最新热机械分析法
- 格式:ppt
- 大小:8.99 MB
- 文档页数:183
DMA和TMA的区别:TMA(thermomechanical analysis)热机械分析:在加热过程中对试样进行力学测定的方法称为热—力法或热机械分析根据测定内容,热-力法可分为静态法和动态法两种动态力学分析DMA用于测定材料在一定条件(温度、频率、应力或应变水平、气氛与湿度等下)的刚度与阻尼,通过测定材料的刚度与阻尼随温度、频率或时间的变化,获得与材料的结构、分子运动、加工与应用有关的特征参数。
TMA测量的是样品的线性尺寸或体积随温度,时间或外力的变化。
这些数据提供了如热膨胀系数CET,粘度,材料的软化和流动,以及玻璃化转变温度等非常有用的信息。
橡胶制品尺寸甚至是微米级的变化,对配合公差要求非常严格的整个系统来说,有时都是非常重要的。
在TMA实验中,探头在样品表面施加一定的力。
根据样品的硬度和施加的力的不同,当加热时,样品尺寸会发生正的变化(膨胀)或负的变化(收缩)。
DMA施加的是交变力,力值较大;TMA主要做静态的力。
热机械分析仪TMA 402 F1/F3 Hyperion数字位移传感器(LVDT)-- TMA 402 Hyperion® 的核心这是一项经过时间考验的技术,同样也使用于热膨胀仪中。
其精度极高,最低可测量纳米级的尺寸变化(数字灵敏度为0.125nm)。
数字位移传感器(LVDT)-- TMA 402 Hyperion® 的核心这是一项经过时间考验的技术,同样也使用于热膨胀仪中。
其精度极高,最低可测量纳米级的尺寸变化(数字灵敏度为0.125nm)。
真空密闭恒温系统TMA 402 Hyperion® 的测量系统通过水浴恒温,因此,炉体的热辐射和周围环境的气温波动都不会影响到系统。
为了保证测量的纯净气氛及仪器的真空度,仪器中所有的单元均为真空密闭设计。
TMA 402 F1 中使用了涡轮分子泵,真空度可达10-4mbar,与MFC(质量流量控制器,TMA 402 F3 中为选件)结合使用,就可以在测量过程中选择测试所需纯净气氛,如惰性气体或氧化性气体。
dma动态热机械测试案例【实用版】目录一、DMA 动态热机械分析测试简介二、DMA 测试的应用范围三、DMA 测试的具体方法和操作步骤四、DMA 测试的注意事项五、DMA 测试的实际案例分析正文一、DMA 动态热机械分析测试简介动态热机械分析(DMA)是一种测量材料在温度和载荷作用下动态力学性能的测试方法。
这种测试方法可以测量材料的刚度、阻尼和应变等性能指标,因此被广泛应用于各种材料的研究、生产和质量控制环节。
二、DMA 测试的应用范围DMA 测试的应用范围非常广泛,不仅适用于金属、陶瓷和聚合物等传统材料,还适用于复合材料、生物材料和纳米材料等新型材料。
在树脂基复合材料固化工艺研究中,DMA 可以用来测试各种材料内的力学性能。
此外,DMA 测试还可以通过瞬态实验或者动态实验测定材料的粘弹性包括蠕变或应力松弛,力学性能与时间、温度和频率的关系。
三、DMA 测试的具体方法和操作步骤DMA 测试的具体方法和操作步骤可以概括为以下几个步骤:1.样品准备:首先需要根据测试要求选择合适的样品,并将其加工成适当的尺寸和形状。
2.仪器校准:在开始测试之前,需要对 DMA 仪器进行校准,以确保测试结果的准确性。
3.测试设置:根据测试要求设置测试温度、载荷、频率等参数。
4.测试操作:将样品放入 DMA 测试仪中,并施加一个可变振幅的正弦交变应力。
此时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角。
5.数据处理:测试结束后,需要对测试数据进行处理和分析,得出材料的动态力学性能。
四、DMA 测试的注意事项在进行 DMA 测试时,需要注意以下几点:1.样品的尺寸和形状应符合测试要求。
2.测试温度应控制在±0.5°C 以内。
3.测试过程中应避免样品受到外界干扰。
4.测试结束后,应及时对仪器进行清洗和维护。
五、DMA 测试的实际案例分析以下是一个 DMA 测试的实际案例分析:某树脂基复合材料生产商需要对其产品进行 DMA 测试,以确保其力学性能符合要求。
动态热机械分析概述动态热机械分析是一种用于研究热机械系统在动态工况下的性能和行为的方法。
它结合热学和机械学的理论,通过建立数学模型,并应用数值计算方法进行仿真分析,以便了解系统在不同工况下的响应和特性。
动态热机械分析通常用于评估热机械系统的可靠性、效率和性能,在设计过程中起到重要的作用。
它可以帮助工程师优化系统的设计,提高系统的工作效率,降低能耗,并检测系统中可能存在的问题。
研究内容动态热机械分析的研究内容主要包括以下几个方面:1.传热特性分析:传热是热机械系统中的重要过程之一,动态热机械分析可以通过建立传热模型,分析系统中的热传导、对流和辐射等传热过程,从而评估系统的传热特性和热能损失。
2.动力学行为分析:动力学行为是指热机械系统在动态工况下的响应和特性。
动态热机械分析可以通过建立动力学模型,分析系统的动态特性,如响应时间、稳态和非稳态运行等,以及系统的振动、冲击和共振等现象。
3.效率和性能评估:动态热机械分析可以通过建立能量平衡模型,分析系统的能量转换效率和能耗特性,从而评估系统的性能和效率。
它可以帮助工程师找到优化系统的方法,提高系统的工作效率,降低能耗。
4.故障诊断与预测:动态热机械分析可以通过建立故障模型,分析系统中可能发生的故障,如设备损坏、泄漏和堵塞等,以及故障对系统性能和效率的影响。
它可以帮助工程师提前检测系统中的问题,并采取相应的维修和保养措施,避免故障引发的不可预测的风险。
方法与工具动态热机械分析通常采用数值计算方法和仿真工具进行模拟和分析。
常用的方法和工具包括:1.有限元分析:有限元分析是一种常用的数值计算方法,可以用于建立热机械系统的数学模型,并进行仿真分析。
它通过将系统分割成小的有限元单元,利用离散数学方法求解微分方程,得到系统在不同工况下的解。
2.计算流体力学:计算流体力学是一种用于研究流体力学和传热问题的数值计算方法,可以用于分析热机械系统中的流动和传热过程。
它通过建立流体的数学模型和边界条件,利用数值计算方法求解流体的运动和温度场,从而分析系统的传热特性。
tma热机械曲线
TMA(热机械分析)是一种测量物质在温度变化过程中形变的技术。
其基本原理是将样品置于加热炉中,控制样品温度变化,使样品受力(压缩、拉伸或弯曲),然后检测样品在特定温度下的形变情况。
TMA曲线即热机械曲线,是描述样品在不同温度下的形变与温度的关系曲线。
TMA可分为以下几种方法:
1.热膨胀法:是在程序控温下,测量物质在可忽略负荷时尺寸与
温度关系的技术。
2.静态热机械分析法:是在程序控温下,测量物质在非振动负荷
下的温度与形变关系的技术。
3.动态热机械分析法:是在程序控温下,测量物质在振动载荷下
的动态模量或力学损耗与温度的关系的技术。
TMA曲线可以用于测定聚合物的玻璃化转变温度、软化温度等,也可以用于研究材料的热膨胀系数、热稳定性等性质。
通过TMA曲线分析,可以得到材料的热膨胀系数、弹性模量、热稳定性等参数,从而对材料的性能和加工工艺进行评估和优化。