导学案034一元二次不等式及其解法
- 格式:doc
- 大小:91.50 KB
- 文档页数:5
课题: 一元二次不等式及其解法1、了解一元二次不等式的概念;2、理解一元二次不等式、一元二次方程、二次函数三者的关系,并能利用二次函数的图象解一元二次不等式。
※自学评价1、一元二次不等式的定义2、一元二次不等式、一元二次方程与二次函数的关系设相应的一元二次方程)0(02>=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,根据一元二次方程解的三种情况讨论一元二次不等式)0(02>>++a c bx ax 的解集。
3.思考:a<0时,怎么办呢?※合作探究一元二次不等式的解法(1)图像法:画出相应二次函数图像的简图,观察图像得出其解集。
请举例说明:(2)代数法:将所给不等式化为一般式后借助分解因式或配方求出一元二次方程的解,从而求不等式的解集.请举例说明:※ 典型例题例1、求不等式01442>+-x x 的解集。
解:因为210144,0212===+-=∆x x x x 的解是方程,所以,原不等式的解集是⎭⎬⎫⎩⎨⎧≠21x x 。
例2、解不等式0322>-+-x x 。
解:整理,得0322<+-x x ,因为032,02=+-<∆x x 方程无实数解,所以不等式0322<+-x x 的解集是∅,从而,原不等式的解集是∅。
总结解一元二次不等式的步骤:即时巩固:解下列不等式(1)x 2-7x+12>0 (3)x 2-2x+1<0(3)x 2-2x+2<0 (4)-x 2-2x+3≥0(5)(5-x)(x +1)≥0拓展与提升:解下列不等式(1)1<x2-3x+3≤7 (2)22x x x x(23)(6)0课堂小结:※小试牛刀课本第80页练习.※当堂检测(时量:5分钟满分:10分)计分:习题组第1题※作业布置习题 A组 2-4 B组1-3。
一元二次方程解法(复习课)导学案(5篇)第一篇:一元二次方程解法(复习课)导学案一元二次方程(复习课)导学案复习目标1.了解一元二次方程的有关概念。
2.能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。
3.会根据根的判别式判断一元二次方程的根的情况。
4.掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。
5.通过复习深入理解方程思想、转化思想、分类讨论思想、整体思想,并会应用;进一步培养分析问题、解决问题的能力。
重点:能灵活运用开平方法、配方法、公式法、因式分解法解一元二次方程。
难点:1、会根据根的判别式判断一元二次方程的根的情况。
2、掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。
复习流程回忆整理1.方程中只含有未知数,并且未知数的最高次数是,这样的方程叫做一元二次方程.通常可写成如下的一般形式:________________()其中二次项系数是、一次项系数是常数项。
例如:一元二次方程7x-3=2x2化成一般形式是___________________其中二次项系数是、一次项系数是常数项是。
2.解一元二次方程的一般解法有(1)_________________(2)(3)(4)求根公式法,求根公式是 ___________________3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是,当时,它有两个不相等的实数根;当时,它有两个相等的实数根;当时,它没有实数根。
例如:不解方程,判断下列方程根的情况:(1)x(5x+21)=20(2)x2+9=6x(3)x2—3x = —54.设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2 则x1 +x2=;x1 ·x2= ____________例如:方程2x2+3x —2=0的两个根分别为x1,x2 则x1+x2=;x1 ·x2= _________典例精析例1:已知关于x的一元二次方程(m-2)x2+3x+m2-4=0有一个解是0,求m的值.例2:解下列方程:(1)2 x2+x-6=0;(2)x2+4x=2;(3)5x2-4x-12=0;(4)4x2+4x+10=1-8x.5)(x+1)(x-1)=22x(6)(2x+1)2=2(2x+1).温馨提示:解题时应抓住各方程的特点,选择较合适的方法。
x §3.2 《一元二次不等式及其解法》导学案【学习目标】1.了解一元二次不等式及其解。
2.通过函数图象了解一元二次不等式与相应函数、方程的联系。
3.能在具体的问题情境中,抽象出一元二次不等式模型。
【重点】一元二次不等式的解法。
【难点】一元二次不等式与相应函数、方程的联系。
一.复习回顾一元二次方程20(0)ax bx c a ++=≠的根的情况:(用判别式=∆ 判别) 当0>∆,则 ;当0=∆,则 ;当0<∆,则 ; 思考:求一元二次方程20(0)ax bx c a ++=≠的根的方法有哪些?二、一元二次不等式的概念1、情景引入:一水产养殖户想挖一周长为100米的矩形水池搞养殖,要求水池面积不小于600平方米,假设水池一边长为 x 米,则x 应满足什么关系?解:依题意可得,需满足化简得2、定义:只含有 未知数,并且未知数的 是 的 ,称为一元二次不等式。
一元二次不等式(a ≠0)的一般形式有:ax 2 + bx + c > 0、 ___________________、___________________、___________________3、一元二次不等式的解集:使一元二次不等式成立的未知数的取值范围(结果用集合或区间表示)三、一元二次不等式的解法1、225050x x x x -≥-≤探究一元二次不等式、的解集2、根据上述方法,请将下表填充完整:二次函数、一元二次方程、一元二次不等式之间的关系四、自学例题:课本P78 例1、例2尝试解答:解下列不等式(1)0322>+-x x ; (2)0562≥-+-x x ;总结:解一元二次不等式的一般步骤是:这个可以课堂上解决,或者写解一元二次不等式的方法总结:求根,因式分解五、课堂练习:解下列不等式:这些不用打在学案上222+-≤-+>-+-> x x x x x x(1)410(2)4410(3)230六、知识迁移:求下列函数的定义域2 ==--y y x x (1)(2)lg(6)。
一元二次不等式及其解法(2)【学习目标】1.熟练掌握一元二次不等式及其解法。
2.会运用一元二次不等式解有关实际问题。
【学习重点】含参数的一元二次不等式的解法,恒成立问题。
【学习难点】含参数的一元二次不等式的解法。
【知识链接】(1) 不等式20ax bx c ++>(a>0)的解集是全体实数(或恒成立)的条件是 . (2) 不等式20ax bx c ++<(a>0)的解集是∅的条件是 . 不等式20ax bx c ++≤(a>0)的解集是∅的条件是 . (3)max ()[()]f x a f x a ≤⇔≤恒成立 ,min ()[()]f x a f x a ≥⇔≥恒成立 【课前小测】1.当a 为______值时,不等式221(3)520|22a x x x x ⎧⎫-+-><<⎨⎬⎩⎭的解集是 2.下列不等式的解集是∅的为 ( )22111.210 B.0 C.()10 D.32x A x x x x x++≤≤-<->3.已知不等式{}20|32,x px q x x ++<-<<的解集是则 ( ).1, 6 B.p=1,q=6 C.p=1,q= 6 D.p=1,q=6A p q =-=---4.224122x x +-≤的解集为______- 【学习过程】知识点一:含参数的一元二次不等式的解法例1:解下列关于x 的不等式:(1)22230x ax a --< (2)2230x ax +-≥变式一解下列关于x 的不等式()2230x a a x a -++<知识点二:恒成立问题例2已知不等式21)10ax a x a +-+-<(对于所有的实数x 都成立,求a 的取值范围。
【思路点拨】:不等式ax 2+(a -1)x +a -1<0对于所有的实数都成立,也就是不等式 ax 2+(a -1)x +a -1<0的解集为R ,注意到原不等式二次项系数a 的符号 未知,故有可能不是二次不等式,所以应分a =0与0a ≠讨论。
3、2 一元二次不等式及其解法(导学案)(集美中学 杨正国)一、学习目标1、理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2、经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;二、本节重点熟练掌握一元二次不等式的解法三、本节难点理解一元二次不等式、一元二次函数及一元二次方程的关系四、知识储备1、提问:你能回顾一下以前所学的一元二次不等式、一元二次函数及一元二次方程吗?2、比较,,a b c 的大小:22,5a b c ==-五、通过预习掌握的知识点① 若判别式240b ac ∆=->,设方程20ax bx ++=的二根为1212,()x x x x <,则:0a >时,其解集为{}12|,x x x x <>或;0a <时,其解集为{}12|x x x x <<. ② 若0∆=,则有:0a >时,其解集为|,2b x x x R a ⎧⎫≠-∈⎨⎬⎩⎭;0a <时,其解集为∅. ③ 若0∆<,则有:0a >时,其解集为R ;0a <时,其解集为∅.. ④ 一元二次不等式的解集与其相应的一元二次方程的根及二次函数的图象有关,从而可数形结合法分析其解集.我们由此总结出解一元二次不等式的三部曲“方程的解→函数草图→观察得解”六、知识运用1、求不等式2610x x --≤的解集. 2、不等式22ax bx ++>的解集是}11|23x x ⎧-<<⎨⎩,则a b +的值是_________ 3、变式训练:已知不等式20ax bx c ++>的解集为(,)αβ,且0αβ<<,求不等式20cx bx a ++<的解集.4、若01a <<,则不等式1()()0a x x a-->的解是___________5、解关于x 的不等式:2(1)10ax a x -++<七、重点概念总结解一元二次不等式的步骤:① 将二次项系数化为“+”:A=c bx ax ++2>0(或<0)(a>0) ② 计算判别式∆,分析不等式的解的情况:ⅰ.∆>0时,求根1x <2x ,⎩⎨⎧<<<><>.002121x x x A x x x A ,则若;或,则若ⅱ.∆=0时,求根1x =2x =0x ,⎪⎩⎪⎨⎧=≤∈<≠>.00000x x A x A x x A ,则若;,则若的一切实数;,则若φⅲ.∆<0时,方程无解,⎩⎨⎧∈≤∈>.00φx A R x A ,则若;,则若 ③ 写出解集.一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程 ()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x <<∅∅。
一元二次不等式及其解法导学案(一)一、基础知识1、解一元二次不等式的一般步骤:当a>0时,解形如)0(02≥>++c bx ax 或)0(02≤<++c bx ax 的一元二次不等式,一般可分为三步:(1);(2) ;(3) 。
判别式△=b 2-4ac △>0△=0 △<0 二次函数y=ax 2+bx+c(a>0)的图像一元二次方程 ax 2+bx+c=0(a>0)的根一元二次不等式的解集 ax 2+bx+c>0(a>0)ax 2+bx+c<0(a>0)3、关于一元二次方程根的分布设方程ax 2+bx+c=0(a>0)的两根分别为x 1, x 2(x 1<x 2)④ ⑤ ⑥二、典型例题例1、解不等式x x x 32232->+例2、解关于x 的不等式:0)12(22<+++-m m x m x 。
例3、若关于x 的不等式23242<+-+x x m x 对任意实数x 恒成立,求实数m 的取值范围。
例4、关于x 的方程05)2(2=-+-+m x m x 的两根都大于2,求实数m 的取值范围。
例5、解关于x 的不等式)0(0]2)1)[(2(>>+---a a x a x三、课堂练习1、解不等式0122<++-x x 。
2、已知一元二次方程012>++bx ax 的解集为}12|{<<-x x ,求a, b 的值。
3、若不等式04)2(2)2(2<--+-x a x a 恒成立,求a 的取值范围。
4、已知关于x 的方程02)1(22=-+-+a x a x 的一根大于1另一根小于1则实数a 的取值范围。
(选做)5、已知函数]1)1()1lg[()(22+-+-=x a x a x f(1)f(x)的定义域为R ,求实数a 的取值范围(2)f(x)的值域为R ,求实数a 的取值范围。
第三章不等式§3.2一元二次不等式及其解法导学案答案【导入新课】1:(1)一元二次不等式3:(1)大于零等于零小于零(2)大小(3)大于零等于零小于零4:(1)a>0 Δ<0(2)错误!未找到引用源。
错误!未找到引用源。
(3)错误!未找到引用源。
错误!未找到引用源。
【典型例题】例1.解:(1)x2+2x-15>0⇔(x+5)(x-3)>0⇔x<-5或x>3,∴不等式的解集是{x|x<-5或x>3}.(2)x2>2x-1⇔x2-2x+1>0⇔(x-1)2>0⇔x≠1,∴不等式的解集是{x|x≠1}.例2.解:由ax2+(a+2)x+2=0得方程的根为x=-错误!未找到引用源。
,x=-1.若-错误!未找到引用源。
>-1,则错误!未找到引用源。
>0,解得a<0或a>2,∴当a<0时,-错误!未找到引用源。
>-1,不等式的解集为(-1,-错误!未找到引用源。
);当0<a<2时,-错误!未找到引用源。
<-1,不等式的解集为(-∞,-错误!未找到引用源。
)∪(-1,+∞);当a=2时,-错误!未找到引用源。
=-1,不等式的解集为{x错误!未找到引用源。
};【变式拓展】依题意有mx2+mx+3>0对任意x∈R都成立。
即mx2+mx+3>0的解集为R.当m=0时,上述不等式恒成立,解集为R,当m≠0时,上述不等式是一元二次不等式,∴m>0,且Δ=m2-12m<0,解得0<m<12,综上,m的取值范围是[0,12).【随堂检测】1.x2<2x-2⇔x2-2x+2<0.∵Δ=(-2)2-4×2=-4<0,∴方程x2-2x+2=0无解,∴不等式x2<2x-2的解集是空集。
2.【解析】化简集合A,得A={x|-1≤x≤2},因为集合B为整数集,所以A∩B={-1,0,1,2}.【答案】D。
《一元二次不等式及其解法》导学案问题1.方程250x x -=的根情况如何?问题2. 二次函数25y x x =-的图象开口方向、与x 轴的交点坐标分别是什么?并作出它的草图.(1)开口方向: ;(2)与x 轴的交点坐标: ; 问题3. 根据草图填空: (1)当x = 或 时,0y =,即250x x -=; (2)当x ∈ 时,函数的图象位于x 轴的下方,则y 0,即25x x - 0;(填≥、>、≤或<).所以不等式250x x -<的解集是 ;(3)当x ∈ 时,函数的图象位于x 轴的上方,则y 0,即25x x - 0;(填≥、>、≤或<). 所以不等式250x x ->的解集是 ;问题4:如何获得不等式2560x x -+≥的解集呢?问题5:如何将上述方法推广到求解一般的一元二次不等式20ax bx c ++>或20ax bx c ++<(0)a >的解集呢?关键要考虑哪些方面?规律:有根大于取两边,有根小于取中间;无根大于全实数,无根小于是空集。
六、知识运用1、求不等式2610x x --≤的解集.2:求不等式2340x x -++≥ 的解集课堂练习:求下列不等式的解集:(1)24410x x -+> (2)2230x x -+-> (3)29x ≥(4)23710x x -≤ (5)2961x x -≥+ (6)(9)0x x ->(7)2632>+-x x (8)2|2|2<-x 3、 (9)1()()0a x x a-->问题7:(1)利用二次函数的图象解一元二次不等式的步骤是什么?(2)二次函数、一元二次方程与一元二次不等式之间有什么关系?知识点二、三个“二次”之间的关系例1、若不等式的值。
求的解为b a x bx ax ,,21022<<<+-不等式22ax bx ++>的解集是 ,则a b +的值是_________例2、关于x 的函数)1()1(2-+-+=m x m mx y 的值恒为负,求m 的取值范围. 例3、二次不等式02<++c bx ax 的解集是全体实数的条件是( ) A 、B 、⎩⎨⎧>∆>00a B 、⎩⎨⎧<∆>00a C 、⎩⎨⎧>∆<00a D 、⎩⎨⎧<∆<00a同步练习:1、不等式2654x x +<的解集为( )3、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )4、设一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,则ab 的值是( )A .6-B .5-C .6D .55、不等式()221200x ax a a --<<的解集是( )8、不等式()()120x x --≥的解集是( ) 9、不等式()20ax bx c a ++<≠的无解,那么( )11、若01a <<,则不等式()10a x x a ⎛⎫--> ⎪⎝⎭的解是( ) A .1a x a<< B .1x a a<<C .x a <或1x a> D .1x a<或x a >12、不等式()130x x ->的解集是( )13、二次函数()2y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++>的解集是____________________________.14、若0a b >>,则()()0a bx ax b --≤的解集是_____________________________. 15、不等式20ax bx c ++>的解集为{}23x x <<,则不等式20ax bx c -+>的解是___. 16、不等式2230x x -->的解是___________________________. 17、不等式2560x x -++≥的解是______________________________. 18、()21680k x x --+<的解集是425x x x ⎧⎫<->⎨⎬⎩⎭或,则k =_________. 19、已知不等式20x px q ++<的解集是{}32x x -<<,则p q +=________. 20、不等式30x x +≥的解集为____________________. 21、求下列不等式的解集:⑴ ()()410x x +--<; ⑵ 232x x -+>; ⑶ 24410x x -+>.。
高三上学期《一元二次不等式及其解法》导学案一、教学内容解析一元二次不等式的解法是高中数学最重要的内容之一,在高中数学中起着广泛的应用工具作用,隐藏着重要的数形结合思想,是代数、三角、解析几何交汇综合的部分,在高中数学中具有举足轻重的地位。
教科书中对一元二次不等式的解法,没有介绍较繁琐的纯代数方法,而是实行简洁明白的数形结合的方法,从详细到抽象,从特别到一般,用二次函数的图象来讨论一元二次不等式的解法。
教学中,利用几何画板的动态演示功能,引导同学结合二次函数的图象探究一元二次不等式、一元二次方程、二次函数“三个二次”间的联系,归纳总结出一元二次不等式的求解过程。
通过对一元二次不等式解集的探究过程,渗透函数与方程、数形结合、分类争论等重要的数学思想。
一元二次不等式的解法是程序性较强的内容,探究中应留意对“特例”的处理,让同学留意对“特别状况”的处理,才能让学习的内容更加完整。
因此,本节课教学的重点是围绕一元二次不等式的解法,通过图象了解一元二次不等式与相应函数、方程的联系,突出体现数形结合的思想。
二、教学目标解析1. 通过对一元二次不等式解法的探究,让同学了解一元二次不等式与相应函数、方程的联系。
2. 把握一元二次不等式的求解步骤,尤其是对“特例”的处理。
3. 通过图象解法渗透数形结合、分类化归等重要的数学思想,培育同学动手力量,观看分析力量、抽象概括力量、归纳总结等系统的规律思维力量,培育同学简约直观的思维方法和良好的思维品质。
三、同学学情分析同学已有的认知基础是,同学已经学习了二次函数、一元二次方程、函数的零点等有关学问,为本节课的学习打下了基础。
同学依据详细的二次函数的图象得对应一元二次不等式的解集时问题不大,同学可能存在的困难:(1)二次函数是学校学习的难点,很多同学对二次函数的学问把握欠缺,对本节课的顺当开展有肯定的影响;(2)从特别的一元二次不等式的求解到一般的一元二次不等式的求解,同学全面考虑不怜悯况下的解集有肯定的困难。
1现有两家ISP 公司可供选择:公司B 的收费原则如下:在用户上网的第小时内收费1.6元,以后每小时减少0.1小时计算).一般上网时间不会超过17小时.那么,一次上网在多长时间所需费用少? ____________________________________ 练 习判 断下列不等式是否是一元二次不等式:(1) x 2-5x +6≤0; (2) x 2-9≥0;(3) 3x 2-2 x >0; (4) x 2-x ≤-3 ; (5) (x -2)2≤0 ; (6) 3x +5>0;(7) x 2 >-4 ;(8) 4x 2-3y +4<0.一元二次不等式的一般表达式为_____________________怎么求刚才应用题中不等式的解集呢?如图:当__________时,函数图像在x 轴下方,此时,y____0, 即x 2-5x______0当____________时,函数图像在x 轴上方,此时,y_____0, 即x 2-5x_______0例1:解下列不等式:(1) (2)24410x x -+> (3)2230x x -+-> 解: 解: 解:问题3:讨论总结利用二次函数的图像解一元二次不等式的步骤是: . 1 ,基础自测(1)3x 2-7x ≤10;(2) -2x 2+x -5<0; (3) -x 2+4 x -4<0; (4) x 2-x+0.25>0;(5)-2x 2+x<-3; (6) 12x 2-31x+20>0 (7)3x 2+5x<0; (8)3x 2-6x +2<0.梳理归纳:利用二次函数的图像解一元二次不等式的步骤是:1、若ax 2+bx+c=0(a>0)有两不等实根x 1<x 2 对于ax 2+bx+c>0(a>0),则取两边; 对于ax 2+bx+c<0(a>0),则取中间.2、若方根有“一根”或 “无根”,则用 “图象法”解不等式021102<+-x x。
金华六中“导学案”高效课堂建设-—数学学科导学案专题名不等式课题名一元二次不等式及其解法编者: 高一数学组时间:2013年12月 23 日班级:________小组:________姓名:__________学号:______一、明确目标二、新课预习,提出疑惑1。
形如或不等式叫一元二次不等式。
(其中)2。
二次函数y = ax2 + bx + c的是相应方程ax2 + bx + c=0的 .3. 提出疑惑:三、创设情境,引入课题学校要在长为8,宽为6 的一块长方形地面上进行绿化,计划四周种花卉,花卉带的宽度相同,中间种植草坪(图中阴影部分)为了美观,现要求草坪的种植面积超过总面积的一半,此时花卉带的宽度的取值范围是什么?探究(一):一元二次不等式2760-+>的解集x x(1)一元二次方程2760-+=的根与二次函数276x x=-+的零点的关系?y x x(2)当x 时,0y =?当x 时,0y >? 当x 时,0y <?(3)由图象得:不等式2760x x -+>的解集为 ;不等式2760x x -+<的解集为 探究(二):设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=∆,不等式的解的各种情况如下表:思考:(1)对于一元二次不等式20,(0)ax bx c a ++>≠或20,(0)ax bx c a ++<≠ 当二次项系数0a <时如何求解?(2)不等式20,(0)ax bx c a ++>≠的解集与不等式20,(0)ax bx c a ++≥≠的解集有差异吗?四、典例剖析 规范步骤例1:解不等式22320x x --> 例2:解不等式24410x x -+>五、达标检测,及时巩固(由易到难分为A 、B 组)A 组1.不等式22150x x +-<的解集是 ;2.在下列不等式中,解集为∅的是( )(A )02322>+-x x (B)0442≤++x x(C)0442<--x x (D )02322>-+-x xB 组3.已知关于x 的不等式0622>++m x mx⑴若不等式的解集为{|23}x x <<,求实数m 的值; ⑵若不等式的解集为}1|{mx x -≠,求实数m 的值; ⑶若不等式的解集为R ,求实数m 的取值范围;(4)若不等式的解集为Φ,求实数m 的取值范围。
3.3 一元二次不等式及其解法【学习目标】1.理解一元二次方程、一元二次不等式与二次函数的关系.2.掌握图象法解一元二次不等式的方法.3.培养利用数形结合、分类讨论思想方法解一元二次不等式的能力.【重、难点】重点:一元二次不等式的解法,及从实际情境中抽象出一元二次不等式模型.难点:理解二次函数、一元二次方程与一元二次不等式解集的关系.【知识链接】一元二次函数的图像与性质和一元二次方程的根【新知探究】探究一. 一元二次不等式的解集引例. 画出二次函数 y=x2-2x-3 的图像,回答下列问题.1. 该函数的图像与 x 轴的交点的坐标是什么?2. 当 x 取什么值时,y=0?3. 当 x 取什么值时,y<0?4. 当 x 取什么值时,y>0?问题1.根据思考2确定满足不等式x2-2x-3<0 的x的取值范围的思路,怎样确定满足一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的x的取值范围?答:先求出一元二次方程的根,再根据函数图像与x轴的相关位置,确定满足一元二次不等式的x的取值范围.【概念】(1) 一般地,使某个一元二次不等式成立的x的值叫这个一元二次不等式的解.(2) 一元二次不等式的所有解组成的集合,叫做一元二次不等式的解集.问题2. 设 a>0 ,根据以上讨论,请将下表补充完整.有两相等实根答: 二次函数的图像与x轴交点的横坐标为相应一元二次方程的根,即一元二次方程的根为相应二次函数的零点;二次函数的图像在x轴上方或下方的部分所对应x的范围是不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解集.例1. 解不等式:3x2+5x-2>0.解:∵3x2+5x-2=(x+2)(3x−1).∴3x2+5x-2=0的两根是x1=-2,x2=13,0),又函数 y=3x2+5x-2的图像是开口向上的抛物线,与x轴有两个交点(-2,0)和(13如下图:,+∞).∴观察图像,不等式的解集为(−∞,−2)∪(13【解题反思】如何求解一元二次不等式的解集?答:对于一般形式的一元二次不等式ax2+bx+c>0(a>0)与 ax2+bx+c<0(a> 0),求解步骤一般为:第一步:求出相应方程的根;第二步:画出相应二次函数的图像;第三步:观察图像得不等式的解集.变式1.解不等式:−2x2+x+1<0.,x2=1,解:方法一∵方程2x2-x-1=0的根为x1=−12又函数 y=2x2-x-1的图像是开口向下的抛物线,如下图:)∪(1,+∞).观察图像,不等式的解集为(−∞,−12方法二由不等式的两边同乘以-1,得2x2-x-1>0.,x2=1.∵方程2x2-x-1=0的两个根为x1=−12又函数 y=2x2-x-1的图像是开口向上的抛物线,如下图:)∪(1,+∞).观察图像,原不等式的解集为(−∞,−12【解题反思】如何求解非一般形式的一元二次不等式?答:(1)当所给一元二次不等式为非一般形式时,应先化为一般形式;(2)对于二次项系数a<0的一元二次不等式,一般有两种解法:①结合开口向下的抛物线求解;②不等式的两边同乘以-1,使二次项系数变为正数,然后求解. 但通常采用方法二.探究二. 含参数的一元二次不等式的解法例2.解关于x的不等式:x2−(2m+1)x+m2+m<0解:∵x2−(2m+1)x+m2+m=(x−m)(x−m−1)∴方程x2−(2m+1)x+m2+m=0的根为x1=m,x2=m+1,且m<m+1.又二次函数y=x2−(2m+1)x+m2+m的图像可口向上,且与x轴有两个交点∴不等式x2−(2m+1)x+m2+m<0的解集为{x|m<x<m+1}.【解题反思】含参数的一元二次不等式的求解步骤:(1) 讨论二次项系数的符号,即相应二次函数图像的开口方向;(2) 讨论判别式的符号,即相应二次函数图像与x轴交点的个数;(3) 当Δ>0 时,讨论相应一元二次方程两根的大小;(4) 最后按照系数中的参数取值范围,写出一元二次不等式的解集.变式2.1. 关于x的不等式x2+(1-a)x-a<0.解:方程x2+(1-a)x-a=0 的解为x1=-1,x2=a.又函数y=x2+(1-a)x-a的图像开口向上,∴(1) 当a<-1 时,原不等式的解集为(a,-1);(2) 当a=-1 时,原不等式的解集为∅;(3) 当a>-1 时,原不等式的解集为(-1,a).变式2.2设m∈R,解关于x的不等式m2x2+2mx-3<0.解:(1) 当m=0时,-3<0 恒成立,所以x∈R.(2) 当 m>0 时,不等式变为(mx+3)(mx-1)<0,即(x+3m )(x−1m)<0,解得−3m<x<1 m .(3) 当m<0 时,原不等式变为(x+3m )(x−1m)<0,解得1m<x<−3m..综上所述,当m=0 时,不等式的解集为R;当m>0 时,不等式的解集为{x|−3m <x<1m};当m<0 时,不等式的解集为{x|1m <x<−3m}.。
&3.2.《一元二次不等式的解法》(第一课时)学案 班别: 座号: 姓名:一、创设情境、引入新课学校要在长为8米,宽为6 米的一块长方形地面上进行绿化。
计划四周种花卉,花卉带的宽度相同,中间种植草坪(图中阴影部分)。
为了美观,现要求草坪的种植面积超过总面积的一半,此时花卉带的宽度x 的取值范围是什么?一元二次不等式定义: 标准形式: 二、探究交流,发现规律 思考:1.一元二次方程2760x x -+=的实根为2.画出函数276y x x =-+的图象,并根据图象回答:当x 取 时,y>0 ?即不等式2760x x -+>的解集为当x 取 时,y<0 ?即不等式2760x x -+<的解集为三、启发引导,形成结论 完成下列表格 ⊿=b 2-4ac0>∆ 0=∆ 0<∆ c bx ax y ++=2(0>a )的图象()的根002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx axxx xxxx xx四、典例剖析,规范步骤 例1:解不等式 (1)x 2-x-2<0 (2)4x 2-4x+1>0变式:?)0?,0(01442≤<≥+-x x 的解集分别是? (3)0322<+-x x (4)322-<+-x x五、当堂检测、巩固基础 解不等式:4)1(2>x0)9()2(>-x x六、回顾小结,加深印象 本节课学习的重点: 学习难点:七、课后作业、提升深化1.求函数2.解不等式2(1)940x ->(2)(2)0x x -<(3)()(1)0(1)x a x a --<<3.设计求解一元二次不等式 20(0)ax bx c a ++>>的程序框图.。
第1课时一元二次不等式及其解法1.一元二次不等式的定义□01只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集□02使一元二次不等式成立的x的值叫做一元二次不等式的□03解,□04所有的解组成的集合叫做一元二次不等式的解集.3.一元二次不等式与相应二次函数、一元二次方程的关系Δ=b2-4acΔ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根x1,x2x0=-b2a没有实数根ax2+bx+c>0 (a>0)的解集□05{x|x<x1或x>x2}□06{xx≠⎭⎬⎫-b2a□07Rax2+bx+c<0(a>0)的解集□08{x|x1<x<x2}□09∅□10∅1.判一判(正确的打“√”,错误的打“×”)(1)一元二次方程的根就是相应函数的图象与x轴的交点.()(2)(x+a)(x+a+1)<0是一元二次不等式.()(3)不论实数a取什么值,不等式ax2+bx+c≥0的解集一定与相应方程ax2+bx +c =0的解有关.( )(4)设二次方程f (x )=0的两解为x 1,x 2(x 1<x 2),则一元二次不等式f (x )>0的解集不可能为{x |x 1<x <x 2}.( )答案 (1)× (2)√ (3)√ (4)× 2.做一做(1)(教材改编P 80T 1(1))不等式x (x +1)≤0的解集为( ) A .[-1,+∞) B .[-1,0) C .(-∞,-1]D .[-1,0](2)不等式-x 2-3x +4>0的解集为________.(3)当a >0时,若ax 2+bx +c >0的解集为R ,则Δ应满足的条件为________. (4)已知不等式ax 2-bx +2<0的解集为{x |1<x <2},则a +b =________. 答案 (1)D (2){x |-4<x <1} (3)Δ<0 (4)4探究1 不含参数的一元二次不等式的解法 例1 求下列不等式的解集: (1)2x 2+7x +3>0;(2)-x 2+8x -3>0; (3)x 2-4x -5≤0;(4)-4x 2+18x -814≥0; (5)-12x 2+3x -5>0;(6)-2x 2+3x -2<0.解 (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12,又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12或x <-3. (2)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不等实根x 1=4-13,x 2=4+13,又二次函数y =-x 2+8x -3的图象开口向下,所以原不等式的解集为{x |4-13<x <4+13}.(3)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x |-1≤x ≤5}.(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94.(5)原不等式可化为x 2-6x +10<0,因为Δ=62-40=-4<0,所以原不等式的解集为∅.(6)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以原不等式的解集为R .拓展提升解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)根据一元二次方程根的情况画出对应的二次函数的草图. (5)根据图象写出不等式的解集. 【跟踪训练1】 求下列不等式的解集: (1)x 2-3x +1≤0; (2)3x 2+5x -2>0; (3)-9x 2+6x -1<0; (4)x 2-4x +5>0; (5)2x 2+x +1<0.解 (1)因为Δ=9-4=5>0,所以方程x 2-3x +1=0有两个不等实数根x 1=3-52,x 2=3+52,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪3-52≤x ≤3+52. (2)原不等式可化为(3x -1)(x +2)>0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >13或x <-2. (3)原不等式可化为(3x -1)2>0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠13,x ∈R .(4)因为Δ=(-4)2-4×5=-4<0,所以原不等式的解集为R . (5)因为Δ=12-4×2=-7<0,所以原不等式的解集为∅. 探究2 含参数的一元二次不等式的解法例2 解关于x 的不等式(a ∈R ): (1)2x 2+ax +2>0; (2)ax 2-(a +1)x +1<0.解 (1)Δ=a 2-16,下面分情况讨论:①当Δ<0,即-4<a <4时,方程2x 2+ax +2=0无实根,所以原不等式的解集为R .②当Δ≥0,即a ≥4或a ≤-4时,方程2x 2+ax +2=0的两个根为 x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).当a =-4时,原不等式的解集为{x |x ∈R ,且x ≠1}; 当a >4或a <-4时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <14(-a -a 2-16)或x >14(-a +a2-16);当a =4时,原不等式的解集为{x |x ∈R ,且x ≠-1}. (2)若a =0,原不等式⇒-x +1<0⇒x >1; 若a <0,原不等式⇒⎝ ⎛⎭⎪⎫x -1a (x -1)>0⇒x <1a 或x >1;若a >0,原不等式⇒⎝ ⎛⎭⎪⎫x -1a (x -1)<0,(*)其解的情况应由1a 与1的大小关系决定,故 ①当a =1时,式(*)⇒x ∈∅; ②当a >1时,式(*)⇒1a <x <1; ③当0<a <1时,式(*)⇒1<x <1a .综上所述,当a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ;当a =1时,解集为∅;当a >1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1. 拓展提升解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式,分类讨论的结果最后不能合并.【跟踪训练2】 (1)解关于x 的不等式x 2-(a +a 2)x +a 3>0; (2)解关于x 的不等式x 2+(1-a )x -a <0. 解 (1)原不等式可化为(x -a )(x -a 2)>0.方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2. 由a 2-a =a (a -1)可知: ①当a <0或a >1时,a 2>a . 解原不等式得x >a 2或x <a .②当0<a <1时,a 2<a ,解原不等式得x >a 或x <a 2. ③当a =0时,原不等式为x 2>0,∴x ≠0. ④当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}.(2)方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a ,函数y =x 2+(1-a )x -a 的图象开口向上,则当a <-1时,原不等式的解集为{x |a <x <-1}; 当a =-1时,原不等式的解集为∅;当a >-1时,原不等式的解集为{x |-1<x <a }. 探究3 “三个二次”之间的转化关系例3 若不等式ax 2+bx +c >0的解集为{x |-3<x <4},求不等式bx 2+2ax -c -3b <0的解集.解 因为ax 2+bx +c >0的解集为{x |-3<x <4},所以a <0且-3和4是方程ax 2+bx +c =0的两根,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧-3+4=-ba ,-3×4=ca ,即⎩⎪⎨⎪⎧b =-a ,c =-12a .所以不等式bx 2+2ax -c -3b <0,即为-ax 2+2ax +15a <0,即x 2-2x -15<0, 故所求的不等式的解集为{x |-3<x <5}.[变式探究] 本例中把{x |-3<x <4}改为{x |x <-3或x >4},其他条件不变,则不等式的解集又如何?解 因为ax 2+bx +c >0的解集为{x |x <-3或x >4},所以a >0且-3和4是方程ax 2+bx +c =0的两根,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧-3+4=-ba ,-3×4=c a ,即⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以不等式bx 2+2ax -c -3b <0,即为-ax 2+2ax +15a <0,即x 2-2x -15>0,解得x <-3或x >5,故所求不等式的解集为{x |x <-3或x >5}. 拓展提升三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:【跟踪训练3】 (1)已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-2或x >-12,则ax 2-bx +c >0的解集为________;(2)已知方程ax 2+bx +2=0的两根为-12和2,则不等式ax 2+bx -1>0的解集为________.答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2 (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <1 解析 (1)由题意可得-2,-12是方程ax 2+bx +c =0的两根,且a <0, 故⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-12=-b a ,(-2)×⎝ ⎛⎭⎪⎫-12=c a ,解得a =c ,b =52c ,所以不等式ax 2-bx +c >0即为2x 2-5x +2<0,解得 12<x <2.(2)∵方程ax 2+bx +2=0的两根为-12和2,由根与系数的关系可得⎩⎪⎨⎪⎧-12+2=-b a ,-12×2=2a ,∴a =-2,b =3,故ax 2+bx -1>0可变为-2x 2+3x -1>0, 即2x 2-3x +1<0,解得12<x <1.[规律小结]1.对一元二次不等式概念的三点说明(1)“只含一个未知数”,并不是说在代数式中不能含有其他字母类的量,只要明确指出这些字母所代表的量,即哪一个是变量“未知数”,哪一个是“参数”即可.(2)“次数最高是2”,仅限于“未知数”,若还含有其他参数,则次数不受此条件限制.(3)必须是整式不等式.2.解含参数的不等式时应注意的问题(1)解含参数的不等式时,必须注意参数的取值范围,并在此范围内对参数进行分类讨论.(2)了解哪些情况需要分类讨论.①二次项系数为字母时,要分等于零、大于零、小于零三类讨论. ②对应方程的根无法判断大小时,要分类讨论.③若判别式含参数,则在确定解的情况时需分Δ>0,Δ=0,Δ<0三种情况进行讨论.[走出误区]易错点⊳解含参数的不等式时分类讨论不全出错 [典例] 解关于x 的不等式(x -2)(ax -2)>0.[错解档案] 当a =0时,原不等式化为x -2<0,其解集为{x |x <2};当a ≠0时,方程(x -2)(ax -2)=0的两根为x 1=2,x 2=2a . (1)当2a =2,即a =1时,原不等式的解集为{x |x ≠2,x ∈R }; (2)当2a >2,即0<a <1时,原不等式的解集为{|x x >2a 或x <2; (3)当2a <2,即a <0或a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <2a或x >2.综上所述,当a =0时,原不等式的解集为{x |x <2}; 当a =1时,原不等式的解集为{x |x ≠2,x ∈R }; 当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >2a 或x <2; 当a <0或a >1时,原不等式的解集为{|x x <2a 或x >2.[误区警示] 当a <0或a >1时,只注意到了2a <2,而忽略了当a <0时,原不等式二次项系数为负数,此时不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <2. [规范解答] 以上同错解. (3)当2a <2,即a <0或a >1时,①当a <0时,原不等式的二次项系数为负数,因此原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <2; ②当a >1时,原不等式的二次项系数为正数,因此原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <2a 或x >2. 综上所述,当a =0时,原不等式的解集为{x |x <2}; 当a =1时,原不等式的解集为{x |x ≠2,x ∈R }; 当0<a <1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >2a 或x <2; 当a >1时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <2a 或x >2;当a <0时,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <2. [名师点津] 解ax 2+bx +c >0或ax 2+bx +c <0不等式时要注意对参数分类讨论.讨论一般分为三个层次,第一层次是二次项系数为零和不为零;第二层次是有没有实数根的讨论,即判别式Δ>0,Δ=0,Δ<0;第三层次是根的大小的讨论.1.在下列不等式中,解集是∅的是( ) A .2x 2-3x +2>0 B .x 2+4x +4≤0 C .4-4x -x 2<0 D .-2+3x -2x 2>0答案 D解析 A 的解集为R ;B 的解集是{x |x =-2};C 的解集为{x |x >-2+22或x <-2-22},D 选项中Δ=9-4×2×2=-7<0,解集为∅,故选D.2.不等式-6x 2-x +2≤0的解集是( ) A.{|x -23≤x ≤12 } B.{|x x ≤-23或x ≥12} C.{|x x ≥12 }D.{|x x ≤-32}答案 B解析 ∵-6x 2-x +2≤0,∴6x 2+x -2≥0, ∴(2x -1)(3x +2)≥0,∴x ≥12或x ≤-23.故选B. 3.不等式9x 2+6x +1≤0的解集是( ) A.{|x x ≠-13} B .{|x -13≤x ≤13}C .∅D .⎩⎨⎧⎭⎬⎫-13答案 D解析 原不等式可变形为(3x +1)2≤0.∴x =-13.故选D.4.若不等式x 2+(m -3)x +m ≤0的解集不是空集,则m 的取值范围是________.答案 m ≥9或m ≤1解析 由题意知Δ=(m -3)2-4m ≥0,即m 2-10m +9≥0,∴m ≥9或m ≤1. 5.解不等式1<x 2-3x +1<9-x . 解 由x 2-3x +1>1,得x 2-3x >0, ∴x <0或x >3.由x 2-3x +1<9-x ,得x 2-2x -8<0, ∴-2<x <4,∴原不等式的解集为{x |x <0或x >3}∩{x |-2<x <4} ={x |-2<x <0或3<x <4}.A 级:基础巩固练一、选择题1.函数y =x 2+x -12的定义域是( ) A .{x |x <-4或x >3} B .{x |-4<x <3} C .{x |x ≤-4或x ≥3} D .{x |-4≤x ≤3}答案 C 解析 使y =x 2+x -12有意义,则x 2+x -12≥0.∴(x +4)(x -3)≥0,∴x ≤-4或x ≥3.2.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)答案 B解析 ∵x ⊙(x -2)=x (x -2)+2x +x -2<0,∴x 2+x -2<0.∴-2<x <1. 3.设函数f (x )=⎩⎨⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) 答案 A解析 f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1;当x <0时,x +6>3,解得-3<x <0. 所以f (x )>f (1)的解集是(-3,1)∪(3,+∞).4.已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x <12B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-13或x >12C .{x |-3<x <2}D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >13答案 B解析 由题意可知,ax 2-5x +b =0的两个根分别为-3,2,利用根与系数的关系可得,-3+2=5a ,-3×2=ba ,解得a =-5,b =30,则所求不等式可化为30x 2-5x -5>0,即(2x -1)(3x +1)>0,解得x <-13或x >12.故选B.二、填空题5.已知M ={x |-9x 2+6x -1<0},N ={x |x 2-3x -4<0},则M ∩N =________. 答案⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫-1<x <4且x ≠13解析 由-9x 2+6x -1<0,得9x 2-6x +1>0. 所以(3x -1)2>0,解得x ≠13, 即M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x ∈R 且x ≠13.由x 2-3x -4<0,得(x -4)(x +1)<0,解得-1<x <4,即N ={x |-1<x <4}. 所以M ∩N =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫-1<x <4且x ≠13.6.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表:答案 {x |x <-2或x >3}解析 由表知x =-2时y =0,x =3时,y =0. ∴二次函数y =ax 2+bx +c 可化为y =a (x +2)(x -3),又当x =1时,y =-6,∴a =1. ∴不等式ax 2+bx +c >0的解集为{x |x <-2或x >3}.7.已知A =(1,2),B ={x |x 2-2ax +a 2-1<0},若A ⊆B ,则a 的取值范围是________.答案 [1,2]解析 方程x 2-2ax +a 2-1=0的两根为a +1,a -1,且a +1>a -1,∴B ={x |a -1<x <a +1}.∵A ⊆B ,∴⎩⎪⎨⎪⎧a -1≤1,a +1≥2,解得1≤a ≤2.三、解答题8.已知函数f (x )=x 2-(m +1)x +m ,g (x )=-(m +4)x -4+m ,m ∈R . (1)比较f (x )与g (x )的大小; (2)解不等式f (x )≤0.解 (1)由于f (x )-g (x )=x 2-(m +1)x +m +(m +4)x +4-m =x 2+3x +4=⎝ ⎛⎭⎪⎫x +322+74>0, ∴f (x )>g (x ).(2)不等式f (x )≤0,即x 2-(m +1)x +m ≤0, 即(x -m )(x -1)≤0,当m <1时,其解集为{x |m ≤x ≤1}, 当m =1时,其解集为{x |x =1}, 当m >1时,其解集为{x |1≤x ≤m }.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A =(-1,3).由x 2+x -6<0,得-3<x <2, ∴B =(-3,2),∴A ∩B =(-1,2). (2)由题意,得⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.∴-x 2+x -2<0,∴x 2-x +2>0, ∴不等式x 2-x +2>0的解集为R .10.已知M 是关于x 的不等式2x 2+(3a -7)x +3+a -2a 2<0的解集,且M 中的一个元素是0,求实数a 的取值范围,并用a 表示出该不等式的解集.解 原不等式可化为(2x -a -1)(x +2a -3)<0, 由x =0适合不等式得(a +1)(2a -3)>0, 所以a <-1或a >32.若a <-1,则-2a +3-a +12=52(-a +1)>5, 所以3-2a >a +12,此时不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a +12<x <3-2a; 若a >32,由-2a +3-a +12=52(-a +1)<-54, 所以3-2a <a +12,此时不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪3-2a <x <a +12. 综上,当a <-1时,原不等式的解集为⎝ ⎛⎭⎪⎫a +12,3-2a ;当a >32时,原不等式的解集为⎝ ⎛⎭⎪⎫3-2a ,a +12.B 级:能力提升练1.已知a 1>a 2>a 3>0,则使得(1-a i x )2<1(i =1,2,3)都成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1a 1 B .⎝ ⎛⎭⎪⎫0,2a 1C.⎝ ⎛⎭⎪⎫0,1a 3 D .⎝ ⎛⎭⎪⎫0,2a 3答案 B解析 由(1-a i x )2<1,得1-2a i x +(a i x )2<1, 即a i ·x (a i x -2)<0. 又a 1>a 2>a 3>0.∴0<x <2a i,即x <2a 1,x <2a 2且x <2a 3.∵2a 3>2a 2>2a 1>0,∴0<x <2a 1. 2.若关于x 的不等式x 2-ax -6a <0的解集的区间长度不超过5个单位,求实数a 的取值范围.解 ∵x 2-ax -6a <0有解,∴方程x 2-ax -6a =0的判别式Δ=a 2+24a >0, ∴a >0或a <-24.解集的区间长度就是方程x 2-ax -6a =0的两个根x 1,x 2的距离, 由x 1+x 2=a ,x 1x 2=-6a ,得 (x 1-x 2)2=(x 1+x 2)2-4x 1x 2=a 2+24a . ∵|x 1-x 2|≤5,∴(x 1-x 2)2≤25, ∴a 2+24a ≤25,∴-25≤a ≤1. 综上可得-25≤a <-24或0<a ≤1, 即a 的取值范围是[-25,-24)∪(0,1].。
一元二次不等式及其解法
考纲要求
1.会从实际情境中抽象出一元二次不等式模型.
2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
3.会解一元二次不等式.
考情分析
1.一元二次不等式的解法及三个二次间关系问题是命题热点.
2.考查题型多为客观题,有时会在解答中出现交汇命题,着重考查二次不等式的解法,属中、低档题.
教学过程
基础梳理
一元二次不等式的解集:
“三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx
若a <0时,可以先将二次项系数化为正数,对照上表求解.
双基自测
1.(教材习题改编)不等式x 2-3x +2<0的解集为 ( )
A .(-∞,-2)∪(-1,+∞)
B .(-2,-1)
C .(-∞,1)∪(2,+∞)
D .(1,2)
2.设二次不等式ax 2+bx +1>0的解集为⎩⎨⎧⎭⎬⎫x |-1<x <13,则ab 的值为 ( )
A .-3
B .-5
C .6
D .5
3.(2011·福建高考)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 ( )
A .(-1,1)
B .(-2,2)
C .(-∞,-2)∪(2,+∞)
D .(-∞,-1)∪(1,+∞) 4.若a <0,则关于x 的不等式x 2
-4ax -5a 2
>0的解是____________.
5.(教材习题改编)不等式x 2-2x +a >0对x ∈R 恒成立,则a 的取值范围是________.
典例分析
考点一、一元二次不等式的解法 [例1] (2011·江西高考)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为 ( )
A .(0,+∞)
B .(-1,0)∪(2,+∞)
C .(2,+∞)
D .(-1,0)
变式 1.在本例中,若f (x )变为:f (x )=x 2-2x +ln(x +1),则f ′(x )>0的解集________.
1.解一元二次不等式的一般步骤:
(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0); (2)计算相应的判别式;
(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.
2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.
考点二、一元二次不等式恒成立问题
[例2] (2012·湖州模拟)若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围为 ( )
A .(-∞,23
] B .[23
,+∞)
C .(-∞,23
]∪[23
,+∞) D .[23
,23
]
变式2.(2012·南宁模拟)在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式
(x -a )⊗(x +a )<1对任意实数x 成立,则 ( ) A .-1<a <1 B .0<a <2 C .-21
<a <23
D .-23
<a <21
变式3.(2012·九江模拟)若关于x 的不等式x 2-ax -a >0的解
集为(-∞,+∞),则实数a 的取值范围是________;若关于x 的不等式x 2-ax -a ≤-3的解集不是空集,则实数a 的取值范围是________________.
1.对于二次不等式恒成立问题.恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方.恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.
2.解决恒成立问题还可以利用分离参数法. 考点三、一元二次不等式的应用
[例3 ]。
(2011·淮南期末)某商品每件成本价为80元,售价为100元,每天售 出100件.若售价降低x 成(1成=10%),售出商品数量就增加58
x 成.要求售价不能低于成本价.
(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y = f (x ),并写出定义域;
(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.
解不等式应用题,一般可按如下四步进行:
(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系; (2)引进数学符号,用不等式表示不等关系; (3)解不等式;
(4)回答实际问题.
一个技巧
一元二次不等式ax 2+bx +c <0(a ≠0)的解集的确定受a 的符号、b 2-4ac 的符号的影响,且与相应的二次函数、一元二次方程有密切联系,可结合相应的函数y =ax 2+bx +c (a ≠0)的图象,数形结合求得不等式的解集.若一元二次不等式经过不等式的同解变形后,化为ax 2
+bx +c >0(或<0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不等实根x 1,x 2,(x 1<x 2)(此时Δ=b 2-4ac >0),则可根据“大于取两边,小于夹中间”求解集. 两个防范
(1)二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况;
(2)解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.
本节检测
1.不等式组⎩⎨⎧
x 2-1<0,
x 2-3x <0
的解集为( )
A .{x |-1<x <1}
B .{x |0<x <3}
C .{x |0<x <1}
D .{x |-1<x <3}
2.(2012·湘潭月考)不等式
4
x -2
≤x -2的解集是( ) A .(-∞,0]∪(2,4]
B .[0,2)∪[4,+∞)
C .[2,4)
D .(-∞,2]∪(4,+∞)
3.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是
( )
A .m >1
B .m <-1
C .m <-13
11
D .m >1或m <-
1311
4.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( )
A .(-∞,-1)∪(0,+∞)
B .(-∞,0)∪(1,+∞)
C .(-1,0)
D .(0,1)
5.(2012·衡阳模拟)若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值集合是________.
6.若关于x 的不等式x 2+12x -(1
2)n ≥0对任意n ∈N *在x ∈(-∞,λ]上恒成立,
则实常数λ的取值范围是________.
自我反思。