新人教版初中七年级数学上册3.3 第2课时 利用去分母解一元一次方程导学案
- 格式:doc
- 大小:1020.00 KB
- 文档页数:7
《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。
二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。
(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。
2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。
(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。
三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。
2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。
3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。
4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。
5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。
四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。
2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。
3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。
4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。
五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。
2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。
3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。
一、学习目标:1.理解去括号的理论依据,掌握去括号的方法;2.理解去分母的理论依据,掌握去分母的方法;3.会解较复杂的一元一次方程;4.会列一元一次方程解决实际问题.二、重点、难点:重点:掌握含括号、分母的一元一次方程的解法,熟悉解方程的一般步骤.难点:去分母时的注意事项和一元一次方程的应用.三、考点分析:一元一次方程在中考中是必考内容,常与其他知识相结合.如果单独出题,一般考查较复杂的带分母、括号的一元一次方程的解法,或以应用题的形式出现,通常以选择题和填空题的形式进行考查.【知识点】1.去括号解方程的去括号和有理数运算中的去括号相似,主要依据的是乘法分配律.应注意,在去括号时,括号前边是负因数,去掉括号后所得各项的符号与原括号内相应各项的符号相反.2.去分母一个方程中如果含有分母,可以利用等式的性质2,在方程两边都乘所有分母的最小公倍数,将分母去掉.应注意:①分子如果是一个多项式,去掉分母后,要添上括号,防止出现符号错误;②整数项不要漏乘分母的最小公倍数.例题知识点一:一元一次方程的解法例1.解方程:(1)5x-(1-x)=-13;(2)2(y-6)=3-(4y+8).思路分析:题意分析:本题考查用去括号法则和移项法则解方程.解题思路:这两道题的解法是一样的,先去掉括号,再移项、合并同类项,最后把系数化为1,得到方程的解.解答过程:(1)去括号,得5x-1+x=-13移项,得5x+x=-13+1合并同类项,得6x =-12系数化为1,得x =-2.(2)去括号,得2y -12=3-4y -8移项,得2y +4y =3-8+12合并同类项,得6y =7系数化为1,得y =76. 解题后的思考:在求出方程的解之后,应自觉检查解的正误.把所求的解分别代入已知方程的左右两边,看左右两边是否相等.养成验根的习惯是非常必要的,可以帮助我们发现错误、避免错误.例2. 解方程:(1)7x -14=58;(2)16m -3=9m -23;(3)y -15-y -12=310. 思路分析:题意分析:本题中每个小题都含有分母,第(2)题去分母时应注意不要漏乘整数项.解题思路:解这三个方程都可以通过先去分母,然后去括号、移项、合并同类项、未知数系数化为1这五步完成.解答过程:(1)方程两边都乘8,得7x -14×8=58×8 去分母,整理得2(7x -1)=5去括号,得14x -2=5移项,得14x =5+2合并同类项,得14x =7系数化为1,得x =12. (2)方程两边都乘6,得16m ×6-3×6=9m -23×6 去分母,整理得m -18=2(9m -2)去括号,得m -18=18m -4移项,得m -18m =-4+18合并同类项,得-17m =14系数化为1,得m =-1417. (3)方程两边都乘10,得2(y -1)-5(y -1)=3去括号,得2y -2-5y +5=3合并同类项,得-3y +3=3移项,得-3y =3-3合并同类项,得-3y =0系数化为1,得y =0.解题后的思考:①解含有分母的方程去掉分母后,分子上的多项式要用括号括起来;②一般情况下,解一元一次方程主要有五个步骤,但并不是一定要经过这五个步骤.。
第2课时 利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢? 2.求下列几组数的最小公倍数: (1)2,3; (2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16.解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3, 去分母得15x -3(x -2)=5(2x -5)-45,去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76, 把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可. 解:1-2x 6+x +13=1-2x -142(1-2x)+4(x +1)=12-3(2x -1) 2-4x +4x +4=12-6x +3 6x =9, x =32. 把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1?(2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0,去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x 人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x 人,由题意得方程:x 40-x +4050=1,解得x =360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.两点之间,直线最短2.下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A.1个 B.2个 C.3个 D.4个3.如图,直线l是一条河,P,Q是两个村庄。
3。
3 解一元一次方程(二)——去括号与去分母第1课时去括号一、新课导入1。
课题导入:前面我们已经学习了运用移项、合并同类项的方法解一元一次方程.对于像2(x-3)+3(x-1)=5这样的方程,又该怎么办呢?今天我们来学习含有括号的一元一次方程的解法(板书课题).2.三维目标:(1)知识与技能①通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简捷明了,省时省力。
②掌握去括号解方程的方法.(2)过程与方法培养学生分析问题、解决问题的能力。
(3)情感态度通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.3.学习重、难点:重点:用去括号的方法解一元一次方程。
难点:确定实际问题中的相等关系,设未知数列出一元一次方程。
二、分层学习1.自学指导:(1)自学内容:教材第93页的内容。
(2)自学时间:8分钟.(3)自学方法:认真阅读课本内容,体会课本中是如何设未知数、找相等关系列方程的,解方程有哪些步骤。
体会每步变形中的化归思想.(4)自学参考提纲:①回顾在“整式加减”中学过的去括号的法则,注意符号和系数的变化.②从课本框图中可知用去括号法解一元一次方程有哪些步骤?与上节学过的用移项法解一元一次方程相比较有何异同?先去括号,再移项,合并同类项,系数化为1;多了一个去括号的步骤,其他一致.③本题还有其他列方程的方法吗?你能解出你所列的方程吗?解:设去年上半年月平均用电x kW·h,则下半年共用电(150000—6x) kW·h.可列方程为x=15000066x+2000.④按框图中的具体步骤解下列方程。
a.2x—(x+10)=5x+2(x—1)b。
3x-7(x-1)=3-2(x+3)解:a.x=—43b。
x=52.自学:学生可结合自学指导进行自学。
3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况和存在的问题.②差异指导:根据学情有针对性地给予点拨和指导.(2)生助生:小组内同学间交流研讨,互助解疑难。
3.3 解一元一次方程(二)第2课时去分母导学案1. 掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.★知识点1:去分母解一元一次方程通过去分母使方程的系数化为整数,减少分数参与计算,降低计算的难度,另外把握去分母的理论依据是等式的性质2,两边同乘以的数应为所有分母的最小公倍数.注意:①去分母时要注意分数线的括号作用;②去分母时不要漏乘不含分母的项.★知识点2:解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a转化.1. 解一元一次方程的过程中,去分母的具体做法是:,依据是.2. 解一元一次方程的一般步骤是:①,②,③,④,⑤.英国伦敦博物馆保存着一部极其珍贵的文物——纸草书,这是古代埃及人用象形文字写在一种特殊的草上的著作,它于公元前1700年左右写成,至今已有三千七百多年.草片文书中记载了许多有关数学的问题,其中有如下一道著名的求未知数的问题.问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?追问1:题中涉及哪些相等关系?追问2:应怎样设未知数?如何根据相等关系列出方程?问题2:这个方程与前面学过的一元一次方程有什么不同?怎样解这个方程呢?问题3:不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?追问1:怎样去分母呢?追问2:去分母的依据是什么?问题4:解方程:31322322105x x x+-+-=-.追问1:解含分数系数的一元一次方程的步骤包括哪些?追问2:以x为未知数的方程逐步向着x=a的形式转化的主要依据是什么?例1:解下列方程:(1)121224x x+--=+;(2)1213323x xx--+=-.解下列方程:(1)121163x x-+-=;(2)490.30.250.32x x x++--=.1. 方程5717324x x++-=-去分母正确的是( )A. 3-2(5x+7) = -(x+17)B. 12-2(5x+7) = -x+17C. 12-2(5x+7) = -(x+17)D. 12-10x+14 = -(x+17)2. 若代数式12x-与65的值互为倒数,则x= .3. 解下列方程:(1)334515x x-+=-;(2)5415523412y y y+--+=-.4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路. 上帝给予的童年占六分之一. 又过十二分之一,两颊长胡. 再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”1.(2022•黔西南州)小明解方程12123x x+--=的步骤如下:解:方程两边同乘6,得3(x+1)-1=2(x-2)①去括号,得3x+3-1=2x-2②移项,得3x-2x=-2-3+1③以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④2. (4分)(2020•重庆A卷7/26)解一元一次方程11(1)123x x+=-时,去分母正确的是()A.3(x+1)=1-2x B.2(x+1)=1-3xC.2(x+1)=6-3x D.3(x+1)=6-2x(1)本节课学习了哪些主要内容?(2)去分母的依据是什么?去分母的作用是什么?(3)用去分母解一元一次方程时应该注意什么?(4)去分母时,方程两边所乘的数是怎样确定的?【参考答案】1. 方程各项都乘所有分母的最小公倍数;等式的性质2;2. 去分母;去括号;移项;合并同类项;系数化为1.例1:解:(1)去分母(方程两边乘4),得2(x+1) -4 = 8+ (2 -x). 去括号,得2x+2 -4 = 8+2 -x.移项,得2x+x= 8+2 -2+4.合并同类项,得3x = 12.系数化为1,得x = 4.(2)去分母(方程两边乘6),得18x+3(x-1) =18-2 (2x-1).去括号,得18x+3x-3 =18-4x +2.移项,得18x+3x+4x =18 +2+3.合并同类项,得25x = 23.系数化为1,得2325x=.解:(1)去分母(方程两边乘6),得(x-1) -2(2x+1) = 6. 去括号,得x-1-4x-2 = 6.移项,得x-4x = 6+2+1.系数化为1,得 x = -3.(2)整理方程,得49325532x x x ++--=, 去分母(方程两边乘30),得 6 (4x +9) -10(3+2x ) = 15(x -5). 去括号,得 24x+54-30-20x = 15x -75.移项,得 24x -20x -15x =-75-54+30 .合并同类项,得 -11x = -99.系数化为1,得 x = 9.1. C ;2. 83; 3. (1)56x =;(2)47y =. 4. 解:设该单位参加旅游的职工有x 人,由题意得方程: 4014050x x +-=, 解得x =360.答:该单位参加旅游的职工有360人.5. 解:这个班有x 名学生,依题意得6247x x x x +++=, 解得x =56.答:这个班有56个学生.解:设丢番图活了x 岁,据题意得5461272x x x x x +++++=, 解得x =84.答:丢番图活了84岁.1.【解答】解:方程两边同乘6应为:3(x +1)-6=2(x -2), 所以出错的步骤为:①,故选:A .2. 【解答】解:方程两边都乘以6,得:3(x+1)=6-2x,故选:D.。
人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.掌握用一元一次方程解决实际问题的方法,会用分配律去括号解含括号的一元一次方程;(重点)2.经历应用方程解决实际问题的过程,发展分析问题、解决问题的能力,进一步体会方程模型的作用.(难点)一、情境导入复习提问:1.解一元一次方程时,最终结果一般是化为哪种形式?2.我们学了哪几种一元一次方程的解法?3.移项,合并同类项,系数化为1,要注意什么?4.一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是______________.(2)根据题意可列方程为______________.你能解这个方程吗?二、合作探究探究点一:利用去括号解一元一次方程【类型一】用去括号的方法解方程解下列方程:(1)4x-3(5-x)=6;(2)5(x+8)-5=6(2x-7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)去括号得4x-15+3x=6,移项合并同类项得7x=21,系数化为1得x=3;(2)去括号得5x+40-5=12x-42,移项、合并得-7x=-77,系数化为1得x=11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.在具体解方程时,不论进行到哪一步,只要得出方程的解,下面的步骤就不用再进行了.【类型二】根据已知方程的解求字母系数的值已知关于x的方程3a-x=x2+3的解为2,求代数式(-a)2-2a+1的值.解析:此题可将x=2代入方程,得出关于a的一元一次方程,解方程即可求出a的值,再把a的值代入所求代数式计算即可.解:∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3,解得a=2,∴原式=a2-2a+1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x的值代入方程,求出a 的值,然后将a的值代入整式即可解决此类问题.探究点二:应用方程思想求值当x为何值时,代数式2(x2-1)-x2的值比代数式x2+3x-2的值大6.解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x2-1)-x2-(x2+3x-2)=6,去括号得2x2-2-x2-x2-3x+2=6,移项、合并得-3x=6,系数化为1得x=-2.方法总结:先按要求列出方程,然后按照去括号,移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:去括号解方程的应用题今年5月,在中国东莞举办了苏迪曼杯羽毛球团体赛.在17日的决赛中,中国队战胜日本队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?解析:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,根据题意建立方程,求出方程的解就可以得出结论.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计解一元一次方程——去括号:1.去括号的顺序:先去小括号,再去中括号,最后去大括号.简单地说,由内向外去括号,也可以由外向内去括号.2.去括号的规律:(1)将括号外的因数连同它前面的符号看成一个整体,利用分配律将它与括号内的项相乘,即a(b+c)=ab+ac;(2)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生探索新的解题方法.3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程教学目标:1.会解带有括号的方程.2.提高学生分析应用题、找相等关系的能力.教学重点:如何审题、解题,且达到对一个题目举一反三的程度,学会从不同的角度分析问题的能力.教学难点:分析数量关系、列方程.教学过程:一、提出问题当方程的形式较为复杂时,解方程的步骤也相信更多些,那么如何解带有括号的方程呢?二、分析问题1.出示课本P93问题1:引导学生探究、思考:(1)题目中涉及哪几个量?这几个量之间有什么关系?(2)以列表形式反映题意:(3)用未知数表示其中一个未知量,找出相等关系列方程,可以列出几个不同的方程?(4)小结:有两种设未知数的方法,列出两种不同的方程,以月平均用电量为未知数,则以总用电量为相等关系列方程;以上半年或下半年的总用电量为未知数,则以月平均用电量为相等关系列方程.(5)解列出的方程,并解答.2.合作探究:课本P94例1.3.合作探究:课本P94例2:(1)提供信息:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(2)设未知数,找相等关系,解答问题.4.课本P95练习,学生独立完成.三、课堂小结1.解含有括号的一元一次方程的方法.2.本节课中在用一元一次方程解决实际问题的一点收获.四、巩固练习1.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)2.杭州西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?3.学校团委组织65名团员为学校建花坛搬砖,七年级同学每人搬六块,其他年级同学每人搬8块,总共搬了400块,问七年级同学有多少人参加了搬砖?4.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?五、布置作业课本P98习题3.3第1、2、6、7、8题.第2课时利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16. 解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3,去分母得15x -3(x -2)=5(2x -5)-45, 去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76,把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x 6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可.解:1-2x 6+x +13=1-2x -142(1-2x )+4(x +1)=12-3(2x -1)2-4x +4x +4=12-6x +3 6x =9,x =32.把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0, 去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程:x40-x+4050=1,解得x=360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.3.3 解一元一次方程(二)——去括号与去分母第2课时利用去分母解一元一次方程教学目标:1.能够熟练地解含有分数系数的方程.2.进一步提高列一元一次方程解决实际问题的能力.教学重点:1.分析实际问题的方法.2.去分母时符号的处理.教学难点:分析实际问题中的数量关系、列方程.教学过程:一、创设情境,提出问题出示课本P95问题2:(1)小组合作探究,列出方程.(2)x+x+x+x=33的解法有几种方法?每种解法的依据是什么?解法1:将方程左边通分得:x=33,即x=33,x=33×,x=.解法2:将方程两边都乘42去掉分母,得:28x+21x+6x+42x=1386,x=.(3)比较两种解法.二、合作探究解方程:-2=-.(1)如何去分母?依据是什么?(2)方程两边都乘10的过程中有哪些注意事项?(3)交流解题过程,指出问题,并强调注意事项.(4)解一元一次方程的一般步骤:去分母—去括号—移项—合并同类项—系数化1.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天,”就因校长叫他听一个电话而离开教室.调皮的小刘说:“让我试一试”,上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来……请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法.举一反三:(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务.原计划一半同学参加制作,每天制作40面.而实际上,在完成了三分之一以后,全班同学一起参加制作,结果比原计划提前一天半完成任务.假设每人的制作效率相同,问共制作小旗多少面?(2)小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,便随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?(3)将上述两题加以比较,有否相通之处?可否一题多解?并探究设未知数的技巧性.三、课堂练习1.完成课本P97例3,解下列方程:(1)-1=2+;(2)3x+=3-.交流解题过程,强化注意事项.四、综合应用,巩固提高1.完成课本P98练习.2.解方程:(1)-=2;(2)-y+5=-.(3)=+1;(4){[x(+3)+5]+7}=1.4.一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?5.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每时可处理垃圾55吨,所需费用550元;乙厂每时可处理垃圾45吨,所需费用495元.甲、乙两厂的工作时间均不超过10时,请你设计一个问题,并请你的好朋友解答.五、课时小结可通过以下问题引导学生小结:1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?11。
第三章 一元一次方程
. . .
或除以 , (2) 2和3 最小公倍数为 (4)4,5和6 最小公倍数为1 1.3⎫=⎪⎭
一、要点探究
探究点1:解含分母的一元一次方程 合作探究: 1.解方程:
()()13
128231
-=-x x . 方法一: 方法二
解:去括号,得 解:方程两边同时乘3,得 ________________________ ________________________
移项,得 去括号,得 ________________________ ________________________
合并同类项,得 移项,得 ________________________ ________________________
合并同类项,得____________
2.对比方法一与方法二,想一想如何解含分母的方程更简便?
3.用你认为更简便的方法解方程:.5
210232213x
x x --=-+
要点归纳:
解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1.
观察与思考:
下列方程的解法对不对?如果不对,你能找出错在哪里吗?
解方程:
.12
2
312=+--x x 解:去分母,得
4x -1-3x + 6 = 1, 移项,合并同类项,得 x =4.
如果上述解法错误,你能写出正确解法吗?
典例精析
例1 解下列方程: (1)
121163x x -+-=; (2) 490.30.25
.50.32
x x x ++--=
解法:_______(填“对”或“错”)
错误原因:_________________ _________________________________________________________________________________
要点归纳:
1. 去分母时,应在方程的左右两边乘以分母的 ;
2. 去分母的依据是 ,去分母时不能漏乘 ;
3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.
针对训练:
A .3(x+1)-2x-3=6
B .3(x+1)-2x-3=1
C .3(x+1)-(2x-3)=12
D .3(x+1)-(2x-3)=6
(1) ;34= (2) 1.32
x +=-
探究点2:去分母解方程的应用
例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.
方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度. 针对训练
清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.
请问先生名算者,算来寺内几多增?
诗的意思:
3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
二、课堂小结
解一元一次方程的一般步骤:
1. 方程423-=-去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17 C. 12-2(5x +7) = -(x +17) D. 12-10x +14 = -(x +17)
2. 若代数式
21-x 与5
6
的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).12
55241345--=-++y y y
4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆
刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位
参加旅游的职工有多少人?
5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?
()
趣味拓展
“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”
你知道丢番图去世时的年龄吗?请你列出方程来算一算.。