概率论 第6章 数理统计的基本知识
- 格式:ppt
- 大小:3.71 MB
- 文档页数:66
概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121Y ΛY Y…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P Y 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P Y的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
第6章数理统计的基本概念一. 统计的基本概念二. 统计量的分布三. 抽样分布,由大数定律:(3)则在 8.1,需确定估计区间()。
(2)构造2σ甲μ甲μ乙μμ−→−PX1.8=x统计工作最基本内容:1.估计电视机寿命的平均值µ,估计电视机寿命的方差2.比较两厂电视机寿命值有无差别,方差有无差别。
总体样本统计量参数点估计假设检验区间估计目的:(方差同理)方法:()··21是否一致与μμ()··2221是否一致与σσ()··0是否一致与μμ()··22是否一致与σσ().,...,21n x x x 统计工作的基本步骤1.收集资料:2.统计分析:对数据整理和分析3.统计推断:i )点估计:确定未知参数θ的估计量ii )区间估计:确定(左,右)区间(1)参数估计:(2)假设检验:i )推断两个总体均数是否一致ii )推断两个总体方差是否一致iii )推断一个总体均数有无变化iv )推断一个总体方差有无变化⎪⎪⎩⎪⎪⎨⎧-2221212σσμμσμθ一. 统计的基本概念()为样本一组观察值。
,21n x x x ⎩⎨⎧总体有限总体(观察值有限个)无限总体(观察值无穷多个)随机变量 X 总体⇔(n 为样本容量)研究对象观察值的全体(样本是从总体中抽取的部分个体)n X X X 21,个体:每个观察值。
独立同分布,则称()n X X X 21,为简单随机样本,简称为样本。
(),,21n X X XnX X X 21,(),...2,1,===i p x X P i i ()n n x X x X x X P ===,...,2211()∏===ni i x X P 1样本联合分布列:(1)代表性:保证总体中每个个体有同等机会被抽到。
(2)独立性:每次抽取独立进行,各个体值互不影响。
(1)离散型:总体X 的分布列()发生的概率x x x 样本点n 21,与总体同分布()n x x x F ,...,21()n x x x f ,...,21(2)连续型:总体X 的分布密度f (x )样本联合密度:(3)总体X 的分布函数F (x )样本联合分布函数为:()()()n x f x f x f 21=()()()n x F x F x F 21=()发生的可能性x x x 样本点n 21,n X X X ,,21n X X X ,,21()n X X X 21,设为总体X 的样本,()n X X X T T 21,=函数,且不含任何未知参数,称T 为统计量。
第六章数理统计的基本知识数理统计的内容主要包括以下两个方面:一、如何收集、整理数据资料;二、如何对所得的数据资料进行分析、研究,从而对所研究的对象的性质、特点作出推断.后者就是我们所说的统计推断问题.本书只讲述统计推断的基本内容,即数理统计的基本知识、参数估计、假设检验、方差分析及回归分析等.在概率论中,我们是在假设随机变量的分布已知的前提下去研究它的性质、特点和规律性,例如介绍常用的各种分布、讨论其随机变量的函数的分布、求出其随机变量的数字特征等.在数理统计中,我们研究的随机变量,其分布是未知的,或者是不完全知道的,人们是通过对所研究的随机变量进行重复独立的观察,得到许多观察值,对这些数据进行分析,从而对所研究的随机变量的分布作出种种推断的.本章我们将介绍总体、随机样本及统计量等基本概念,并着重介绍几个常用统计量及抽样分布.§6.1 随机样本一、总体与总体分布1.总体:将研究对象的某项数量指标的值的全体称为总体.总体中的每个元素称为个体.总体中所包含的个体的个数称为总体的容量.容量为有限的称为有限总体.否则称为无限总体.注:有些有限总体,它的容量很大,我们可以认为它是一个无限总体.例如考察全国正在使用的某种型号灯泡的寿命所形成的总体,由于个体的个数很多,就可以认为是无限总体.在总体中,由于每个个体的出现是随机的,所以研究对象的该项数量指标X的取值就具有随机性,X是一个随机变量.因此,我们所研究的总体,即研究对象的某项数量指标X,它的取值在客观上有一定的分布.我们对总体的研究,就是对相应的随机变量X的分布的研究.X的分布函数和数字特征就称为总体的分布函数和数字特征,今后将不区分总体与相应的随机变量,笼统称为总体X.二、样本与样本分布在实际中,总体的分布一般是未知的,或只知道它具有某种形式,其中包含着未知参数.在数理统计中,人们都是通过从总体中抽取一部分个体,然后根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的一个样本.从总体抽取一个个体,可以看作是对代表总体的随机变量X 进行一次试验(或观测),得到X 的一个试验数据(或观测值).从总体中抽取一部分个体,就看作是对随机变量X 进行若干次试验(或观测),得到X 的一些试验数据(或观测值).从总体中抽取若干个个体的过程称为抽样.抽样结果得到X 的一组试验数据(或观测值)称为样本.样本中所含个体的数量称为样本容量.为了使样本能很好地反映总体的情况,从总体中抽取样本,必须满足下述两个条件: 1.代表性因抽取样本要反映总体,自然要求每个个体和总体具有相同分布. 2.独立性各次抽取必须是相互独立的,即每次抽样的结果既不影响其他各次抽样的 结果,也不受其他各次抽样结果的影响.这种随机的、独立的抽样方法称为简单随机抽样.由此得到的样本称为简单随机样本.从总体中进行放回抽样,显然是简单随机抽样,得到的是简单随机样本.从 有限总体中进行不放回抽样,显然不是简单随机抽样,但是当总体容量N很大而样本容量n 较小0.1n N ⎛⎫≤ ⎪⎝⎭时,也可以近似地看作是放回抽样,即可以近似地看作是简单随机抽样,得到的样本可以近似地看作是简单随机样本. 注:从总体抽取容量为n 的样本,就是对代表总体的随机变量X在相同条件下随机地、独立地进行n 次试验(或观测),将n 次试验结果按试验的次序记为n X X X ,,,21 .由于n X X X ,,,21 是对随机变量X 试验的结果,且各次试验是在相同条件下独立地进行的,所以可认为n X X X ,,,21 是相互独立的,且与总体X 服从相同的分布.定义1:设总体X 是具有某一分布函数的随机变量,如果随机变量n X X X ,,,21 相互独立,且都与X 具有相同的分布,则称n X X X ,,,21 为来自总体X 的简单随机样本,简称样本.n 称为样本容量.在对总体X 进行一次具体的抽样并做观测之后,得到样本n X X X ,,,21 的确切数值12,,,n x x x ,称为样本观察值(或观测值),简称为样本值.如果总体X 的分布函数为()F X ,则样本n X X X ,,,21 的联合分布函数为*12121(,,,)()()()()nn n i i F x x x F x F x F x F x ===∏如果总体X 是离散型随机变量,且概率分布为{},1,2,i P X x i ==则样本n X X X ,,,21 的联合概率分布为12121{,,,}{}{}{}{}nn n i i i P X x X x X x P X x P X x P X x P X x ∙==========∏如果总体X 是连续型随机变量,且具有概率密度)(x f ,则样本n X X X ,,,21 的联合概率密度为12121(,,,)()()()()nn n i i f x x x f x f x f x f x ∙===∏三、统计推断问题简述总体和样本是数理统计中的两个基本概念. 样本来自总体,自然带有总体的信息,从而可以从这些信息出发去研究总体的某些特征(分布或分布中的参数). 另一方面,由样本研究总体可以省时省力(特别是针对破坏性的抽样试验而言). 我们称通过总体X 的一个样本n X X X ,,,21 对总体X 的分布进行推断的问题为统计推断问题.总体、样本、样本值的关系:总体↙ ↖推断(个体)样本 → 样本值抽样在实际应用中, 总体的分布一般是未知的, 或虽然知道总体分布所属的类型, 但其中包含着未知参数. 统计推断就是利用样本值对总体的分布类型、未知参数进行估计和推断.为对总体进行统计推断, 还需借助样本构造一些合适的统计量, 即样本的函数, 下面将对相关统计量进行深入的讨论.例1:设总体X 服从正态分布),(2σμN ,概率密度为22()2(), x f x x R μσ--=∈则其样本n X X X ,,,21 的联合概率密度为22211()()2212/211(,,,).(2)ni i x nx n n ni f x x x e μμσσπσ=----*=∑==§6.2 抽样分布样本是进行统计推断的依据.在应用时,往往不是直接使用样本本身,而是针对不同的问题构造样本的适当函数,利用这些样本的函数进行统计推断.一、统计量的概念定义1:设12,,,n X X X 是来自总体X 的一个样本,()12,,,n g X X X 是 12,,,n X X X 的函数,若g 中不含未知参数,则称()12,,,n g X X X 是一个统计量.设12,n x x x 是相应于样本12,,,n X X X 的样本值,则12(,)n g x x x 称为()12,,,n g X X X 的观察值.注: 统计量是随机变量.不一定和总体同分布,不同的统计量有不同的分布.二、常用的统计量1. 样本均值 ∑==ni i X n X 11 观测值记为 11nii x xn==∑2. 样本方差 ()2222111111nn i i i i S X X X nX n n ==⎛⎫=-=- ⎪--⎝⎭∑∑ 观测值记为 ()2222111111nn i i i i s x x x nx n n ==⎛⎫=-=- ⎪--⎝⎭∑∑ 3. 样本标准差S ==观测值记为s ==4. 样本(k 阶)原点矩 ,2,1,11==∑=k X n A n i ki k观测值记为 11,1,2,n kk i i a xk n ===∑5. 样本(k 阶)中心矩 ,3,2,)(11=-=∑=k X X n B ni k i k观测值记为 ()11,1,2,knk i i b x x kn ==-=∑注: (1)上述五种统计量可统称为矩统计量,简称为样本矩,它们都是样本的显示函数,它们的观察值仍分别称为样本均值、样本方差、样本标准差、样本(k 阶)原点矩、样本(k 阶)中心矩.(2)样本的一阶原点矩就是样本均值,样本一阶中心矩恒等于零21121,0,n A X B B S n-===, 三、矩估计法的理论根据若总体X 的k 阶矩()k k E X μ=存在,则当n →∞时Pk k A μ−−→ 1,2,k=证:12,,,n X X X 独立且与X 同分布12,,,k k knX X X ∴独立且与k X 同分布.故有 ()()()()12k kkk n k E X E X E X E X μ=====从而由第五章的大数定理知11n P k k i k i A X n μ==−−→∑ 1,2,k=进而由第五章中关于依概率收敛的序列的性质知道()()1212,,,,,,Pk k g A A A g μμμ−−→其中g 为连续函数,这就是下一章所要介绍的矩估计法的理论根据。
Ch 6 数理统计的基本概念§6.1 基本概念 一、总体与样本1、总体——研究对象的全体,记为X 。
2、个体——构成总体的每一个对象,记为i X 。
3、总体容量——总体中包含的个体的个数。
有限总体——容量有限;无限总体——容量无限。
为推断总体X 的分布,从总体中抽取n 个个体,则对应n 个r.v.n X X X .....2,1——来自于总体X 的一个样本。
n X X X ......,21的取值((n x x x ,.....,21)--观测结果)称为样本的观测值,简称为样本值,整个抽取过程称之为抽样。
抽取的目的是根据样本的取值情况推断总体情况,因此应尽可能的使抽取的样本能反映总体的状况,故要求抽取的样本具有以下性质:文档收集自网络,仅用于个人学习⑴ 代表性:样本中每个r.v.i X 与总体X 具有相同的分布。
文档收集自网络,仅用于个人学习⑵ 独立性:n X X X ......,21相互独立。
——简单的随机抽样所得的样本称为简单的随机样本;若总体X 的分布函数为F (x ),则样本n X X X .....2,1的联合分布函数)().....,(121*i ni n x F x x x F =∏=。
文档收集自网络,仅用于个人学习若X 为连续型,且d.f 为f(x),且联合p.d.f 为:)()....,(121*i ni n x f x x x f =∏= 若X 为离散型,且分布律为:....2,1,)(===k p x X P k k 则联合分布律:in i i in n i i p p p x X x X x X P ....).....,(212211⋅⋅====。
...2,1.....3,2,1=in i i i 二、统计量Def:不含有任何未知数的关于样本空本空间的函数称为统计量。
e.g.1 设总体X~),(2σμN ,其中2,σμ未知,(n X X X .....2,1)为取自总体X 的一个样本,则:∑∑==--==n i i n i i X X n S X n X 1221)(11,1均为统计量。
第六章 数理统计的基本概念1.设样本均值为X ,则由题意,有6,4.1(~2n N X ,或)1,0(~/64.1N nX −,于是由1)3(2/64.34.5/64.3/64.34.1}4.54.1{95.0−Φ=⎭⎬⎫⎩⎨⎧−<−<−=<<≤nn n X nP X P⇒ 975.03(≥Φn ⇒ 96.13≥n⇒5744.34≥n 故样本容量至少应取35. 2.由题意可知)1,0(~/2.0N na X n −,又122/2.01.0/2.0}1.0|{|95.0−⎟⎟⎠⎞⎜⎜⎝⎛Φ=⎭⎫⎩⎨⎧<−=<−≤n n n a X P a X P n n 故有 975.0)2(≥Φn ⇒ 96.12≥n⇒ 3664.15≥n 因此至少应等于16.n 3. 由正态分布的性质及样本的独立性知,212X X −和4343X X −均服从正态分布,由于,0)2(21=−X X E 20)(4)()2(2121=+=−X D X D X X D以及,0)43(43=−X X E 100)(16)(9)43(4343=+=−X D X D X X D所以,有)20,0(~221N X X −⇒)1,0(~20221N X X −)100,0(~4343N X X − ⇒)1,0(~104343N X X −于是由分布的定义知,当2χ,201=a 1001=b 时,有 ()())2(~10432024322243221243221χ⎟⎠⎞⎜⎝⎛−+⎟⎟⎠⎞⎜⎜⎝⎛−=−+−=X X X X X X b X X a X 4. 由正态分布的性质及样本的独立性知, ⇒ )9,0(~2921N X X X +++")1,0(~)(91921N X X X +++" 又)1,0(~3N Y i, 9,,2,1"=i 所以 )9(~)(913332292221292221χY Y Y Y Y Y +++=⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛""由于两个总体是X 和Y 相互独立的,所以其相应的样本也是相互独立的,故)9(9121X X X +++"与)(21Y 912922Y Y +++"也相互独立,于是由t 分布的定义知,)9(~9/)(91)(91292191292191t Y Y X X YY X X U +++=++++=""""5.由题意知,)1,0(~2N X i,,故有 15,,2,1"=i )10(~22)(4122102121021χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X U "" )5(~22)(412215211215211χ⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛=+=X X X X V ""利用样本的独立性以及F 分布的定义,有)5,10(~5/10/)(221521121021F V U X X X X Y =++++="" 6.解法1 考虑n n n n X X X X X X 22211,,,+++++",将其视为取自正态总体的简单随机样本,则其样本均值为 )2,2(2σμN X X n X X n ni i n i i n i 21)(1211==+∑∑==+样本方差为 Y n 11−由于2211σ=⎟⎠⎞⎜⎝⎛−Y n E ,所以 22)1(2)2)(1()(σσ−=−=n n Y E 解法2 记,11∑==′n i i X n X ,11∑=+=′ni i n X n X 显然有X X X ′′+′=2,因此[]⎭⎬⎫⎩⎨⎧′′−+′−=⎥⎦⎤⎢⎣⎡−+=∑∑=+=+n i i n i n i i n i X X X X E X X X E Y E 1212)()()2()( []⎭⎬⎫⎩⎨⎧′′−+′′−′−+′−=∑=++n i i n i n i i X X X X X X X X E 122)())((2)(222)1(2)1(0)1(σσσ−=−++−=n n n 7.记(未知),易见2)(σ=X D )()(21Y E Y E =, ,6/)(21σ=Y D 3/)(22σ=Y D 由于相互独立,故有21,Y Y ,0)(21=−Y Y E 236)(22221σσσ=+=−Y Y D从而 )1,0(~2/21N Y Y U σ−=,又 )2(~22222χσχS =由于与相互独立,与独立,由定理 6.3.2,与独立,所以1Y 2Y 1Y 2S 2Y 2S 21Y Y −与独立,于是由t 分布的定义,知 2S )2(~2/)(2221t USY Y Z χ=−=8.由)1(~)1(222−−n S n χσ,其中由题意知,25=n , ,于是1002=σ}12)125({)1(50)1(}50{22222>−=⎭⎬⎫⎩⎨⎧−>−=>χσσP n S n P S P975.0}12)24({2≥>=χP 上式中的不等式是查表得到的,所以所求的概率至少为0.9759. 本题要用到这样一个结论,即Γ分布),(βαΓ关于第一个参数具有可加性,即若),(~1βαΓU ,),(~2βαΓV ,且U 与V 相互独立,则),(~21βαα+Γ+V U ,其中),(βαΓ的概率密度为: ⎪⎩⎪⎨⎧=)(x f αβ>其它0,x βΓ−)(1/1e x α−0x α可利用卷积公式证明.回到本题,当λβα11=,=,分布就是参数为Γλ的指数分布,所以样本的独立性及Γ分布的可加性,有 )1,(~21λn X +X X n Γ++"即的概率密度为 ∑=ni i X 1⎪⎩⎪⎨⎧>−=−−其它00,)!1()(1x e x n x g x n nλλ 因此∑==ni i X n X 11的概率密度为 ⎪⎩⎪⎨⎧≤>−==−−0,00,)!1()()()(1y y e y n n ny ng y h ny n n λλ 10. (1) 根据正态分布的性质,与21X X +21X X −服从二维正态分布,所以要证明它们相互独立,只需它们不相关,由于0)()()])([(22212121=−=−+X E X E X X X X E 0)()(2121=−+X X E X X E 所以 0),(2121=−+X X X X Cov 即与相互独立21X X +21X X −(2) 由于0=μ,所以)2,0(~221σN X X +⇒)1,0(~221N X X σ+ ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛+X X⇒)2,0(~221σN X X −)1,0(~221N X X σ− ⇒)1(~212221χσ⎟⎠⎞⎜⎝⎛−X X由上面证明的独立性,再由F 分布的定义知)1,1(~2/2/)()(21221221221F X X X X X X X X F ⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+=−+=σσ 所以 25.0}83.5{}4{4)()(221221=<<<=⎭⎬⎫⎩⎨⎧<−+F P F P X X X X P。