.30;run;
proc cluster data=dfdf std outtree=tree method=ave pesudo rsq;id city;run; /*ward离差平方和法 war; 类平均法 ave; 重心法 cen;最长距离法 com;中间距离法 med; 最短
距离法 sin;密度估计法 den;极大似然法 eml; 可变类平均 fle;
相似分析法 mcq; 两阶段密度估计 two; */
proc tree data=tree out=new graphics horizontal;
id city;run;
Cluster History
Norm
RMS NCL Clusters Joined--- FREQ SPRSQ RSQ PSF PST2 Dist 15 anhui fujian 2 0.0025 0.998 28.7 . 0.193 14 hebei henan 2 0.0055 0.992 19.1 . 0.2869 13 CL14 shanxi 3 0.0068 0.985 16.7 1.2 0.3116 12 CL15 jiangxi 3 0.0099 0.975 14.4 4 0.3481 11 jiangsu zhejiang 2 0.0089 0.966 14.4 . 0.366 10 CL13 neimengg 4 0.0106 0.956 14.4 1.7 0.3692 9 tianjing shandong 2 0.0092 0.947 15.5 . 0.3711 8 CL9 CL11 4 0.0237 0.923 13.7 2.6 0.4957 7 liaoning jilin 2 0.0189 0.904 14.1 . 0.5329 6 heilongj CL12 4 0.0267 0.877 14.3 4.3 0.5463 5 CL8 CL7 6 0.0528 0.824 12.9 3.5 0.6681 4 CL5 CL6 10 0.1269 0.698 9.2 6.6 0.7823 3 CL4 CL10 14 0.1955 0.502 6.6 7.8 0.8751 2 beijing shanghai 2 0.0562 0.446 11.3 . 0.9184
1
CL2 CL3 16 0.4458 0 . 11.3 1.5454
(1)2R 统计量(列标题为RSQ )用于评价每次合并成NCL 个类时的聚类效果。
现考察2R 的值随NCL 的变化。
比如,在分为四个类之前(4NCL >)的并类过程中2R 的减少是逐渐的,改变不大;当分为四个类时的240.697R =,而下一次合并后分为三个类时23R 下降较多(230.502R =),由此可以通过对2R 统计量的变化分析可得出分为四个类是较合适的。
(2)半偏2NCL R (列标题为SPRSQ )得到。
根据半偏2NCL R 的值是上一步骤21NCL R +与该步骤2NCL R 的差值,故某步骤的半偏2NCL R 值越大,说明上一步骤合并的效果越好,此例半偏2NCL R 最大和次大分别为1,34NCL =和,
说明根据半偏2R 准则分为两个类,四个类和五个类是较合适的。
(3)伪F 统计量(列标题为PSF )用于评价分为NCL 个类的聚类效
果。
伪NCL F 值越大表示这些观测样品可以显著地分为NCL 个类。
此例中伪NCL F 最大和次大分别为52NCL =和(当6NCL 〈 ),说明根据伪F 准则分为五个类或两个类较合适的。
(4)伪2t 统计量(列标题为2PST )用以评价此步骤合并的效果。
由该统计量的定义知,
伪2t 大表明上一次合并的两个类是很分开的,也就是上依次聚类的效果是好的。
此例子中2t 最大和次大分别为1,34NCL =和,说明根据伪2t 准则分为两个类,四个类和五个类是较合适的。
综合分析,认为采用类平均法分类,将16个地区分为两个类或五个类较合适。
分为五个类的结果为:{北京},{上海},{天津、山东、江苏、浙江、辽宁、吉林},{黑龙江、安徽、福建、江西},{河北、河南、山西、内蒙};若分为两类,{北京,上海},{天津、山东、江苏、浙江、辽宁、吉林,黑龙江、安徽、福建、江西,河北、河南、山西、内蒙}。
例题2:对305名女中学生测量八个体型指标:
1x :身高 5x :体重 2x :手臂长 6
x :颈围
3x 上肢长 7x :胸围 4x :下肢长 8x :胸宽
相关矩阵如下表。
我们用相关系数来度量各对变量之间的相似性。
相应于最长距离法,类与类之间的相似系数定义为两类变量间的最小相关系数,每次聚类时合并两个相似系数最大的类。
/*用变量聚类过程varclus对变量进行分类*/
data jlfx (type=corr);
input id x1 x2 x3 x4 x5 x6 x7 x8;
_type_='corr';
cards;
1 1.000 . . . . . . .
2 0.846 1.000 . . . . . .
3 0.805 0.881 1.000 . . . . .
4 0.859 0.826 0.801 1.000 . . . .
5 0.473 0.37
6 0.380 0.436 1.000 . . .
6 0.398 0.326 0.319 0.329 0.762 1.000 . .
7 0.301 0.277 0.237 0.327 0.730 0.583 1.000 .
8 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000; run;
proc varclus data=jlfx maxc=8outtree=tree;
var x1 x2 x3 x4 x5 x6 x7 x8;
run;
proc tree data=tree;
run;。