4-1三角函数基础训练题(三角路)
- 格式:doc
- 大小:175.50 KB
- 文档页数:3
三角函数的基础练习题在学习三角函数时,为了加深对其概念和性质的理解,我们经常进行许多练习题。
以下是一些基础的三角函数练习题,供大家参考。
1. 计算以下三角函数的值:(a) sin(0°)(b) cos(30°)(c) tan(45°)(d) cot(60°)(e) sec(90°)(f) csc(120°)2. 计算以下三角函数的值:(a) sin(π/4)(b) cos(π/3)(c) tan(π/6)(d) cot(π/2)(e) sec(5π/4)(f) csc(7π/6)3. 根据已知条件,求解下列三角方程的解集:(a) sin(x) = 0(b) cos(2x) = 1(c) tan(x) = 1(d) cot(2x) = -1(e) sec(x) = -1(f) csc(x) = 24. 利用三角函数的和差公式,化简以下表达式:(a) sin(α + β)(b) cos(2α - β)(c) tan(π/6 + π/4)(d) cot(3π/4 - π/3)(e) sec(2x + π/3)(f) csc(5x - π/6)5. 求解下列三角方程的解集:(a) sin^2(x) - 1 = 0(b) 4cos^2(2x) = 1(c) tan^2(x) + tan(x) = 0(d) 1 + cot^2(2x) = 0(e) 2 + sec^2(x) = 0(f) csc^2(x) - 4csc(x) + 3 = 06. 使用三角函数的复合函数添加条件,求解下列三角方程的解集:(a) sin(2x) = 1/2, 0 ≤ x ≤ 2π(b) cos(3x) = -1/2, -π/2 ≤ x ≤ π/2(c) tan^2(x) = 3, -π/2 < x < π/2(d) cot(2x) = -√3, π/3 < x < π/2(e) sec^2(x) = 2, 0 < x < 3π/2(f) csc(2x) = -2, -π < x < 0通过完成这些基础的三角函数练习题,可以帮助我们巩固对三角函数的掌握程度,提高解题的能力。
2 ⎪三角函数单元测试题一、选择题:(12ⅹ5 分=60 分)1. 若点 P 在角的终边的反向延长线上,且 OP = 1 ,则点P 的坐标为( )A (-cos , s in )B (cos , s in )C (cos,-sin )D (-cos ,-sin );2. 已知角的终边经过点 P (-3,-4),则cos(2+) 的值为()4 343A. -B.C.D. - 555 53. 已知、是第二象限的角,且cos> cos ,则 ()A.< ; B. s in> sin ; C. tan> tan ;D.以上都不对4. 函数 y = 5sin(2x + ) 图象的一条对称轴方程是() 6( A ) x = -; 12 (B) x = 0; (C) x = 6 (D) x = 3 5. 已知函数 y = A sin(x +) + B 的一部分图象如右图所示,如果 A > 0,> 0,||<,则( )2A. A = 4B.= 1 C.=6D. B = 46. 已 知 函 数 f (x ) = 2 s in(x +) 对 任 意 x 都 有 f ( + x ) = f ( - x ), 则 f ( ) 等 于6 6 6() A. 2 或0B. -2 或2C. 0D. -2 或03⎧cos x , (-≤ x < 0) 7. 设 f (x ) 是定义域为 R ,最小正周期为 2 15的函数,若 f (x ) = ⎨ ⎪⎩ 2, sin x , (0 ≤ x < )则 f (- ) 等于( ) 4A. 1B.C. 0 2D. -28. 若点 P (sin - c os , t an ) 在第一象限,则在[0, 2) 内的取值范围是()3 5 5 A . ( , ) (, )2 4 4 B. ( , ) (, )4 2 4 35 3 3 3 C. ( , ) ( , )2 4 4 2 D. ( , ) ( ,)2 4 42; ;6 6 + 9. 在函数 y = sin x 、 y = sin x 、 y = sin(2x + 为的函数的个数为() 2 ) 、 y = cos(2x + 3 2) 中,最小正周期 3A.1个B . 2 个C . 3 个D . 4 个10. 已知 A 1 , A 2 ,… A n 为凸多边形的内角,且lgsin A 1 + lgsin A 2 + ..... + lgsin A n = 0 ,则这个多边形是() A. 正六边形B .梯形C .矩形D .含锐角菱形11. 同时具有性质“(1)最小正周期是;(2)图像关于直线 x = 上是增函数”的一个函数是()对称;(3)在[- , ]3 6 3A. y = sin( x2 6B.y = cos(2x +3C.y = sin(2x - )6D.y = cos(2x - )6π π12. 已知函数 f (x )=f (π-x ),且当 x ∈(- =f (3),则( ) , ) 时,f (x )=x +sin x ,设 a =f (1),b =f (2),c2 2A. a <b<cB.b<c<aC.c<b<aD.c<a<b 二、填空题(4x4 分=16 分)13. 函数 y =14. 函数 y = 2 s in(2x + 的定义域是∈[-,0] 的单调递减区间是15. 已知函数 y =6 f (x ) 的图象上的每一点的纵坐标扩大到原来的4 倍,横坐标扩大到原来的2 倍,然后把所得的图象沿 x 轴向左平移,这样得到的曲线和 y = 2 sin x 的图象相同,2则已知函数 y = f (x ) 的解析式为.16. 关于函数 f (x ) = ⎛ + ⎫(x ∈ R ), 有下列命题: 4 sin 2x ⎪⎝ 3 ⎭① 由 f (x 1 ) = f (x 2 ) = 0 可得 x 1 - x 2 必是π的整数倍; ② y = f (x )的表达式可改写为 f (x ) =⎛ - ⎫ ; ③ y = f (x )的图象关于点⎛-4 cos 2x ⎪⎝ ⎭⎫ 对称;,0⎪ ⎝ ⎭④ y = f (x )的图象关于直线x = -对称.以上命题成立的序号是.6三.解答题:(5ⅹ12 分+14 分=74 分)log sin ⎛- 2x ⎫ 1 23 ⎝ ⎪ ⎭ )(x ) )) cos( ) cos( ) sin(2-) cos(+ + 11-) 17.(本题共 12 分)化简: 2 2cos(-) sin(3-) sin(--) sin(9+)218.(本题共 12 分)已知sin、cos是方程4x 2 + 2 6x + m = 0 的两实根,求:(1) m 的值; (2) sin 3+ cos 3的值.1 19.(本题共 12 分)已知函数 y = 2 s in( -x) ,(1)求它的单调区间;(2)当 x 为何值 6 3时,使 y > 1?20.(本题共 12 分)函数 f (x ) = A sin(wx +),( A > 0, w > 0, <的2图象如右,求出它的解析式,并说出它的周期、振幅、初相。
三角函数基础练习题三角函数是数学中重要的一部分,它在解决几何问题和物理问题中起着重要的作用。
为了巩固对三角函数的理解和运用,下面将提供一些基础练习题,帮助读者加深对三角函数的掌握。
题1:已知直角三角形的斜边长为10,其中一个锐角的正弦值为0.6,求这个锐角的余弦值。
解:设锐角为θ,根据正弦值的定义:sinθ = 对边 / 斜边则对边= sinθ * 斜边 = 0.6 * 10 = 6根据勾股定理,另一条直角边可表示为:√(斜边^2 - 对边^2) = √(10^2 - 6^2) = √(64) = 8根据余弦值的定义:cosθ = 邻边 / 斜边 = 8 / 10 = 0.8答案:0.8题2:已知直角三角形中,一个锐角的正切值为1.5,求这个锐角的角度。
解:设锐角为θ,根据正切值的定义:tanθ = 对边 / 邻边则对边 / 邻边 = 1.5化简得:对边 = 1.5 * 邻边根据勾股定理,将直角三角形两条直角边的长度表示为:邻边 = a,对边 = 1.5 * a根据勾股定理,斜边可表示为:√(邻边^2 + 对边^2) = √(a^2 + (1.5a)^2) =√(a^2 + 2.25a^2) = √(3.25a^2) = 1.8a(√3.25 ≈ 1.8),即斜边 = 1.8a在直角三角形中,斜边为最长边,所以斜边的长度等于10。
1.8a = 10a ≈ 10 / 1.8 ≈ 5.56由此可得,邻边≈ 5.56,对边≈ 1.5 * 5.56 ≈ 8.34sinθ = 对边 / 斜边= 8.34 / 10 ≈ 0.834θ ≈ arcsin(0.834)使用计算器或查表可得:θ ≈ 57.1°答案:约为57.1°题3:已知角A的余弦值为0.8,求角A的正切值和余切值。
解:设角A为θ,根据余弦值的定义:cosθ = 邻边 / 斜边由题可知邻边为已知边值,并且斜边长度未知,设斜边长度为a,邻边长度为b,则根据勾股定理可得:a^2 = b^2 + 斜边^2斜边= √(a^2 - b^2)cosθ = b / √(a^2 - b^2)0.8 = b / √(a^2 - b^2)化简得:b = 0.8 * √(a^2 - b^2)根据勾股定理,tanθ = 对边 / 邻边对边/ b = tanθ化简得:对边= b * tanθ = 0.8 * √(a^2 - b^2) * tanθ由此可以求得角A的正切值:tanA = 对边 / 邻边= (0.8 * √(a^2 - b^2) * tanθ) / b = 0.8 * √(a^2 - b^2) * tanθ / (0.8 * √(a^2 - b^2)) = tanθ所以,角A的正切值等于角A本身的切线值。
三角函数基础练习题三角函数的概念三角函数是数学中的一种函数,用来描述三角形中各边和角之间的关系。
在三角函数中,最基本的三个函数是正弦函数、余弦函数和正切函数。
设角α是一个任意角,在α的终边上任取(异于原点的)一点P(x,y),P与原点的距离为r=√(x^2+y^2)>0,则sinα=y/r,cosα=x/r,tanα=y/x。
在各象限中,三角函数的符号不同。
在第一象限中,正弦和余割是正的,余弦和正割是正的,正切和余切是正的。
在第二象限中,正弦和余割是正的,余弦和正割是负的,正切和余切是负的。
在第三象限中,正弦和余割是负的,余弦和正割是负的,正切和余切是正的。
在第四象限中,正弦和余割是负的,余弦和正割是正的,正切和余切是负的。
重要结论:1.当0<x<π/2时,XXX<x<tanx。
2.若ocosx,若π/2<x<π,则sinx<cosx。
3.同角三角函数的基本关系式:sin^2α+cos^2α=1,sinα/cosα=tanα,tanα/cotα=1.4.诱导公式:把±α的三角函数化为α的三角函数,概括为“奇变偶不变,符号看象限”。
课前预:1.将18°、-120°、735°、22°30'、57°18'、-1200°24'转换为弧度制。
2.将7π/5、5π/2、3π/10、5、1.4转换为度数制。
3.特殊角的度数与弧度数对应表。
终边落在坐标轴上的角的集合是{2kπ|k∈Z}。
已知半径为1的扇形面积为kπ,则扇形的中心角为2k。
弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长为4.弓形的弦长为2cm,则弓形的面积为2sin(1/3)cm^2.8、在半径为2的圆中,60度的圆周角所对的弧长是多少?11、弧度制下,度的弧度数为多少?14、下列各角中,终边在第四象限的是哪一个?17、若sinθ=−1/2,tanθ>0,则cosθ等于多少?22、已知扇形的周长为10cm,圆心角为3rad,则该扇形的面积为多少?23、如果α与120°角终边相同,α是第几象限角?24、已知α的终边经过点(3a−9,a+2),且sinα>0,cosα≤0,则a的取值范围是什么?25、sin(−π/6)的值等于多少?26、下列角中终边与330°相同的角是哪一个?函数y=|sinx|+|cosx|+|tanx|的值域是什么?1.删除第一段,因为没有明确的内容和题目。
2.三角函数的概念一、基本概念及相关知识点:1、三角函数:设 是一个任意角,在 的终边上任取(异于原点的)一点 P (x,y ) P 与原点的距离为 r22x 2 y 20 ,则 siny;cosy ;xyx ;tan2、三rrx角函数在各象限的符号: (一全二正弦,三切四余弦)yyy+ + - +- +o x -o +xo x --+ -正弦、余割 余弦、正割正切、余切 3、三角函数线正弦线: MP;余弦线: OM;正切线: AT.16. 几个重要结论:(1) y(2) y|sinx|>|cosx|ysinx>cosx|cosx|>|sinx| |cosx|>|sinx|TPOxOxO M A xcosx>sinx|sinx|>|cosx|(3) 若 o<x<2 ,则sinx<x<tanx4 、 同 角 三 角 函 数 的 基 本 关 系 式 : 22sin α /cos α =tan αsin α +cos α =1tan α cot α =1 5、诱导公式:把k的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”2二、重点难点同角三角函数的基本关系式、诱导公式三、课前预习1:把下列各角从度换成弧度:⑴ 18, ⑵ 120 , ⑶ 735 ,⑷ 22 30',⑸ 57 18',⑹ 1200 24'。
2 :把下列各角从弧度换成度: ⑴7 , ⑵5,⑶ 23,(把 换成 180 )61210⑷ 5,⑸ 1.4,⑹2。
( 57.3 即得近似值)3⒊一些特殊角的度数与弧度数的对应表度0 30456090120135 150180270 360弧度4 终边落在坐标轴上的角的集合是( ).A 、 2k , k ZB 、(2k 1) , k ZC 、k , k ZD 、k, k Z25 已知半径为 的扇形面积为 3 ,则扇形的中心角为【】1 8A 、3B 、3C 、3D 、3168426 弧度数为 2 的圆心角所对的弦长也是 2,则这个圆心角所对的弧长是( ) .A 、2B 、2C 、 2sin1D 、 sin 2sin17 如果弓形的弧所对的圆心角为,弓形的弦长为 2 ㎝,则弓形的面积为() .3A 、3)2、2(3cmB (3) cm9C 、 (23) cm2D 、 (23) cm 23328 半径为 2 的圆中, 60 的圆周角所对的弧长是。
必修4第一章《三角函数》基础训练题一、选择题(本大题共10小题,每小题5分,共50分)1、已知角α的终边经过点P (m 4-,m 3)(0≠m ),则α+αcos sin 2的值是 )(A )1或1- (B )52或52- (C )1或52- (D )1-或52 2、若tan 2α=,则sin cos αα的值为( )A .12B .23C .25D .13、若点)sin sin (tan ααα,-P 在第三象限,则角α的终边必在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、给定集合=M {4|πθθk =,∈k Z},}02cos |{==x x N ,}12sin |{==a a P ,则下列关系式中,成立的是 (A )M N P ⊂⊂ (B )M N P ⊂= (C )M N P =⊂ (D )M N P ==5、要得到函数)42sin(3π+=x y 的图象,只需将函数x y 2sin 3=的图象( ) (A )向左平移4π个单位 (B )向右平移4π个单位 (C )向左平移8π个单位 (D )向右平移8π个单位 6、已知α是三角形的一个内角且32cos sin =α+α,则此三角形是( ) (A )锐角三角形 (B )直角三角形 (C )钝角三角形 (D )等腰三角形 7.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则( ) A.4=AB.1ω=C.6πϕ= D.4=B8. 设x x x f sin )(=,若1x 、⎥⎦⎤⎢⎣⎡-∈2,22ππx 且)()(21x f x f >,则下列不等式必定成立的是( ) A .21x x >B .21x x <C .2221x x >D .021>+x x 9、若,20π<≤<x y 且y x tan 3tan =,则y x -的最大值是( ) A . 4π B . 6π C . 3π D .2π 10.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是( ) (A ))(cos )(cos B f A f > (B ))(sin )(sin B f A f >(C ))(cos )(sin B f A f > (D ))(cos )(sin B f A f <二、填空题(本大题共5小题,每小题5分,共25分)11、函数|tan |tan cos |cos ||sin |sin x x x x x x y ++=的值域是 . 12、已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 。
(数学4必修)第一章 三角函数()一、选择题1. 设α角属于第二象限,且2cos 2cos αα-=,则2α角属于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tan cos 107sin πππ. 其中符号为负的有( ) A . ① B . ② C . ③ D . ④3. 02120sin 等于( )A . 23±B . 23C . 23-D . 21 4. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A . 43- B . 34- C . 43 D . 34 5. 若α是第四象限的角,则πα-是( ) A . 第一象限的角 B . 第二象限的角 C . 第三象限的角 D . 第四象限的角6. 4tan 3cos 2sin 的值( )A . 小于0B . 大于0C . 等于0D . 不存在二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________.3. 若角α与角β的终边关于y 轴对称,则α与β的关系是___________.4. 设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .5. 与02002-终边相同的最小正角是_______________. 三、解答题1. 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2. 已知2tan =x ,求xx x x sin cos sin cos -+的值.3. 化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4. 已知)1,2(,cos sin ≠≤=+m m m x x 且, 求(1)x x 33cos sin +;(2)x x 44cos sin +的值.数学4(必修)第一章 三角函数(上)参考答案一、选择题1. C 22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限; 而cos coscos 0222ααα=-⇒≤,2α∴在第三象限; 2. C 00sin(1000)sin 800-=>;000cos(2200)cos(40)cos 400-=-=>tan(10)tan(310)0π-=-<;77sincos sin 7171010,sin 0,tan 01717109tan tan 99πππππππ-=>< 3. B0sin1202== 4. A 43sin 4sin ,cos ,tan 55cos 3ααααα==-==- 5. Cπααπ-=-+,若α是第四象限的角,则α-是第一象限的角,再逆时针旋转0180 6.A 32,sin 20;3,cos30;4,tan 40;sin 2cos3tan 40222ππππππ<<><<<<<>< 二、填空题1. 四、三、二 当θ是第二象限角时,sin 0,cos 0θθ><;当θ是第三象限角时,sin 0,cos 0θθ<<;当θ是第四象限角时,sin 0,cos 0θθ<>;2. ② 1717sin 0,cos 01818MP OM ππ=>=< 3. 2k αβππ+=+ α与βπ+关于x 轴对称4. 2 21(82)4,440,2,4,22l S r r r r r l rα=-=-+===== 5. 0158 0000020022160158,(21603606)-=-+=⨯三、解答题1. 解:21tan 31,2tan k k αα⋅=-=∴=±,而παπ273<<,则1tan 2,tan k αα+==得tan 1α=,则sin cos 2αα==-,cos sin αα∴+= 2. 解:cos sin 1tan 123cos sin 1tan 12x x x x x x +++===---- 3. 解:原式=000sin(180)1cos tan()tan(90)tan(90)sin()x x x x x x -⋅⋅---- sin 1tan tan ()sin tan tan x x x x x x=⋅⋅-=- 4. 解:由sin cos ,x x m +=得212sin cos ,x x m +=即21sin cos ,2m x x -= (1)233313sin cos (sin cos )(1sin cos )(1)22m m m x x x x x x m --+=+-=-=(2)24244222121sin cos 12sin cos 12()22m m m x x x x --+++=-=-=。
(数学4必修)第一章 三角函数()一、选择题1. 设α角属于第二象限,且2cos 2cos αα-=,则2α角属于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tan cos 107sin πππ. 其中符号为负的有( ) A . ① B . ② C . ③ D . ④3. 02120sin 等于( )A . 23±B . 23C . 23-D . 21 4. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( ) A . 43- B . 34- C . 43 D . 34 5. 若α是第四象限的角,则πα-是( ) A . 第一象限的角 B . 第二象限的角 C . 第三象限的角 D . 第四象限的角6. 4tan 3cos 2sin 的值( )A . 小于0B . 大于0C . 等于0D . 不存在二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0, 其中正确的是_____________________________.3. 若角α与角β的终边关于y 轴对称,则α与β的关系是___________.4. 设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .5. 与02002-终边相同的最小正角是_______________. 三、解答题1. 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2. 已知2tan =x ,求xx x x sin cos sin cos -+的值.3. 化简:)sin()360cos()810tan()450tan(1)900tan()540sin(00000x x x x x x --⋅--⋅--4. 已知)1,2(,cos sin ≠≤=+m m m x x 且, 求(1)x x 33cos sin +;(2)x x 44cos sin +的值.数学4(必修)第一章 三角函数(上)参考答案一、选择题1. C 22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限; 而cos coscos 0222ααα=-⇒≤,2α∴在第三象限; 2. C 00sin(1000)sin 800-=>;000cos(2200)cos(40)cos 400-=-=>tan(10)tan(310)0π-=-<;77sincos sin 7171010,sin 0,tan 01717109tan tan 99πππππππ-=>< 3. B0sin1202== 4. A 43sin 4sin ,cos ,tan 55cos 3ααααα==-==- 5. Cπααπ-=-+,若α是第四象限的角,则α-是第一象限的角,再逆时针旋转0180 6.A 32,sin 20;3,cos30;4,tan 40;sin 2cos3tan 40222ππππππ<<><<<<<>< 二、填空题1. 四、三、二 当θ是第二象限角时,sin 0,cos 0θθ><;当θ是第三象限角时,sin 0,cos 0θθ<<;当θ是第四象限角时,sin 0,cos 0θθ<>;2. ② 1717sin 0,cos 01818MP OM ππ=>=< 3. 2k αβππ+=+ α与βπ+关于x 轴对称4. 2 21(82)4,440,2,4,22l S r r r r r l rα=-=-+===== 5. 0158 0000020022160158,(21603606)-=-+=⨯三、解答题1. 解:21tan 31,2tan k k αα⋅=-=∴=±,而παπ273<<,则1tan 2,tan k αα+==得tan 1α=,则sin cos 2αα==-,cos sin αα∴+= 2. 解:cos sin 1tan 123cos sin 1tan 12x x x x x x +++===---- 3. 解:原式=000sin(180)1cos tan()tan(90)tan(90)sin()x x x x x x -⋅⋅---- sin 1tan tan ()sin tan tan x x x x x x=⋅⋅-=- 4. 解:由sin cos ,x x m +=得212sin cos ,x x m +=即21sin cos ,2m x x -= (1)233313sin cos (sin cos )(1sin cos )(1)22m m m x x x x x x m --+=+-=-=(2)24244222121sin cos 12sin cos 12()22m m m x x x x --+++=-=-=。
三角函数基础练习题1.如果,那么与终边相同的角可以表示为21α=-αA . B .{}36021,k k ββ=⋅+∈Z {}36021,k k ββ=⋅-∈Z C .D .{}18021,k k ββ=⋅+∈Z {}18021,k k ββ=⋅-∈Z 参考答案:B考查内容:任意角的概念,集合语言(列举法或描述法)认知层次:b 难易程度:易2.一个角的度数是,化为弧度数是405A .B .C .D .π3683π47π613π49解:由,得,所以180π=1180π=94054051804ππ=⨯=参考答案:D考查内容:弧度制的概念,弧度与角度的互化认知层次:b 难易程度:易3.下列各数中,与cos1030°相等的是A .cos50°B .-cos50°C .sin50°D .- sin50°解:,1030336050=⨯- cos1030cos(336050)cos(50)cos50=⨯-=-=参考答案:A考查内容:任意角的概念,的正弦、余弦、正切的诱导公式(借助单位圆)πα±认知层次:c 难易程度:易4.已知x ∈[0,2π],如果y = cos x 是增函数,且y = sin x 是减函数,那么A .B .02x π≤≤xππ≤≤2C .D .32x ππ≤≤23x ππ≤≤2解:画出与的图象sin y x =cos y x =参考答案:C考查内容:的图象,的图象,正弦函数在区间上的性质,余弦sin y x =cos y x =[0,2π]函数在区间上的性质[0,2π]认知层次:b难易程度:易5.cos1,cos2,cos3的大小关系是( ).A .cos1>cos2>cos3B .cos1>cos3>cos2C .cos3>cos2>cos1D .cos2>cos1>cos3解:,而在上递减,01232ππ<<<<<cos y x =[0,]π参考答案:A考查内容:弧度制的概念,的图象,余弦函数在区间上的性质cos y x =[0,2π]认知层次:b 难易程度:易6.下列函数中,最小正周期为的是().πA . B .cos 4y x =sin 2y x =C . D . sin2xy =cos4xy =解:与的周期为sin y x ω=cos y x ω=2T πω=参考答案:B考查内容:三角函数的周期性认知层次:a 难易程度:易7.,,的大小关系是( ).)( 40tan -38tan56tan A . B .>-)( 40tan > 38tan56tan >38tan >-)(40tan56tan C . D .>56tan >38tan )(40tan ->56tan >-)(40tan38tan 解:在上递增,而tan y x =(,22ππ-9040<38<56<90-<-参考答案:C考查内容:的图象,正切函数在区间上的性质tan y x =ππ,22⎛⎫-⎪⎝⎭认知层次:b 难易程度:易8.如果,,那么等于( ).135sin =α),2(ππα∈tan αrA .B .C .D .125-125512-512解:由,得,135sin =α),2(ππα∈12cos 13α==-sin 5tan cos 12ααα==-参考答案:A考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=sin tan cos xx x=认知层次:b 难易程度:中9.函数图象的一条对称轴方程是)62sin(5π+=x y A . B . C . D .12x π=-0x =6x π=3x π=解:函数图象的对称轴方程是,即(),)62sin(5π+=x y 262x k πππ+=+26k x ππ=+Z k ∈令得0k =6x π=参考答案:C考查内容:正弦函数在区间上的性质[0,2π]认知层次:b 难易程度:易10.函数y = sin 的图象是中心对称图形,它的一个对称中心是34x π⎛⎫-⎪⎝⎭A .B ., 012π⎛⎫-⎪⎝⎭7, 012π⎛⎫- ⎪⎝⎭C .D . 7, 012π⎛⎫⎪⎝⎭11, 012π⎛⎫⎪⎝⎭解:设得函数图象的对称中心是(),34x k ππ-=sin(3)4y x π=-(,0)312k ππ+Z k ∈ 令得,2k =-7, 012π⎛⎫- ⎪⎝⎭参考答案:B考查内容:正弦函数在区间上的性质[0,2π]难易程度:中11.要得到函数y = sin 的图象,只要将函数y = sin2x 的图象( ).23x π⎛⎫+⎪⎝⎭A .向左平移个单位 B .向右平移个单位3π3πC .向左平移个单位 D .向右平移个单位6π6π解:,sin 2sin 236y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭6x x π→+参考答案:C考查内容:参数,,对函数图象变化的影响A ωϕsin()y A x ωϕ=+认知层次:a 难易程度:易12.已知tan ( 0 << 2),那么角等于( ).ααπαA .B .或C .或D .6π6π76π3π43π3π解:,,令或可得tan α=6k παπ⇒=+Z k ∈0k =1k =参考答案:B考查内容:任意角的正切的定义(借助单位圆)认知层次:b 难易程度:易13.已知圆的半径为100cm ,是圆周上的两点,且弧的长为112cm ,那么O ,A B AB 的度数约是( ).(精确到1)AOB ∠︒A . B .C .D .646886110解:11211218064100100απ==⨯≈参考答案:A考查内容:弧度与角度的互化认知层次:b14.如图,一个半径为10米的水轮按逆时针方向每分钟转4圈.记水轮上的点P 到水面的距离为米(P 在水面下则为负数)d d ,如果(米)与时间(秒)之间满足关系式:d t ,且当P 点()sin 0,0,22d A t k A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭从水面上浮现时开始计算时间,那么以下结论中错误的是A .B .C .D .10=A 152πω=6πϕ=5=k 解:周期(秒),角速度,振幅,上移60154T ==215πω=10A =5k =参考答案:C考查内容:用三角函数解决一些简单实际问题,函数的实际意义,三角sin()y A x ωϕ=+函数是描绘周期变化现象的重要函数模型认知层次:b 难易程度:难15.sin(-)的值等于__________.196π解:,19534666πππππ-=--=-+1951sin(sin(4)662πππ-=-+=参考答案:12考查内容:的正弦、余弦、正切的诱导公式πα±认知层次:c 难易程度:易16.如果< θ < π,且cos θ = -,那么sin 等于__________.2π353πθ⎛⎫+ ⎪⎝⎭不做考查内容:同角三角函数的基本关系式:,两角和的正弦公式22sin cos 1x x +=认知层次:c 难易程度:中17.已知角的终边过点,那么的值为__________.α(4, 3)P -2sin cos αα+10m d5mP解: , 5r OP ===3422sin cos 2()555αα+=⨯-+=-参考答案:52-考查内容:任意角的正弦的定义(借助单位圆),任意角的余弦的定义(借助单位圆)认知层次:b 难易程度:中18.的值等于__________.75tan 175tan 1-+不做参考答案:3-考查内容:两角和的正切公式认知层次:c 难易程度:易19.函数y = sin(x +)在[-2π,2π]内的单调递增区间是__________.124π解:令,解得,令得1222242k x+k πππππ-≤≤+34422k x k ππππ-≤≤+0k =参考答案:[-,]32π2π考查内容:正弦函数在区间上的性质,不等关系,子集[0,2π]认知层次:b 难易程度:中20.已知sin +cos =,那么sin 的值是__________.αα532α参考答案:-1625考查内容:同角三角函数的基本关系式:22sin cos 1x x +=认知层次:b 难易程度:易21.函数y = sin x cos x 的最小正周期是__________.参考答案:2π考查内容:两角和的正弦公式,三角函数的周期性认知层次:c 难易程度:易22.已知,,那么tan2x 等于__________.(, 0)2x π∈-4cos 5x =参考答案:247-考查内容:同角三角函数的基本关系式:,二倍角的正切公式22sin cos 1x x +=认知层次:c 难易程度:易23.已知 ,.π02α<<4sin 5α=(1)求的值;tan α(2)求的值.(不做)πcos 2sin 2αα⎛⎫++⎪⎝⎭参考答案:(1)因为,, 故,所以.π02α<<4sin 5α=3cos 5α=34tan =α(2).πcos 2sin 2αα⎛⎫+-=⎪⎝⎭212sin cos αα-+=3231255-+=825考查内容:同角三角函数的基本关系式:,同角三角函数的基本关系式:22sin cos 1x x +=,的正弦的诱导公式,二倍角的余弦公式sin tan cos x x x =π2α+认知层次:c难易程度:中24.某港口海水的深度(米)是时间(时)()的函数,记为:.y t 024t ≤≤)(t f y =已知某日海水深度的数据如下:(时)t 03691215182124(米)y 10.013.09.97.010.013.010.17.010.0经长期观察,的曲线可近似地看成函数的图象.)(t f y =sin y A t b ω=+(1)试根据以上数据,求出函数的振幅、最小正周期和表达式;()sin y f t A t b ω==+(2)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的55(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为米,5.6如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?参考答案:(1)依题意,最小正周期为:,振幅:,,12=T 3A =10=b .2ππ6T ω==所以.π()3sin 106y f t t ⎛⎫==⋅+⎪⎝⎭(2)该船安全进出港,需满足:.即:.6.55y ≥+π3sin 1011.56t ⎛⎫⋅+≥⎪⎝⎭所以.π1sin 62t ⎛⎫⋅≥⎪⎝⎭所以.ππ5π2π2π()666k t k k +≤⋅≤+∈Z 所以.121125()k t k k +≤≤+∈Z 又 ,024t ≤≤所以或.15t ≤≤1317t ≤≤所以,该船至多能在港内停留:(小时).16117=-考查内容:三角函数是描绘周期变化现象的重要函数模型,正弦函数在区间上的性[0,2π]质,用三角函数解决一些简单实际问题认知层次:b 难易程度:难。
三角函数练习题及答案三角函数是数学中的重要内容,它在几何、物理、工程等领域都有广泛的应用。
掌握好三角函数的概念和运用方法,对于解决实际问题具有重要意义。
本文将为大家提供一些三角函数练习题及其答案,希望能帮助读者更好地理解和掌握这一知识点。
一、正弦函数的练习题1. 计算角度为30°的正弦值。
解答:根据正弦函数的定义,正弦值等于对边与斜边的比值。
在一个单位圆上,角度为30°对应的三角形是一个等边三角形,因此对边与斜边的比值为1/2。
所以,角度为30°的正弦值为1/2。
2. 求解方程sin(x) = 1/2,其中x的取值范围为[0, 2π]。
解答:根据正弦函数的性质,可以知道sin(x) = 1/2的解有两个,分别是30°和150°。
由于x的取值范围为[0, 2π],所以需要将150°转换为弧度制,即150° *π/180 = 5π/6。
因此,方程sin(x) = 1/2的解为x = 30°和x = 5π/6。
二、余弦函数的练习题1. 计算角度为45°的余弦值。
解答:根据余弦函数的定义,余弦值等于邻边与斜边的比值。
在一个单位圆上,角度为45°对应的三角形是一个等腰直角三角形,邻边与斜边的比值为√2/2。
所以,角度为45°的余弦值为√2/2。
2. 求解方程cos(x) = √3/2,其中x的取值范围为[0, 2π]。
解答:根据余弦函数的性质,可以知道cos(x) = √3/2的解有两个,分别是30°和330°。
由于x的取值范围为[0, 2π],所以需要将330°转换为弧度制,即330°* π/180 = 11π/6。
因此,方程cos(x) = √3/2的解为x = 30°和x = 11π/6。
三、正切函数的练习题1. 计算角度为60°的正切值。
三角函数习题及答案(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数lg(sin cos )y θθ=有意义的角在( )(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。
则(A)α+β=2κπ (B)α-β=2κπ(C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( )(A)tan cot 22θθ(B)tan cot 22θθ (C)sin cos 22θθ(D)sincos22θθ4.若4sin cos 3θθ+=-,则θ只可能是( )(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角5.若tan sin 0θθ且0sin cos 1θθ+,则θ的终边在( )(A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限二、填空题:6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2α是第▁▁▁象限角。
7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。
8.设1sin ,(,)sin y x x k k Z xπ=+≠∈则Y 的取值范围是▁▁▁▁▁▁▁。
9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。
三、解答题:10.已知角α的终边在直线y =上,求sin α及cot α的值。
11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sin β=0。
12.已知()()cos ,5n f n n N π+=∈,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。
§4-2 同角三角函数的基本关系式及诱导公式一、选择题:1.()sin 2cos 22ππ⎛⎫--- ⎪⎝⎭化简结果是( )(A )0 (B )1- (C )2sin 2 ()2sin 2D -2.若1sin cos 5αα+=,且0απ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34-3. 已知1sin cos 8αα=,且42ππα,则cos sin αα-的值为( )(A ()34B ()C ()D4. 已知4sin 5α=,并且α是第一象限角,则tan α的值是( ) ()43A - ()34B - ()34C ()43D5. 的结果是( )()0cos100A ()0cos80B ()0sin80C ()0cos10D6. 若cot ,(0)m m α=≠且cos α,则角α所在的象限是( )(A )一、二象限 (B )二、三象限 (C )一、三象限 (D )一、四象限 填空题:7.化简()()()21sin 2sin 2cos αππαα+-+--=▁▁▁▁▁▁。
三角函数基础练习
三角函数是数学中的一种基本函数类型,它以三角形的三边做为基础,通过角度的大
小关系派生出一系列的函数,包括正弦、余弦和正切等函数。
学习和掌握三角函数是数学
学习的重要一环,可以帮助我们更好地理解几何学概念,也有助于应用数学中的相关计算,因此需要进行一些相关的基础练习。
以下是一些常用的三角函数基础练习题目。
一、定义和性质练习
1. 如何用三角形的三边定义正弦函数?
2. 正余弦函数的定义域和值域分别是什么?
3. 正弦函数和余弦函数的最大值和最小值是多少?
5. 如何用正弦函数和余弦函数定义正切函数?
二、图像绘制和变换练习
1. 绘制正弦函数的图像,并标出周期和最值点。
5. 如何将正弦函数向左平移π/4 个单位?
6. 如何将正弦函数垂直拉伸 2 倍?
8. 如何将余弦函数水平压缩一半?
三、基本公式和求解练习
2. 余弦函数的基本公式有哪些?如何用它们求解三角形中的角度或边长?
4. 如何用正弦函数求解下列问题:
(1)在一个直角三角形中,已知一条直角边的长度为 3,另一条直角边的长度为 4,求斜边的长度。
(2)已知一个角的正弦值为 0.6,求这个角的大小。
三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。
三角函数基础练习题 一、 选择题:1. 下列各式中,不正确...的是 ( ) (A)cos(―α―π)=―cos α (B)sin(α―2π)=―sin α (C)tan(5π―2α)=―tan2α (D)sin(k π+α)=(―1)k sin α (k ∈Z) 3. y=sin )2332(π+x x ∈R 是( )(A)奇函数 (B)偶函数 (C)在[(2k ―1)π, 2k π] k ∈Z 为增函数 (D)减函数4.函数y=3sin(2x ―3π)的图象,可看作是把函数y=3sin2x 的图象作以下哪个平移得到( )(A)向左平移3π (B)向右平移3π(C)向左平移6π(D)向右平移6π5.在△ABC 中,cosAcosB >sinAsinB ,则△ABC 为 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)无法判定6.α为第三象限角,1sec tan 2tan 1cos 122-++αααα化简的结果为( )(A)3 (B)-3 (C)1 (D)-1 7.已知cos2θ=32,则sin 4θ+cos 4θ的值为( )(A)1813 (B)1811 (C)97 (D)-1 8. 已知sin θcos θ=81且4π<θ<2π,则cos θ-sin θ的值为( ) (A)-23(B)43(C)23(D)±43 9. △ABC 中,∠C=90°,则函数y=sin 2A+2sinB 的值的情况( )(A)有最大值,无最小值 (B)无最大值,有最小值 (C)有最大值且有最小值 (D)无最大值且无最小值 10、关于函数f(x)=4sin(2x+3π), (x ∈R )有下列命题(1)y=f(x)是以2π为最小正周期的周期函数 (2) y=f(x)可改写为y=4cos(2x -6π)(3)y= f(x)的图象关于(-6π,0)对称 (4) y= f(x)的图象关于直线x=-6π对称其中真命题的个数序号为( )(A) (1)(4) (B) (2)(3)(4) (C) (2)(3) (D) (3) 11.设a=sin14°+cos14°,b=sin16°+cos16°,c=26,则a 、b 、c 大小关系( )(A)a <b <c (B)b <a <c (C)c <b <a (D)a <c <b 12.若sinx <21,则x 的取值X 围为( )(A)(2k π,2k π+6π)∪(2k π+65π,2k π+π) (B) (2k π+6π,2k π+65π)(C) (2k π+65π,2k π+6π) (D) (2k π-67π,2k π+6π) 以上k ∈Z二、 填空题:13.一个扇形的面积是1cm 2,它的周长为4cm, 则其中心角弧度数为______。
三角函数练习题题目一已知角度为x的正弦值为0.6,求x的值。
解答一由已知,$\sin x = 0.6$。
根据正弦函数的定义,可以得到以下方程:$$\sin x = \frac{{\text{{对边}}}}{{\text{{斜边}}}}$$假设对边为a,斜边为b,则可以得到以下关系:$$\frac{a}{b} = \frac{3}{5}$$根据勾股定理,可以得到:$$a^2 + b^2 = 5^2$$联立以上两个方程,可以解得:$$a = 3, b = 5$$因此,角度x的正弦值为0.6,对应的角度为$\arcsin(0.6)\approx 36.87^\circ$。
题目二已知角度为y的余弦值为0.8,求y的值。
解答二由已知,$\cos y = 0.8$。
根据余弦函数的定义,可以得到以下方程:$$\cos y = \frac{{\text{{邻边}}}}{{\text{{斜边}}}}$$假设邻边为c,斜边为d,则可以得到以下关系:$$\frac{c}{d} = \frac{4}{5}$$根据勾股定理,可以得到:$$c^2 + d^2 = 5^2$$联立以上两个方程,可以解得:$$c = 4, d = 5$$因此,角度y的余弦值为0.8,对应的角度为$\arccos(0.8) \approx 36.87^\circ$。
题目三已知角度为z的正切值为1.5,求z的值。
解答三由已知,$\tan z = 1.5$。
根据正切函数的定义,可以得到以下方程:$$\tan z = \frac{{\text{{对边}}}}{{\text{{邻边}}}}$$假设对边为e,邻边为f,则可以得到以下关系:$$\frac{e}{f} = \frac{3}{2}$$根据勾股定理,可以得到:$$e^2 + f^2 = 5^2$$联立以上两个方程,可以解得:$$e = 3, f = 2$$因此,角度z的正切值为1.5,对应的角度为$\arctan(1.5)\approx 56.31^\circ$。
(直打版)必修4第一章三角函数单元基础测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)必修4第一章三角函数单元基础测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)必修4第一章三角函数单元基础测试题及答案(word版可编辑修改)的全部内容。
三角函数数学试卷一、 选择题1、600sin 的值是( ))(A ;21 )(B ;23 )(C ;23- )(D ;21-2、),3(y P 为α终边上一点,53cos =α,则=αtan ( ))(A 43-)(B 34 )(C 43± )(D 34±3、已知cos θ=cos30°,则θ等于( )A. 30° B 。
k ·360°+30°(k ∈Z)C. k ·360°±30°(k ∈Z)D. k ·180°+30°(k ∈Z ) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限( ) 5、函数的递增区间是( )6、函数)62sin(5π+=x y 图象的一条对称轴方程是( ) )(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x7、函数的图象向左平移个单位,再将图象上各点的横坐标压缩为原来的,那么所得图象的函数表达式为( )8、函数|x tan |)x (f =的周期为( )9、锐角α,β满足41sin sin -=-βα,43cos cos =-βα,则=-)cos(βα( ) A.1611-B.85C.85-D 。
三角函数练习题及答案简单三角函数是高中数学中的重要内容,掌握好三角函数的概念和性质对于解决各种数学问题至关重要。
为了帮助学生更好地掌握三角函数,下面将给出一些简单的练习题及其答案。
1. 练习题:已知一条直角边的长度为3,斜边的长度为5,求另一条直角边的长度。
解答:根据勾股定理,直角三角形中直角边的平方和等于斜边的平方。
设另一条直角边的长度为x,则有3²+x²=5²。
解方程得到x=4,所以另一条直角边的长度为4。
2. 练习题:已知sinθ=0.6,求cosθ的值。
解答:根据三角函数的定义,sinθ=对边/斜边。
设对边的长度为a,斜边的长度为b,则有a/b=0.6。
根据勾股定理,可得a²+b²=1。
将a/b=0.6代入方程,得到0.36+b²=1。
解方程得到b=0.8。
所以cosθ=b=0.8。
3. 练习题:已知tanθ=1.5,求cotθ的值。
解答:根据三角函数的定义,tanθ=对边/邻边。
设对边的长度为a,邻边的长度为b,则有a/b=1.5。
根据勾股定理,可得a²+b²=1。
将a/b=1.5代入方程,得到2.25+b²=1。
解方程得到b=-√1.25。
所以co tθ=b=-√1.25。
4. 练习题:已知sinθ=1/2,cosθ<0,求θ的值。
解答:根据sinθ=1/2,可知θ=π/6或5π/6。
又因为cosθ<0,所以θ=5π/6。
5. 练习题:已知sinα=3/5,cosβ=4/5,求sin(α+β)的值。
解答:根据三角函数的和差公式,sin(α+β)=sinαcosβ+cosαsinβ。
将已知的sinα和cosβ代入公式,得到sin(α+β)=(3/5)(4/5)+(4/5)(3/5)=24/25。
通过以上的练习题,我们可以发现三角函数的运用在解决各种数学问题中起到了重要的作用。
掌握好三角函数的概念、性质以及运用方法,能够帮助我们更好地解决各种实际问题。
《三角函数》基础训练题
一选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列不等式中,正确的是( )
A .tan 5
13tan
4
13ππ< B .sin )7
cos(5
π
π-> C .sin(π-1)<sin1o D .cos
)5
2cos(57π
π-< 2. 函数)6
2sin(π
+-=x y 的单调递减区间是( )
A .)](23
,26
[Z k k k ∈++-ππππ
B .)](26
5,26
[Z k k k ∈++ππππ
C .)](3
,6
[Z k k k ∈++-ππππ
D .)](6
5,6
[Z k k k ∈++ππππ
3.函数|tan |x y =的周期和对称轴分别为( )
A. )(2
,Z k k x ∈=ππ B. )(,2
Z k k x ∈=ππ
C. )(,Z k k x ∈=ππ
D.
)(2
,2Z k k x ∈=
π
π
4.要得到函数x y 2sin =的图象,可由函数)4
2cos(π-=x y ( )
A. 向左平移
8π个长度单位 B. 向右平移8π
个长度单位 C. 向左平移4π个长度单位 D. 向右平移4
π
个长度单位
5.三角形ABC 中角C 为钝角,则有 ( ) A .sin A >cos B B. sin A <cos B C. sin A =cos B D. sin A 与cos B 大小不确定
6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos (0)()2sin (0)
x x f x x x ππ⎧-≤<⎪=⎨⎪
≤≤⎩,则15()4
f π-的值等于( )
A.1 B
C.0
D.
7.函数)(x f y =的图象如图所示,则)(x f y =的解析式为(
A.22sin -x y
B.13cos 2-=x y
C.1)52sin(--=πx y
D. )5
2sin(1π--=x y 8.已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4
π
=x 处取
得最小值,则函数)4
3(x f y -=π
是( )
A .偶函数且它的图象关于点)0,(π对称
B .偶函数且它的图象关于点)0,23(π
对称
C .奇函数且它的图象关于点)0,2
3(π
对称
D .奇函数且它的图象关于点)0,(π对称
9.函数]0,[,cos 3sin )(π-∈-=x x x x f 的单调递增区间是( )
A .]65,[ππ--
B .]6,65[ππ--
C .]0,3[π-
D .]0,6
[π
-
10. 已知函数sin cos 1212y x x ππ⎛
⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭
,则下列判断正确的是( )
A .此函数的最小周期为2π,其图像的一个对称中心是,012π⎛⎫
⎪⎝⎭
B .此函数的最小周期为π,其图像的一个对称中心是,012π⎛⎫
⎪⎝⎭
C .此函数的最小周期为2π,其图像的一个对称中心是,06π⎛⎫
⎪⎝⎭
D .此函数的最小周期为π,其图像的一个对称中心是,06π⎛⎫
⎪⎝⎭
二、填空题:本大题共5小题,每小题5分,共25分。
11.若3
1
cos sin =βα,则αβcos sin 的取值范围是_______________;
12.已知sin (700+α)=1
3,则cos (2α-40︒)= .
13. 已知函数)5
2sin()(π
π+=x x f ,若对任意R x ∈都有)()()(21x f x f x f ≤≤成立,
则||21x x -的最小值是____________.
14. 2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角
形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos 2θ的值等于 _____.
15、函数tan 2()tan x
f x x
=的定义域是
第16题
《三角函数》基础训练题
参考答案
一、选择题:(本大题共12个小题;每小题5分,共60分。
)
二、填空题:(本大题共4小题,每小题4分,共16分。
)
11、]32,32[-; 12、79-; 13、2; 14、7
25
15},4
/{z k k
x x ∈≠π。