2015新北师大版七年级上册第三章整式的及其加减单元测试题
- 格式:doc
- 大小:306.00 KB
- 文档页数:6
北师大版七年级数学上册第3章《整式及其加减》单元练习题(含答案)一、单选题1.关于多项式2231x y xy -+-,下列说法正确的是( ).A .次数是3B .常数项是1C .次数是5D .三次项是22x y2.代数式1x , 2x +y , 13a 2b , x y π-, 54y x , 0.5 中整式的个数( ) A .3个 B .4个 C .5个 D .6个3.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .164.已知单项式13m a b +与13n b a --可以合并同类项,则m ,n 分别为( )A .2,2B .3,2C .2,0D .3,05.若7,24m n n p +=-=,则3m n p +-=( )A .11-B .3-C .3D .116.设a 是绝对值最小的有理数,b 是最大的负整数,c 是倒数等于自身的有理数,则a b c -+的值为 ( )A .2B .0C .0或2D .0或-27.如果0xy ≠,22103xy axy +=,那么a 的值为( ) A .-3 B .13- C .0 D .38.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-9.代数式3x 2y-4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( )A .-4x 3y 2+3x 2y-5xy 3-1B .-5xy 3+3x 2y-4x 3y 2-1C .-1+3x 2y-4x 3y 2-5xy 3D .-1-5xy 3+3x 2y-4x 3y 210.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m ,则图②与图①的阴影部分周长之差是( )A .2m -B .2mC .3mD .3m -二、填空题11.多项式2333325467a c bc ab a -+--最高次项为__________,常数项为__________. 12.计算42a a a +-的结果等于_____.13.已知2310x x -+=,则2395x x -+=_________.14.张老师带了100元钱去给学生买笔记本和笔,已知一本笔记本3元,一支笔2元,张老师买了a 本笔记本,b 支笔,她还剩___________________元钱(用含a ,b 的代数式表示). 15.若|1||2|0a b -+-=,则3333232a b a b ++-的值为________.16.若实数a ,b 满足2=a ,41b a -=-||,则a b +=________.三、解答题17.计算(1)()()33223410310a b b a b b -+-+; (2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦.18.化简:(1)()()193213x x --+ (2)()()222233a b ab ab a b --+19.定义:若a b 2+=,则称a 与b 是关于1 的平衡数.()1 5与_________是关于1的平衡数;()273x -与________是关于1的平衡数;(用含x 的代数式表示)()3若()22a 2x 3x x =-+,()2b 43x 6x x =-++,判断a 与b 是否是关于1的平衡数,并说明理由.20.计算下列各式,将结果写在横线上:1×1=________;11×11=________;111×111=________;1111×1111=_________.(1)你发现了什么?(2)你能直接写出111111111×111111111=的结果吗?21.某教辅书中一道整式运算的参考答案污损看不清了,形式如下:解:原式=█()2232y x +- 118x y =-+.(1)求污损部分的整式;(2)当x =2,y =﹣3时,求污损部分整式的值.22.观察下列各式的计算结果:2113131124422-=-==⨯; 2118241139933-=-==⨯; 2111535114161644-=-==⨯; 2112446115252555-=-==⨯… (1)用你发现的规律填写下列式子的结果:1﹣216= × ;1﹣2110= × . (2)用你发现的规律计算:(1﹣212)×(1﹣213)×(1﹣214)×…×(1﹣212020)×(1﹣212021)×21(1)2022-.23.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.24.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.25.观察算式:213142⨯+==;224193⨯+==;2351164⨯+==;2461255⨯+==,…(1)请根据你发现的规律填空:681⨯+=()2;(2)用含n的等式表示上面的规律:;(n为正整数)(3)利用找到的规律解决下面的问题:计算:11111111132********⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯⨯+⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭.26.如图,甲、乙两人(看成点)分别在数轴上表示-3和5的位置,沿数轴做移动游戏,每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若经过第一次移动游戏,甲的位置停在了数轴的正半轴上,则甲、乙猜测的结果是______(填“谁对谁错”)(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错,设乙猜对n次,且他最终停留的位置对应的数为m.①试用含n的代数式表示m;②该位置距离原点O最近时n的值为(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,则k的值是参考答案1.A2.B3.A4.A5.D6.C7.B8.D9.D10.B11.35ab4-12.5a13.214.(100-3a-2b)15.-316.−1或517.(1)32243a b a b-;(2)293 2x x--18.(1)3x-;(2)22ab-19.(1)-3;(2)3x5-;(3)20.(1)n位(各位数字都是1)的数自乘,得到(2n-1)位的数,最中间位的数字为n,它的两边位上的数字依次减1,第一位和最后一位是1(2)1234567898765432121.(1)2687.y y x -+-(2)92.-22.(1)56,76,910,1110; (2)2023404423.(1)5xy +3y -1(2)-5 (3)35x =- 24.(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2; 25.(1)7;(2)n •(n +2)+1=(n +1)2;(3)9950. 26.(1)甲对乙错(2)①-6n +25 ;②4(3)3或5。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。
北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案一、单选题 1.按照如图所示的运算程序,能使输出y 的值为5的是( )A .m =1,n =4B .2,5m n ==C .m =5,n =3D .m =2,n =2 2.关于代数式353a +,下列说法中正确的是( ) A .它的一次项系数是1B .它的常数项是5C .它是一个单项式D .它的次数是33.下列各组代数式:(1)a b -与a b --;(2)a b +与a b --;(3)1a +与1a -;(4)a b -+与a b -,其中互为相反数的有( )A .(2)(4)B .(1)(2)C .(1)(3)D .(3)(4)4.下列说法中正确的是( )A .a -表示负数;B .若x x =,则x 为正数C .单项式22xy 9-的系数为2- D .多项式2223a b 7a b 2ab 1-+-+的次数是45.若单项式3a m+1b 与-b n -1a 2m -2的和仍是单项式,则m ,n 的值分别为( )A .1,0B .3,0C .3,2D .1,26.下列从左到右的变形是因式分解的是( )A .B .C .D .7.1x 与2x ,3x …202x 是202个由1和1-组成的数,且满足12320222x x x x +++⋅⋅⋅+=,则()()()()22221232021111x x x x -+-+-+⋅⋅⋅+-的值为( ) A .408 B .462 C .360 D .3688.下列各组代数式中是同类项的是( )A .234a b -34ab -B .232x y -与323x yC .3512m n -与537n m - D .a 与c 9.某服装店出售一件衣服,标价为m 元,由于市场行情的变化,服装店进行了一次调价,在此基础上又进行了第二次调价,下列四种方案中,两次调价后售价最低的是( )A .第一次打八折,第二次打八折B .第一次提价30%,第二次打六折C .第一次提价50%,第二次降价50%D .第一次提价20%,第二次降价30%10.观察下列等式:133= 239= 3327= 4381= 53243= 63729= 732187=…解答下列问题:234202333333++++的末位数字是( )A .0B .2C .3D .9二、填空题11.观察2,﹣3,4,﹣5,6,﹣7,…这一列数,你能发现它们排列的规律吗?请根据你发现的规律,试写出第)21x ++=322221+-+-+23,12-…第10个数字是的值是、d 互为倒数,m 的绝对值等于.已知一个两位数,它的个位数字是x ,十位数字是三、解答题19.如图:(1)用含字母的式子表示阴影部分的面积;(2)当5a =,3b =时,阴影部分的面积是多少?20.观察下列按一定规律排列的三行数:第一行:﹣2,4,﹣8,16,﹣32,64,﹣128…第二行:3,9,﹣3,21,﹣27,69,﹣123…第三行:4,﹣2,10,﹣14,34,﹣62,130…(1)第一行数中的第11个数是 ;(2)第三行数中的第n 个数是 (用含n 的式子表示);(3)取每行数中的第m 个数,是否存在m 的值,使这三个数的和等于255?若存在,求出m 的值,若不存在,说明理由.21.已知:有理数a 、b 、c 在数轴上的位置如图所示,且c a >.(1)填空:a =___________;c =___________;ac =___________(2)化简:b c a c a b -++--22.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为m r ,广场长为m a ,宽为m b .(m 为单位米)(1)列式表示广场空地的面积;参考答案: 1.D2.A3.A4.D5.C6.D7.C8.C9.A10.D11.﹣10112.113.1或3-/3-或1 14. 11n x +-/11n x +-+ 21213+ 15.15- 16.1617.13或7 18.11x +11y/11y+11x 19.(1)阴影部分面积为()2244a b a a b ππ+--;(2)阴影部分面积为17402π- 20.(1)-2048;(2)()22n --+;(3)不存在21.(1),,a c ac --(2)2c -22.(1)()22m ab r π-(2)()220000100m π- 23.(1)968-;(2)252ab -24.(1)666x y xy +-(2)9(3)6。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯第三章整式及其加减单元综合测试一.选择题1.用文字语言叙述代数式x2﹣2y2的意义正确的是()A.x与2y的平方差B.x的平方减2的差乘以y的平方C.x与2y的差的平方D.x的平方与y的平方的2倍的差2.下列各式中,符合整式书写要求的是()A.x•5B.4m×n C.﹣1x D.﹣ab3.下列说法正确的是()A.不是整式B.单项式的系数是﹣C.x4+2x3是七次二项式D.是多项式4.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数有()A.6B.5C.4D.35.单项式﹣x3y a与6x b y4是同类项,则a+b等于()A.﹣7B.7C.﹣5D.56.下列计算正确的是()A.3a+5b=8ab B.3a3c﹣2c3a=a3cC.3a﹣2a=1D.2a2b+3a2b=5a2b7.已知关于x的多项式﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)的结果不含x2项,那么a的值是()A.﹣1B.1C.﹣2D.28.如图,圆的面积为2008,五边形的面积为2021,两个图形叠放在一起,两个阴影部分的面积分别为a,b,则b﹣a的值为()A.9B.11C.12D.139.如图,是一个正方体的表面展开图,A=x3+x2y+3,B=x2y﹣3,C=x3﹣1,D=﹣(x2y ﹣6),且相对两个面所表示的代数式的和都相等,则E代表的代数式是()A.x3﹣x2y+12B.10C.x3+12D.x2y﹣1210.已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣1二.填空题11.用一生活情景描述2a+3b的实际意义:.12.一根弹簧长10cm,每挂1kg的物体弹簧伸长0.5cm,则10+0.5x表示的实际意义.13.若是五次多项式,则k=.14.单项式的系数是,次数是,多项式2x3﹣x2y2﹣3xy+x﹣1是次项式.15.一个多项式加上2x2﹣4x﹣3得x2﹣3x,则这个多项式为.16.若﹣4x a+5y3+x3y b=﹣3x3y3,则ab的值是.17.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.18.若﹣a2n﹣1b4与a2m b n的和是单项式,则(1+n)100•(1﹣m)102=.19.如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是.20.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是.(用含a的代数式表示)三.解答题21.已知(m+1)x3﹣(n﹣2)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式?(2)当m,n满足什么条件时,该多项式是关于x的三次二项式?22.已知代数式A=x2+xy﹣2y2,B=x2﹣xy﹣y2,C=﹣x2+8xy﹣3y2.(1)求2(A﹣B)﹣C.(2)当x=2.y=﹣1时,求出2(A﹣B)﹣C的值.23.(1)化简:(5a2+2a﹣1)﹣4[3﹣2(4a+a2)].(2)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.24.有这样一道题,当a=1,b=﹣1时,求多项式:3a3b3﹣a2b+b﹣(4a3b3﹣a2b﹣b2)﹣2b2+3+(a3b3+a2b)的值”,马小虎做题时把a=1错抄成a=﹣1,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.25.罗山高中为了全面提高学生的综合素养,学校组织了音乐,篮球,跆拳道,美术共四个社团,学生积极参加(每个学生限报一项),参加社团的学生共有(6x﹣3y)人,其中音乐社团有x人参加,篮球社团参加的人数比音乐社团参加的人数的两倍少y人,跆拳道社团参加的人数比篮球社团参加的人数一半多1人(1)篮球社团有人;(用含x,y的式子表示)(2)求篮球社团比跆拳道社团多多少人?(用含x,y的式子表示)(3)若x=64,y=40,求美术社团的人数.26.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,甲、乙、丙的卡片如下,丙的卡片代数式未知.(1)若乙同学卡片上的代数式为一次二项式,求m的值;(2)若甲同学卡片上的代数式减乙同学卡片上的代数式等于丙同学卡片上的代数式,且结果为常数项,求m的值;(3)当m=1时,丙同学卡片上的代数式减甲同学卡片上的代数式等于乙同学卡片上的代数式,求丙同学卡片上的代数式.2x2﹣3x+1甲mx2﹣3x﹣2乙丙参考答案1.解:A、x与2y的平方差表示为:x2﹣(2y)2;B、x的平方减2的差乘以y的平方表示为:(x2﹣2)•y2;C、x与2y的差的平方表示为:(x﹣2y)2;D、x的平方与y的平方的2倍的差表示为:x2﹣2y2;故选:D.2.解:A、x•5不符合代数式的书写要求,应为5x,故此选项不符合题意;B、4m×n不符合代数式的书写要求,应为4mn,故此选项不符合题意;C、﹣1x不符合代数式的书写要求,应为﹣x,故此选项不符合题意;D、﹣ab符合代数式的书写要求,故此选项符合题意;故选:D.3.解:A、是整式,故选项错误;B、单项式的系数是﹣π,故选项错误;C、x4+2x3是四次二项式,故选项错误;D、是多项式,故选项正确.故选:D.4.解:x2+2,,,,﹣5x,0中,整式有:x2+2,,﹣5x,0共4个.故选:C.5.解:根据题意得,a=4,b=3,∴a+b=4+3=7.故选:B.6.解:A、3a与5b不是同类项,所以不能合并,故本选项不合题意;B、3a3c与﹣2c3a不是同类项,所以不能合并,故本选项不合题意;C、3a﹣2a=a,故本选项不合题意;D、2a2b+3a2b=5a2b,故本选项符合题意.故选:D.7.解:﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)=﹣2x3+6x2+9x+1﹣6ax2+10x﹣6=﹣2x3+(6﹣6a)x2+19x﹣5,∵关于x的多项式﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)的结果不含x2项,∴6﹣6a=0,解得a=1.故选:B.8.解:设空白部分面积为c,根据题意得:a+c=2008①,b+c=2021②,②﹣①得:b﹣a=13.故选:D.9.解:由题意得A+D=B+F=C+E,则E=A+D﹣C=x3+x2y+3+[﹣(x2y﹣6)]﹣(x3﹣1)=x3+x2y+3﹣x2y+6﹣x3+1=10.故选:B.10.解:(2x2﹣my+12)﹣(nx2+3y﹣6)=2x2﹣my+12﹣nx2﹣3y+6=(2﹣n)x2+(﹣m﹣3)y+18,∵无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,∴,得,∴m+n=﹣3+2=﹣1,故选:D.二.填空题11.解:答案不唯一:如一个苹果的质量是a,一个桔子的质量是b,那么2个苹果和3个桔子的质量和是2a+3b;故答案为:一个苹果的质量是a,一个桔子的质量是b,那么2个苹果和3个桔子的质量和是2a+3b.12.解:一根弹簧长10cm,每挂1kg的物体弹簧伸长0.5cm,则10+0.5x表示的实际意义是挂x千克的物体时弹簧的长度.故答案为:挂x千克的物体时弹簧的长度.13.解:∵是五次多项式,∴k+1=5,解得:k=4,故答案为:4.14.解:单项式的系数是,次数是4,多项式2x3﹣x2y2﹣3xy+x﹣1是四次五项式,故答案为:;4;四;五.15.解:(x2﹣3x)﹣(2x2﹣4x﹣3)=x2﹣3x﹣2x2+4x+3=﹣x2+x+3.故答案为:﹣x2+x+3.16.解:﹣4x a+5y3+x3y b=﹣3x3y3,a+5=3,b=3,a=﹣2,ab=﹣2×3=﹣6,故答案为:﹣6.17.解:根据题意得:P=(2x2﹣4x)﹣(x2+3x+6)=x2﹣7x﹣6,故答案为:x2﹣7x﹣618.解:由题意得:,解得,m=,n=4,原式=5100•(﹣)102=,故答案为:=,19.解:两个形状和大小完全相同的小长方形卡片的长为acm,宽为bcm,上面的长方形周长:2(6﹣a+4﹣a)=(20﹣4a)cm,下面的长方形周长:2(a+4﹣b)=(8+2a﹣2b)cm,两式联立,总周长为:(20﹣4a)+(8+2a﹣2b)=20﹣4a+8+2a﹣2b=28﹣2(a+b)cm,∵a+b=6(由图可得),∴阴影部分总周长为28﹣2(a+b)=28﹣2×6=16cm.故答案为:16cm.20.解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=a,图①中阴影部分的周长2b+2y+2(a﹣x),图②中阴影部分的周长为2(b﹣2y+a)=2b ﹣4y+2a,则图①阴影部分周长与图②阴影部分周长之差为:2b+2y+2(a﹣x)﹣(2b﹣4y+2a)=2b+2y+2a﹣2x﹣2b+4y﹣2a=6y﹣2x=6y﹣4y=2y=a,故答案为:a.三.解答题21.解:(1)由题意得:m+1=0,且n﹣2≠0,解得:m=﹣1,n≠2,则m=﹣1,n≠2时,该多项式是关于x的二次多项式;(2)由题意得:m+1≠0,n﹣2=0,且2m+5n=0,解得:m≠﹣1,n=2,把n=2代入2m+5n=0得:m=﹣5,则m=﹣5,n=2时该多项式是关于x的三次二项式.22.解:(1)2(A﹣B)﹣C=2[(x2+xy﹣2y2)﹣(x2﹣xy﹣y2)]﹣(﹣x2+8xy﹣3y2)=2(x2+xy﹣2y2﹣x2+xy+y2)+x2﹣4xy+y2=2x2+xy﹣4y2﹣3x2+2xy+2y2+x2﹣4xy+y2=﹣x2﹣xy﹣y2;(2)将x=2,y=﹣1代入﹣x2﹣xy﹣y2得,=﹣×4﹣2×(﹣1)﹣×1=﹣2+2﹣=﹣.23.解:(1)原式=5a2+2a﹣1﹣4(3﹣8a﹣2a2)=5a2+2a﹣1﹣12+32a+8a2=13a2+34a﹣13;(2)原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2,当a=,b=时,原式=12×()2×﹣6××()2=12××﹣6××=1﹣=.24.解:原式=3a3b3﹣a2b+b﹣4a3b3+a2b+b2﹣2b2+3+a3b3+a2b =﹣b2+b+3.因为多项式合并后的结果里不含有a的项,故计算结果只与b有关,与a无关,所以a=1或a=﹣1计算的结果都一样.25.解:(1)由题意可得,篮球社团参加的人数为(2x﹣y)人;故答案为:(2x﹣y);(2)跆拳道社团参加的人数为:(2x﹣y)+1=(x﹣y+1)人,则篮球社团比跆拳道社团多:2x﹣y﹣(x﹣y+1)=(x﹣y﹣1)人;(3)∵篮球,跆拳道,美术共四个社团,学生积极参加(每个学生限报一项),参加社团的学生共有(6x﹣3y)人,∴美术社团的人数为:6x﹣3y﹣x﹣(2x﹣y)﹣(x﹣y+1)=6x﹣3y﹣x﹣2x+y﹣x+y﹣1=2x﹣y﹣1,当x=64,y=40时,原式=2×64﹣×40﹣1=128﹣60﹣1=67(人).26.解:(1)乙同学卡片上的代数式为一次二项式,则mx2=0,∴m=0;(2)2x2﹣3x+1﹣(mx2﹣3x﹣2)=2x2﹣3x+1﹣mx2+3x+2=(2﹣m)x2+3,由题意得结果为常数项,∴2﹣m=0,即m=2;(3)2x2﹣3x+1+x2﹣3x﹣2=3x2﹣6x﹣1,∴丙同学卡片上的代数式为3x2﹣6x﹣1.一天,毕达哥拉斯应邀到朋友家做客。
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。
北师大版七年级上册数学第三章整式及其加减含答案一、单选题(共15题,共计45分)1、已知5x=3,5y=2,则52x﹣3y=()A. B.1 C. D.2、下列运算正确的是A.2m 2+m 2=3m 4B.(mn 2) 2=mn 4C.2m·4m²=8m²D.m 5÷m 3=m 23、已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a-4ab)的值为( )A.49B.59C.77D.1394、有这样一种算法,对于输入的任意一个实数,都进行“先乘以,再加3”的运算。
现在输入一个x=4,通过第1次运算的结果为x1,再把x1输入进行第2次同样的运算,得到的运算结果为x2,…,一直这样运算下去,当运算次数不断增加时,运算结果xn()A.越来越接近4B.越来越接近于-2C.越来越接近2D.不会越来越接近于一个固定的数5、下列式子中,不是整式的是()A. B. +b C. D.4y6、计算正确的是()A.(-5) 0=0B. x2+ x3= x5C.( ab2) 3= a2b5D.2 a 2· a-1=2 a7、观察下列算式:根据上述算式中的规律,你认为的个位数字是()A.2B.4C.6D.88、已知a,b,c是三角形的三条边,则|a+b﹣c|﹣|c﹣a﹣b|的化简结果为()A.0B.2a+2bC.2cD.2a+2b﹣2c9、在﹣3,0,2x,,,, a2﹣3ab+b2这些代数式中,整式的个数为()A.2个B.3个C.4个D.5个10、如果的积中不含x的一次项,则m的值为()A.7B.8C.9D.1011、下列计算正确的是()A. 2a+5a=7aB. 2x﹣x=1C. 3+a=3aD. x2•x3=x612、多项式x5y2+2x4y3﹣3x2y2﹣4xy是()A.按x的升幂排列B.按x的降幂排列C.按y的升幂排列D.按y的降幂排列13、如果代数式的值为,那么()A. B. C. D.14、下列运算正确的是()A. B. C. D.15、当x=2时,下列代数式中与代数式2x+1的值相等的是()A.1-x 2B.3x+1C.3x-x 2D.x 2+1二、填空题(共10题,共计30分)16、某通信公司的移动电话计费标准每分钟降低a元后,再下调了20%,现在收费标准是每分钟b元,则原来收费标准每分钟是________元.17、(x+y)2可以解释为________。
《第3章 整式及其加减》一、单选题1.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是( )A .22B .21C .20D .192.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法;若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法;如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有( )种走法. A .3 B .4C .5D .63.将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )A .5B .4C .3D .24.一列数a 1,a 2,a 3,…,其中a 1=,a n =(n 为不小于2的整数),则a 4的值为( )A .B .C .D .5.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C .36=16+20D .49=21+286.已知整式的值为6,则2x2﹣5x+6的值为()A.9 B.12 C.18 D.247.将正偶数按下表排成5列:根据上面的排列规律,则2000应在()A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列8.请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()A.58 B.70 C.84 D.1269.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正确的是()A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1007+1008+1009+…+3017=2011210.计算2m2n﹣3m2n的结果为()A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2二、填空题11.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.12.若a2+a=0,则2a2+2a+2013= .13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= ,d= .14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是.15.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)= (其中n为正整数).16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有个.17.对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为.18.若x2﹣3x+1=0,则的值为.19.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片张.20.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A103A104(填“>”或“<”或“=”)三、解答题21.研究下列算式,你会发现有什么规律? ①13=12 ②13+23=32 ③13+23+33=62 ④13+23+33+43=102 ⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式; (2)用含n (n 为正整数)的式子表示第n 个算式; (3)请用上述规律计算:73+83+93+ (203)22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.23.如图,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m .(1)按图示规律,第一图案的长度L 1= ;第二个图案的长度L 2= ; (2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n (m )之间的关系; (2)当走廊的长度L 为30.3m 时,请计算出所需带有花纹图案的瓷砖的块数.24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元)25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2)其中x=2,y=1.26.有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片张,3号卡片张.27.化简,求值①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=﹣,b=2时,﹣B+2A的值.28.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为元;②涨价后,每个台灯的利润为元;③涨价后,商场的台灯平均每月的销售量为台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.29.(1)拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形.(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长.30.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.《第3章整式及其加减》参考答案与试题解析一、单选题1.用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是()A.22 B.21 C.20 D.19【考点】规律型:图形的变化类.【专题】规律型.【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【解答】解:第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=6时,3n+1=3×6+1=19故选D.【点评】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.2.小明同学在上楼梯时发现:若只有一个台阶时,有一种走法;若有二个台阶时,可以一阶一阶地上,或者一步上二个台阶,共有两种走法;如果他一步只能上一个或者两个台阶,根据上述规律,有三个台阶时,他有三种走法,那么有四个台阶时,共有()种走法.A.3 B.4 C.5 D.6【考点】规律型:数字的变化类.【分析】根据题意可知:当有四个台阶时,可分情况讨论:①逐级上,那么有一种走法;②上一个台阶和上二个台阶合用,那么有共三种走法;③一步走两个台阶,只有一种走法;所以可求得有五种走法.注意分类讨论思想的应用.【解答】解:当有四个台阶时,可分情况讨论:①逐级上,那么有一种走法;②上一个台阶和上二个台阶合用,那么有: 1、1、2;1、2、1;2、1、1; 共三种走法;③一步走两个台阶,只有一种走法:2、2; 综上可知:共5种走法. 故选C .【点评】本题属规律性题目,解答此题的关键是根据所给的条件,列举出可能走的方法解答.3.将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )A .5B .4C .3D .2【考点】规律型:数字的变化类. 【专题】规律型.【分析】由第五行和第五列可以知道三角内不可以填2,6,3,4,再综合其他的即可得出答案. 【解答】解:由第五行和第五列可以知道三角内不可填2,6,3,4, 因为第六行和第六列都有一个1所以第六行和第五列都不能填1,即三角的左边应填1.第五行和第六列都有4,所以可知第六行第五列填4. 即三角内填2或5.因为三角的左边是1,第五列又有一个1,所以三角上边的那个大格的第六列就是1. 因为第四行有一个2,所以第三行,第四列填2.所以第四行,第四列 或第四行第五列有一个填5,故三角内不能 填5. 故:答案选D .【点评】此题主要考试的是同学们的逻辑思维和对图形的观察能力.4.一列数a 1,a 2,a 3,…,其中a 1=,a n =(n 为不小于2的整数),则a 4的值为( )A .B .C .D .【考点】规律型:数字的变化类. 【专题】探究型.【分析】将a 1=代入a n =得到a 2的值,将a 2的值代入,a n =得到a 3的值,将a 3的值代入,a n =得到a 4的值.【解答】解:将a 1=代入a n =得到a 2==,将a 2=代入a n =得到a 3==,将a 3=代入a n =得到a 4==.故选A .【点评】本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.5.古希腊著名的毕达哥拉斯学派把1,3,6,10 …这样的数称为“三角形数”,而把1,4,9,16 …这样的数称为“正方数”. 从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .20=6+14B .25=9+16C .36=16+20D .49=21+28 【考点】规律型:数字的变化类. 【专题】压轴题;规律型.【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n (n+1)和(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【解答】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n (n+1)和(n+1)(n+2),只有D、49=21+28符合,故选D.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.已知整式的值为6,则2x2﹣5x+6的值为()A.9 B.12 C.18 D.24【考点】代数式求值.【专题】压轴题;整体思想.【分析】观察题中的两个代数式,可以发现,2x2﹣5x=2(),因此可整体求出式的值,然后整体代入即可求出所求的结果.【解答】解:∵ =6∴2x2﹣5x+6=2()+6=2×6+6=18,故选C.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值.7.将正偶数按下表排成5列:根据上面的排列规律,则2000应在()A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列【考点】规律型:数字的变化类.【分析】根据题意得到每一行是4个偶数,奇数行从第2列往后排,偶数行从第4列往前排,然后用2000除以2得到2000是第1000个偶数,再用1000÷4得250,于是可判断2000在第几行第几列.【解答】解:因为2000÷2=1000,所以2000是第1000个偶数,而1000÷4=250,第1000个偶数是250行最大的一个,偶数行的数从第4列开始向前面排,所以第1000个偶数在第1列,所以2000应在第250行第一列.答:在第250行第1列.故选:C.【点评】本题考查了关于数字的变化规律:先要观察各行各列的数字的特点,得出数字排列的规律,然后确定所给数字的位置.8.请观察“杨辉三角”图,并根据数表中前五行的数字所反映的规律,推算出第九行正中间的数应是()A.58 B.70 C.84 D.126【考点】规律型:数字的变化类.【专题】规律型.【分析】第一行有1个数,第二行有2个数,那么第9行就有9个数,偶数行中间的两个数是相等的.第九行正中间的数应是第九行的第5个数.应该=第8行第4个数+第8行第5个数=2×第8行第4个数=2×(第7行第3个数+第7行第4个数)=2×[(第6行第2个数+第6行第3个数)+(第6行第3个数+第6行第4个数)]=2×(第6行第2个数+2第6行第3个数+第6行第4个数)=2×[5+2×(第5行第2个数+第5行第3个数)+(第5行第3个数+第5行第4个数)]=2×[5+2×(4+6)+6+4]=70.【解答】解:2×[5+2×(4+6)+6+4]=70.故选B.【点评】杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.9.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72;…请你根据观察得到的规律判断下列各式正确的是()A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1007+1008+1009+…+3017=20112【考点】规律型:数字的变化类.【专题】应用题.【分析】根据已知条件找出数字规律:第n个等式是n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,其中n为正整数,依次判断各个式子即可得出结果.【解答】解:根据(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=7×7可得出:n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,依次判断各选项,只有C符合要求,故选C.【点评】本题主要考查了根据已知条件寻找数字规律,难度适中.10.计算2m2n﹣3m2n的结果为()A.﹣1 B.﹣ C.﹣m2n D.﹣6m4n2【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变计算即可.【解答】解:2m2n﹣3m2n=(2﹣3)m2n=﹣m2n.故选C.【点评】本题考查了合并同类项的法则,解题时牢记法则是关键,此题比较简单,易于掌握.二、填空题11.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是41 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×(底数﹣1)+1,问题得以解决.【解答】解:由23=3+5,分裂中的第一个数是:3=2×1+1,33=7+9+11,分裂中的第一个数是:7=3×2+1,43=13+15+17+19,分裂中的第一个数是:13=4×3+1,53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.【点评】本题是对数字变化规律的考查,找出分裂的第一个数的变化规律是解题的关键,也是求解的突破口.12.若a2+a=0,则2a2+2a+2013= 2013 .【考点】代数式求值.【专题】计算题.【分析】把代数式化为2(a2+a)+2013,把a2+a=0代入求出即可.【解答】解:∵a2+a=0,∴2a2+2a+2013=2(a2+a)+2013=2×0+2013=2013.故答案为:2013.【点评】本题考查了求代数式的值的应用,注意:把a2+a当作一个整体进行代入,题目比较典型,难度也不大.13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= 9 ,d= 37 .【考点】规律型:数字的变化类.【专题】压轴题;图表型.【分析】观察发现:第n行的第一个数和行数相等,第二个数是1+1+2+…+n﹣1=+1.所以当a=8时,则c=9,d=9×4+1=37.【解答】解:当a=8时,c=9,d=9×4+1=37.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题要根据已知的数据发现各行的第一个数和第二个数的规律.14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是﹣5 .【考点】相反数;代数式求值.【专题】整体思想.【分析】根据相反数的意义得出a+1﹣2b=0,求出a﹣2b的值,变形后代入即可.【解答】解:∵a与l﹣2b互为相反数,∴a+1﹣2b=0,∴a﹣2b=﹣1,∴2a﹣4b﹣3=2(a﹣2b)﹣3=2×(﹣1)﹣3=﹣5.故答案为:﹣5.【点评】本题考查了相反数的意义和代数式求值的应用,根据相反数的意义求出a+2b的值,把a+2b当作一个整体,即整体思想的应用.15.观察下列各式:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1,根据前面各式的规律可得(x﹣1)(x n+x n﹣1+…+x+1)= x n+1﹣1 (其中n为正整数).【考点】平方差公式.【专题】压轴题;规律型.【分析】观察其右边的结果:第一个是x2﹣1;第二个是x3﹣1;…依此类推,则第n个的结果即可求得.【解答】解:(x﹣1)(x n+x n﹣1+…x+1)=x n+1﹣1.故答案为:x n+1﹣1.【点评】本题考查了平方差公式,发现规律:右边x的指数正好比前边x的最高指数大1是解题的关键.16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有 3 个.【考点】完全平方数.【专题】创新题型.【分析】首先将符合条件的整数分解成两整数的和与这两整数的差的积,再由整数的奇偶性,判断这个符合条件的整数,是奇数或是能被4整除的数,从而找出符合条件的整数的个数.在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的有2个,所以不能表示成两个平方数差的数有10﹣5﹣2=3个.【解答】解:对x=n2﹣m2=(n+m)(n﹣m),(m<n,m,n为整数)因为n+m与n﹣m同奇同偶,所以x是奇数或是4的倍数,在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的数有2个,所以能表示成两个平方数差的数有5+2=7个,则不能表示成两个平方数差的数有10﹣7=3个.故答案为:3.【点评】本题考查了平方差公式的实际运用,使学生体会到平方差公式在判断数的性质方面的作用.17.对整数按以下方法进行加密:每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为891134 .【考点】数的十进制.【专题】数字问题;新定义.【分析】根据题意算出从0到9加密后对应的数字,根据所给加密后的数字可得原数.【解答】解:对于任意一个数位数字(0﹣9),经加密后对应的数字是唯一的.规律如下:例如数字4,4与7相乘的末位数字是8,再把8变2,也就是说4对应的是2;同理可得:1对应3,2对应6,3对应9,4对应2,5对应5,6对应8,7对应1,8对应4,9对应7,0对应0;∴如果加密后的数为473392,那么原数是891134,故答案为891134.【点评】考查新定义后数字的规律;得到加密数字与原数字的对应规律是解决本题的关键.18.若x2﹣3x+1=0,则的值为.【考点】分式的化简求值.【专题】压轴题.【分析】将x2﹣3x+1=0变换成x2=3x﹣1代入逐步降低x的次数出现公因式,分子分母同时除以公因式.【解答】解:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入======故答案为.【点评】解本类题主要是将未知数的高次逐步降低,从而求解.代入时机比较灵活19.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片7 张.【考点】多项式乘多项式.【分析】计算出长为(3a+b),宽为(a+2b)的大长方形的面积,再分别得出A、B、C卡片的面积,即可看出应当需要各类卡片多少张.【解答】解:长为(3a+b),宽为(a+2b)的大长方形的面积为:(3a+b)(a+2b)=3a2+2b2+7ab;A卡片的面积为:a×a=a2;B卡片的面积为:b×b=b2;C卡片的面积为:a×b=ab;因此可知,拼成一个长为(3a+b),宽为(a+2b)的大长方形,需要3块A卡片,2块B卡片和7块C卡片.故答案为:7.【点评】本题考查了多项式乘法,此题的立意较新颖,注意对此类问题的深入理解.20.若:A32=3×2=6,A53=5×4×3=60,A54=5×4×3×2=120,A64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= 210 (直接写出计算结果),并比较A103<A104(填“>”或“<”或“=”)【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】对于Aab(b<a)来讲,等于一个乘法算式,其中最大因数是a,依次少1,最小因数是a﹣b.依此计算即可.【解答】解:A73=7×6×5=210;∵A103=10×9×8=720,A104=10×9×8×7=5040.∴A103<A104.故答案为:210;<.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.注意找到Aab(b<a)中的最大因数,最小因数.三、解答题21.研究下列算式,你会发现有什么规律?①13=12②13+23=32③13+23+33=62④13+23+33+43=102⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式;(2)用含n(n为正整数)的式子表示第n个算式;(3)请用上述规律计算:73+83+93+ (203)【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)利用类比的方法得到第⑥个算式为 13+23+33+43+53+63=212;(2)同样利用类比的方法得到第n个算式为;(3)将73+83+93+…+203转化为(13+23+33+43+…+203)﹣(13+23+33+43+53+63)后代入总结的规律求解即可.【解答】解:(1)第⑥个算式为13+23+33+43+53+63=212;(2)第n个算式为;(3)73+83+93+…+203=(13+23+33+43+…+203)﹣(13+23+33+43+53+63)==44100﹣441=43659.【点评】本题考查了数字的变化类问题,仔细观察每个算式得到本题的通项公式是解决此题的关键.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+…+|﹣1|+0+1+2+…+54=(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.注意连续整数相加的时候的这种简便计算方法:1+2+3+…+n=.23.(2013秋•永州期末)如图,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m .(1)按图示规律,第一图案的长度L 1= 0.9 ;第二个图案的长度L 2= 1.5 ;(2)请用代数式表示带有花纹的地面砖块数n 与走廊的长度L n (m )之间的关系;(2)当走廊的长度L 为30.3m 时,请计算出所需带有花纹图案的瓷砖的块数.【考点】规律型:图形的变化类.【专题】计算题.【分析】(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n 个图案有花纹的地面砖有n 块;第一个图案边长3×0.3=L ,第二个图案边长5×0.3=L ,(2)由(1)得出则第n 个图案边长为L=(2n+1)×0.3;(3)根据(2)中的代数式,把L 为30.3m 代入求出n 的值即可.【解答】解:(1)第一图案的长度L 1=0.3×3=0.9,第二个图案的长度L 2=0.3×5=1.5;故答案为:0.9,1.5;(2)观察可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,… 故第n 个图案中有花纹的地面砖有n 块;第一个图案边长L=3×0.3,第二个图案边长L=5×0.3,则第n 个图案边长为L=(2n+1)×0.3;(3)把L=30.3代入L=(2n+1)×0.3中得:30.3=(2n+1)×0.3,解得:n=50,答:需要50个有花纹的图案.【点评】此题考查了平面图形的有规律变化,以及一元一次方程的应用,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28==145.用上面的知识解答下面问题:某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:万元)【考点】列代数式;有理数的混合运算.【专题】应用题.【分析】(1)根据两企业的利润方案计算即可;(2)归纳总结,根据题意列出两企业上缴利润的总金额即可.【解答】解:(1)根据题意得:企业A,4年上缴的利润总金额为1.5+(1.5+1)+(1.5+2)+(1.5+3)=12(万元);企业B,4年上缴的利润总金额为0.3+(0.3+0.3)+(0.3+0.6)+(0.3+0.9)+(0.3+1.2)+(0.3+1.5)+(0.3+1.8)+(0.3+2.1)=2.4+8.4=10.8(万元),∵12>10.8,∴企业A上缴利润的总金额多;(2)根据题意得:企业A,n年上缴的利润总金额为1.5n+(1+2+…+n﹣1)=1.5n+=1.5n+=(万元);企业B,n年上缴的利润总金额为0.6n+[0.3+0.6+…+0.3(2n﹣1)]=0.6n+=0.6n+0.3n(2n﹣1)=0.6n2+0.3n(万元).【点评】此题考查了有理数加法运算的应用,属于规律型试题,弄清题意是解本题的关键.25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2)其中x=2,y=1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6x2﹣4xy+8y2﹣6x2+3xy﹣6y2=﹣xy+2y2,当x=2,y=1时,原式=﹣2+2=0.。
北师大版七年级数学上册第三章 整式及其加减 单元测试题一、选择题(本大题共8小题,每小题3分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.下列式子中,符合代数式书写格式的有( )①m ×n ;②313ab ;③14(x +y );④m +2天;⑤abc 3. A .2个 B .3个 C .4个 D .5个2.某商品标价x 元,进价为400元,在商场开展的促销活动中,该商品按8折销售获利( )A .(8x -400)元B .(400×8-x )元C .(0.8x -400)元D .(400×0.8-x )元3.已知5x m +2y 3与14x 6y n +1是同类项,则(-m )3+n 2等于( ) A .-64 B .-60 C .68 D .624.下列各式变形,正确的个数是( )①a -(b -c )=a -b +c ;②(x 2+y )-2(x -y 2)=x 2+y -2x +y 2;③-(a +b )-(-x +y )=-a +b +x -y ;④-3(x -y )+(a -b )=-3x -3y +a -b .A .1B .2C .3D .45.将长为40 cm ,宽为15 cm 的长方形白纸,按如图1所示的方法黏合起来,黏合部分的宽为5 cm ,则n 张白纸黏合后的总长度为( ) 图1A .(35n +5)cmB .35n cmC .40n cmD .(40n +5)cm6.已知m 2+2mn =13,3mn +2n 2=21,则2m 2+13mn +6n 2-44的值为( )A .45B .5C .66D .777.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.阴影部分就是被墨水弄污的部分.(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,那么被墨水遮住的一项应是( )A .-7xyB .-xyC .+7xyD .+xy8.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中是完全对称式的是( )A .①②B .①③C .②③D .①②③二、填空题(本大题共6小题,每小题4分,共24分)9.多项式2x 4-3x 5-5是________次________项式,最高次项的系数是________.10.若关于a ,b 的多项式2(a 2-2ab -b 2)-(a 2+mab +2b 2)不含ab 项,则m =________.11.单项式-3a 2x -1b 与5ab y +4能合并成一个单项式,则(x -2)2018+(y +2)2019=________.12.三个连续的整数中,若n 是最小的一个,则这三个数的和为________.13.如图2是一个长方形的铝合金窗框,其长为a m ,高为b m ,装有同样大的三块塑钢玻璃,当第②块向右拉到与第③块重叠12时,再把第①块向右拉到与第②块重叠13,用含a ,b 的式子表示这时窗子的通风面积是________m 2.图214.用火柴棒按图3中的方式搭图形.按照这种方式搭下去,搭第n 个图形需________根火柴棒.图3三、解答题(共52分)15.(6分)化简下列各式:(1)(3a -2b )+(5a -7b )-2(2a -4b );(2)(-x 2+2xy -y 2)-2(xy -3x 2)+3(2y 2-xy ).16.(8分)化简并求值:(1)5(3a 2b -ab 2)-4(-ab 2+3a 2b ),其中a =12,b =-13;(2)12x -3(x -13y 2)+6(-32x +13y 2),其中(2x +4)2+|4-6y |=0.17.(8分)已知A =3x 2-ax +6x -2,B =-3x 2+4ax -7,若A +B 的值不含x 项,求a 的值.18.(10分)定义:若a +b =2,则称a 与b 是关于1的平衡数.(1)3与________是关于1的平衡数,5-x 与________(用含x 的代数式表示)是关于1的平衡数;(2)若a =2x 2-3(x 2+x )+4,b =2x -[3x -(4x +x 2)-2],判断a 与b 是不是关于1 的平衡数,并说明理由.19.(10分)某服装厂生产一种西装和领带,西装每套定价300元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款__________元(用含x的代数式表示);若该客户按方案②购买,需付款____________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算;(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.20.(10分)A,B两地果园分别有苹果30吨和40吨,C,D两地分别需要苹果20吨和50吨.已知从A,B到C,D的运价如下表:到C地到D地从A果园运出每吨15元每吨12元从B果园运出每吨10元每吨9元(1)若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为________吨,从B果园运到C地的苹果为________吨,从B果园运到D地的苹果为________吨,总运输费为________元;(2)若从A果园运到C地的苹果为x吨,求从A果园运到D地的苹果的吨数以及从A果园将苹果运往D地的运输费用;(3)在(2)的条件下,用含x的式子表示出总运输费.1. A.2. C.3. B.4.A.5. A.6. A7. B8 A9.[答案] 五 三 -310.[答案] -411.[答案] 012.[答案] 3n +313.[答案] 518ab 14.[答案] (6n +6)15.解:(1)原式=3a -2b +5a -7b -4a +8b=3a +5a -4a -2b -7b +8b =4a -b.(2)原式=-x 2+2xy -y 2-2xy +6x 2+6y 2-3xy =5x 2-3xy +5y 2.16.解:(1)原式=15a 2b -5ab 2+4ab 2-12a 2b =3a 2b -ab 2.当a =12,b =-13时,原式=3×(12)2×(-13)-12×(-13)2=-14-118=-1136. (2)原式=12x -3x +y 2-9x +2y 2=-232x +3y 2. 因为(2x +4)2+|4-6y|=0,所以2x +4=0且4-6y =0,解得x =-2,y =23, 则原式=-232×(-2)+3×49=23+43=2413. 17.解:因为A =3x 2-ax +6x -2,B =-3x 2+4ax -7,所以A +B =(3x 2-ax +6x -2)+(-3x 2+4ax -7)=3x 2-ax +6x -2-3x 2+4ax -7=(3a +6)x -9.由结果不含x 项,得到3a +6=0,解得a =-2.18.解:(1)设3关于1的平衡数为a ,则3+a =2,解得a =-1,所以3与-1是关于1的平衡数.设5-x关于1的平衡数为b,则5-x+b=2,解得b=2-(5-x)=x-3,所以5-x与x-3是关于1的平衡数.故答案为-1,x-3.(2)a与b不是关于1的平衡数.理由如下:因为a=2x2-3(x2+x)+4,b=2x-[3x-(4x+x2)-2],所以a+b=2x2-3(x2+x)+4+2x-[3x-(4x+x2)-2]=2x2-3x2-3x+4+2x-3x+4x+x2+2=6≠2,所以a与b不是关于1的平衡数.19.解:(1)方案①需付款:300×20+(x-20)×50=(50x+5000)元;方案②需付款:(300×20+50x)×0.9=(45x+5400)元.故答案为(50x+5000),(45x+5400).(2)当x=30时,方案①需付款:50×30+5000=6500(元);方案②需付款:45×30+5400=6750(元).因为6500<6750,所以按方案①购买较为合算.(3)能.先按方案①购买20套西装获赠20条领带,再按方案②购买10条领带,则需付款:20×300+50×10×90%=6450(元).20.解:(1)从A果园运到D地的苹果为30-10=20(吨),从B果园运到C地的苹果为20-10=10(吨),从B果园运到D地的苹果为50-20=30(吨),总费用为10×15+20×12+10×10+30×9=760(元).故答案为:20,10,30,760.(2)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果吨数为30-x.从A果园运到D地的运输费用为12(30-x)=(360-12x)元.(3)从B果园运到C地的运输费用为10(20-x)元,从B果园运到D地的运输费用为9×[50-(30-x)]元,故总运输费用=15x+(360-12x)+10(20-x)+9×[50-(30-x)]=15x+360-12x+200-10x+9x+180=(2x+740)元.。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()米.A.a B.60 C.60a D.a+602.十位数字是a,个位数字是b的两位数是()A.ab B.a+10b C.ba D.10a+b3.多项式23+7x+4y的次数为多少()A.5次B.3次C.2次D.1次4.在代数式﹣2x,x+1,π,2m−3m ,0,12mn中是单项式的有()个.A.1 B.2 C.3 D.45.若a2+3a=1,则代数式2a2+6a−2的值为()A.0B.1C.2D.36.下列计算正确的是()A.a2+a2=a4 B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.3a2+2a3=5a57.已知关于x的多项式(m+3)x3−x n+x−mn为二次三项式,则当x=−1时,这个二次三项式的值是()A.7 B.6 C.4 D.38.若4x3m-1y3与-3x5y2n+1的和是单项式,则2m+3n的值是()A.6 B.7 C.8 D.9二、填空题9.已知单项式﹣3x3y n与5x m+4y3是同类项,则m﹣n的值为.10.若多项式2x2- 3x+b与多项式x2-bx+1的和不含一次项(b为常数),则两个多项式的和为11.若关于x、y的多项式x5-m+5y2-2x2+3的次数是3,则式子m2-3m的值为.12.已知a+22ab=−8,b2+2ab=14则a2−b2=.13.如图是一组有规律的图案,它们是由大小相同的“×”图案组成的,依此规律,第10个图案中有“×”图案个.三、解答题14.计算:(1)x2+5+x2−1(2)2a2+3ab+b2−a2−ab−2b215.先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.x m+1y2+2xy2−4x3+1是六次四项式,单项式26x2n y5−m的次数与该多项式的次数相16.已知多项式15同,求(−m)3+2n的值.17.已知关于x,y的式子(2x2+mx−y+3)−(3x−2y+1−nx2)的值与字母x的取值无关,求式子(m+ 2n)−(2m−n)的值.18.某次课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3−6a3b+3a2b)−(−3a3−6a3b+3a2b+10a3−3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案.当王红说完:“a= 65,b=−2022”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误,”亲爱的同学,你相信吗?请说出其中的道理.参考答案1.D2.D3.D4.D5.A6.C7.C8.B9.-410.3x2-211.-212.-2213.5114.(1)解:x2+5+x2−1=x2+x2+5−1=2x2+4(2)解:2a2+3ab+b2−a2−ab−2b2=2a2−a2+3ab−ab+b2−2b2=a2+2ab−b215.解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2当x=﹣1,y=2时原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.16.解:由于多项式是六次四项式,所以m+1+2=6解得:m=3单项式26x2n y5−m应为26x2n y2,由题意可知:2n+2=6解得:n=2所以(−m)3+2n =(−3)3+2×2=−23.17.解:原式=2x 2+mx −y +3−3x +2y −1+nx 2=(2+n)x 2+(m −3)x +y +2由题可得,多项式的值与字母x 无关∴{2+n =0m −3=0解得{n =−2m =3∴(m +2n)−(2m −n)=m +2n −2m +n=3n −m代入n =−2,m =3可得:3×(−2)−3=−6−3=−9 故代数式(m +2n)−(2m −n)的值为:−9.18.解:(7a 3−6a 3b +3a 2b)−(−3a 3−6a 3b +3a 2b +10a 3−3) =7a 3−6a 3b +3a 2b +3a 3+6a 3b −3a 2b −10a 3+3=(7a 3+3a 3−10a 3)+(−6a 3b +6a 3b)+(3a 2b −3a 2b)+3 =3.∵结果为常数3∴原式的结果与字母a ,b 的取值无关∴李老师能够准确地说出代数式的值为3.。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图是同一时刻北京时间和莫斯科时间.若现在北京时间是x,则同一时刻莫斯科的时间可以表示为()A.x+6B.x−6C.x+5D.x−52.单项式﹣5x2y的系数是()A.3 B.5 C.﹣3 D.﹣53.用a,b分别表示两个一位正整数,在这两个数之间添上两个零就构成一个四位数,且a在b的左边,则该四位数可表示为()A.a+100+b B.1000a+b C.100a+b D.10a+b4.下列说法正确的有()(1)√3a不是整式;(2)2+b2是单项式;(3)34是整式;(4)x+1x是多项式;(5)abπ是单项式;(6)x2+2x+1=0是多项式A.1个B.2个C.3个D.4个5.下列各组中的两个单项式,是同类项的是()A.a2与2a B.−0.5ab与12baC.a2b与ab2D.a与b6.已知x-3y=6,那么代数式x-3y-3(y-x)-2(x-3)的值为()A.16 B.17 C.18 D.197.下列计算中正确的是()A.2a+3b=5ab B.3y2−2y2=1C.32ab−1.5ba=0D.3x3+2y2=5x58.将一列有理数 -1、2、-3、4、-5、6、…按如图所示的方式进行排列,则-2023应排在()A.A位置B.B位置C.D位置D.E位置二、填空题9.“a的立方与b的平方的差”用代数式表示为:.10.多项式4x2−πxy22−13x+1的三次项系数是.11.加上5x2−3x−5等于3x2−5的多项式是.12.当x=2时,代数式px3+qx+1的值为2 023,则当x=-2时,代数式px3+qx+1的值为13.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第1个图形一共有5个实心圆点,第2个图形一共有8个实心圆点,第3个图形一共有11个实心圆点,….按此规律排列下去,第n个图形中实心圆点的个数为(用含n的代数式表示).三、解答题14.化简(1)3(2xy−y)−2xy(2)−14(2k3−4k2−28)+12(k3−2k2+4k)15.已知3x m y3与−2y n x2是同类项,求代数式m−2n−mn的值.16.先化简,再求值:(2y+3x2)−(x2−y)−x2,其中x=−2,y=13.17.已知a、b互为相反数c、d互为倒数,x等于-2的2次方,求式子a+b5+12cd+x2的值.18.放置在水平地面上两个无盖(朝上的面)的长方体纸盒,大小、形状如图.小长方体的长、宽、高分别为:a(cm)、b(cm)、c(cm);大长方体的长、宽、高分别为:1.5a(cm)、2b(cm)、2c(cm).(1)做这两个纸盒共需要材料多少平分厘米?(2)做一个大的纸盒比做一个小的纸盒多多少平分厘米材料参考答案1.D2.D3.B4.(1)B5.B6.C7.C8.A9.a3−b210.−π211.−2x2+3x12.-202113.3n+214.(1)4xy−3y(2)7+2k15.−10.16.x2+3y5..17.161218.(1)解:小长方体纸盒所需材料:ab+2ac+2bc大长方体纸盒所需材料:3ab+6ac+8bc所以一共所需材料:ab+2ac+2bc+3ab+6ac+8bc=4ab+8ac+10bc (2)解:(3ab+6ac+8bc)−(ab+2ac+2bc)=2ab+4ac+6bc。
七年级数学上册《第三章 整式的加减》单元测试卷-附答案(北师大版)一、选择题1.如果一个两位数是十位数字是a ,个位数字是b ,则这个两位数用代数式表示为( )A .abB .10abC .a b +D .10a b +2.已知12a b -=,则代数式662a b --的值是( ). A .0B .1C .-1D .53.下列代数式中,属于单项式的是( )A .a b +B .a b -C .abD .a b4.下列各选项中的两个项是同类项的是( ).A .32a b 和23a bB .35a b -和33baC .23abc 和23a bcD .2a 和2a5.“居家嗨购,网上过年”,为做好疫情防控并促进春节消费,山西省组织开展了2022年“全晋乐购”网上年货节活动,某企业采购了具有山西特色的年货慰问响应国家号召就地过年的员工,该企业选购了甲种物品()3a +件,单价是100元;乙种物品a 件,单价是240元.则该企业共花费在( )A .()140300a +元B .()200300a +元C .()300300a +元D .()340300a +元6.已知21a b -=-,则代数式124a b -+的值是( )A .-3B .-1C .2D .37.式子 2282259b x y a x m-++--,,,, 中, 单项式有( ) A .1个B .2个C .3个D .4个8.若关于 x 、 y 的多项式 2226431x ax y ax x +-+-- 中没有二次项,则 a = ( )A .3B .2C .12-D .3-9.下列运算中,正确的是( )A .325a b ab +=B .325235a a a +=C .22541a a -=D .22330a b ba -=10.图1是由3个相同小长方形拼成的图形其周长为24cm ,图2中的长方形ABCD 内放置10个相同的小长方形,则长方形ABCD 的周长为( )A .32cmB .36cmC .48cmD .60cm二、填空题11.“x 的2倍与5的和”用式子表示为 . 12.已知221a a -=-,则2362a a -+= .13.把多项式322245x y y x -+按x 的升幂排列 .14.若代数式39m a b 与22n a b -是同类项,那么m = ,n = .三、解答题15.如图是某居民小区的一块长为b 米,宽为2a 米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处各修建一个半径为a 米的扇形花台,然后在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?16.已知:a b 、 互为相反数,c d 、 互为倒数,m 是最小的正整数,求代数式2022()32a b cd m +-+的值.17.已知式 23372m km m +-+ 是关于m 的多项式,且不含一次项,求k 的值. 18.先化简,再求值:()222233()a ab a b ab b ⎡⎤+--++⎣⎦其中6a =和13b =-.四、综合题19.列代数式。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.形如121121n n n a a a a a a a ⋯--的自然数(其中 n 为正整数121n n a a a a ≤≤⋯≤≤- 1120a a a >⋯,,,n a 为019⋯,,,中的数字)称为“单峰回文数”,不超过5位的“单峰回文数”的个数是( )A .273B .219C .429D .1292.下列说法正确的是( )A .多项式221x x y ++是二次三项式;B .多项式3242x x -+-的常数项是2;C .0是单项式;D .单项式23x y π-的系数是3-. 3.下列说法中,正确的是( )A .0是单项式B .32abc - 的系数是3-,次数是3C .2mn 不是整式 D .多项式22x y xy -是五次二项式4.下列计算正确的是( )A .5533a a -=B .25a a a +=C .5552a a a +=D .22332x y xy x y += 5.已知数a b c ,,在数轴上的对应点如图所示,则下列说法:0a b +<① 0abc >② a b >③ a b b c a b c b -++-++=-④ 其中说法正确的序号是( )A .①①B .①①C .①①①D .①①①①6.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.A .12B .14C .15D .167.化简5(23)4(32)x x +--的结果为( )A .23x +B .23x -C .183x +D .183x -8.按一定规律排列的式子:23456,,,,246810x x x x x ---…,则第n 个式子为( ) A .2nn x - B .2n x n - C .()112n n x n +- D .()112n n nx +- 9.按一定规律排列的单项式:x - 23x 35x - 47x 59x -…第2024个单项式是( )A .20244047xB .20254049x -C .20242023x -D .20252025x10.代数式20.3y x - 012x + 213x 213ab 12- 232a b c -中单项式有( ) A .7个 B .4个 C .5个 D .6个二、填空题11.在某月的月历内有一正方形方框. 已知方框里有4个数字,分别为a ,b ,c ,n ,这四个数字在方框内的位置如图所示,若用数字n 分别表示a ,b ,c 则a b c ++= (用含有n 的式子表示结果).12.若()2320a b ++-=,则()2024a b += .13.如图,将一根细长的绳子沿中间对折,再沿对折后的绳子的中间对折1次,这样连续对折n 次,最后用剪刀沿对折n 次后的绳子的中间将绳子剪断,此时绳子将被剪成 段.14.观察下列各式:21342+== 313593++== 21357164+++==按此规律:()135721n ++++⋯⋯++的和为15.x 平方的3倍与5的差,用代数式表示为 ,当1x =-时,代数式的值为 .16.观察一列数:1234562510172637,,,,,根据规律,请你写出第12个数是 . 17.观察下列关于x 的单项式,探究其规律:35791113468101214x x x x x x ---⋯⋯,,,,,,按照上述规律,第2023个单项式是 .18.下图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第n 个图案中有m 个涂有阴影的小正方形,那么m 与n 的函数关系式为 .三、解答题19.先化简,再求值:(1)3m 2-(5m -3+3m 2),其中m =4.(2)﹣2x 2﹣[3y 2﹣(x 2﹣y 2)+6],其中|x +1|+(y ﹣1)2=0.20.如图,数轴上有a ,b ,c 三点.(1)用“<”将a ,b ,c 连接起来;(2)c b -_____0,c a -_____0(填“>”“<”或“=”);(3)化简1c b c a a ---+-.21.化简(1)2235231m m m m --+- (2)2222132832a b ab a b ab +--22.按照“双减”政策,丰富课后托管服务内容,学校准备订购一批篮球和跳绳,经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的90%付款.已知要购买篮球50个,跳绳x 条(50x >).(1)若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款 元;(用含x 的代数式表示)(2)当150x =时,请通过计算说明此时用哪种方案购买较为合算?(3)当150x =时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?23.如图,长方形ABCD 的长AB m =,宽AD n =,E 为DC 的中点.(1)请用字母m ,n 表示图中阴影部分面积;(2)若10m =,8n =图中阴影部分面积是多少?参考答案1.A2.C3.A4.C5.C6.D7.C8.C9.A10.D11.316n -/-16+3n12.113.()21n +14.()21n +/221n n ++15. 235x - 2-16.1214517.4048x 404718.m =4n +119.(1)-5m +3,-17;(2)-x 2-4y 2-6,-1120.(1)c a b <<;(2)<,<;(3)1b -21.(1)221m m --;(2)22766a b ab -- 22.(1)()()500020,540018x x ++(2)购买150根跳绳时,A 种方案所需要的钱数为8000元,B 种方案所需要的钱数为8100元(3)按A 方案买50个篮球,剩下的100条跳绳按B 方案购买,付款7800元23.(1)12mn ;(2)40。
北师大版七年级数学上册第三章整式及其加减单元提优测试题一、选择题1.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣2.下列式子中,符合代数式书写格式的有()①;②;③;④m+2天;⑤A.2个B.3个C.4个D.5个3.在整式大家庭中,有5个成员:①-ab;②x2;③;④0.8;⑤x2+1,其中属于单项式家族的有()A.1个B.2个C.3个D.4个4.买了n千克橘子,花了m元,则这种橘子的单价是()元/千克.A. B. C.m D.m-n5.下列计算正确的是()A.x2y﹣2xy2=﹣x2yB.2a+3b=5abC.a3+a2=a5D.﹣3ab﹣3ab=﹣6ab6.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是()A.m=2,n=2;B.m=-2,n=2;C.m=-1,n=2;D.m=2,n=-1。
7.已知一个多项式与3x2+9x的和等于3x2+4x-1,则此多项式是()A.-6x2-5x-1B.-5x-1C.-6x2+5x+1D.-5x+18.如果代数式8y2-4y+5的值是13,那么代数式2y2-y+1的值等于()A.2B.3C.-2D.49.已知|a+13|+|b﹣10|=0,则a+b的值是()A.-3B.3C.23D.-2310.百位数字是a,十位数字是b,个位数字是c,这个三位数是()A.abcB.a+b+cC.100a+10b+cD.100c+10b+a11.代数式y2+2y+7的值是6,则4y2+8y﹣5的值是()A.9B.﹣9C.18D.﹣18二、填空题12.﹣的系数是________,次数是________.13.代数式ab﹣πxy﹣x3的次数是________,其中﹣πxy项的系数是________.14.已知2x m y3与3xy n是同类项,则代数式m﹣2n的值是________.15.若a m+1b3与﹣3a4b n+7的和是单项式,则m+n的值为________.16.计算:(8a2b﹣4ab2)÷(﹣ab)=________.17.联欢会上,小红按照4个红气球,3个黄气球,2个绿气球的顺序把气球串起来,装饰会场,则第52个气球的颜色为________.三、解答题18.先去括号,再合并同类项:(1)5a-(a+3b);(2)(a2+2ab+b2)-(a2-2ab+b2);(3)3(2x2-y2)-2(3y2-2x2);(4)(-x2+5x+4)+2(5x-4+2x2).19.化简求值:(3a2b﹣2ab2)﹣(ab2﹣2a2b+7),其中a=﹣1,b=2.20.先化简,再求值:(1)(﹣x2+5+4x)+(5x﹣4+2x2),其中x=﹣2(2)5(3a2b﹣ab2﹣1)﹣(﹣5ab2+3a2b﹣5),其中a=﹣1,b=.21.已知m﹣n=4,mn=﹣1.求:(﹣2mn+2m+3n)﹣(3mn+2n﹣2m)﹣(m+4n+mn)的值.22.已知:m2与-2n2的和为A,1+n2与-2m2的差为B,求3A-4B的值.23.某中学七年级A班有50人,某次活动中分为四组,第一组有a人,第二组比第一组的一半多6人,第三组的人数等于前两组人数的和.(1)求第四组的人数.(用含a的式子表示)(2)试判断a=14时,是否满足题意.参考答案一、选择题1.B2.A3.C4.B5.D6.C7.B8.B9.A10.C11.B二、填空题12.﹣;313.3;14.﹣515.﹣116.﹣16a+8b17.黄色三、解答题18.(1)解:原式=5a-a-3b=4a-3b.(2)解:原式=a2+2ab+b2-a2+2ab-b2=4ab.(3)解:原式=6x2-3y2-6y2+4x2=10x2-9y2.(4)解:原式=-x2+5x+4+10x-8+4x2=3x2+15x-4.19.解:原式=3a2b﹣2ab2﹣ab2+2a2b﹣7=5a2b﹣3ab2﹣7,当a=﹣1,b=2时,原式=10+12﹣7=1520.(1)解:原式=(﹣x2+2x2)+(4x+5x)+(5﹣4)=x2+9x+1,当x=﹣2时,原式=x2+9x+1=﹣13(2)解:原式=15a2b﹣5ab2﹣5+5ab2﹣3a2b+5=12a2b,当a=﹣1,b=时,原式=12a2b=421.解:原式=﹣2mn+2m+3n﹣3mn﹣2n+2m﹣m﹣4n﹣mn=﹣6mn+3m﹣3n=﹣6mn+3(m﹣n)把m﹣n=4,mn=﹣1代入得:原式=6+12=18.22.解:∵A=m2-2n2,B=1+n2-(-2m2)=1+n2+2m2∴3A-4B=3(m2-2n2)-4(1+n2+2m2)=3m2-6n2-4-4n2-8m2=-5m2-10n2-423.(1)解:=38﹣3a(2)解:当a=14时,第四组人数为:38﹣3×14=﹣4,不符合题意,∴当a=14时不满足题意.。
北师大版七年级上册数学第三章整式及其加减含答案一、单选题(共15题,共计45分)1、下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子....试探究图6中有()个棋子.A.40B.45C.36D.502、已知线段,在的延长线上取一点C,使;再在的反向延长线上取一点D,使,则下列结论错误的是( )A. B. C. D.3、下列运算正确的是()A.a 2+a 3=a 5B.a 2•a 3=a 6C.a 3+a 2=aD.(a 2)3=a 64、下列图形都是由同样大小的五角星按一定的规律组成,其中第个图形一共有2个五角星,第个图形一共有8个五角星,第个图形一共有18个五角星,,则第个图形中五角星的个数为A.84B.90C.94D.985、下列代数式的书写正确的是()A.a÷bB.3×xC.﹣1abD. xy6、若|a+3|+(b﹣2)2=0,则a b的值为()A.-9B.9C.-8D.87、下列运算正确的是()A. a+2 a=3 a2B. a2• a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a68、下列式子中是同类项的是( )A. 和B. 和C. 和D.和9、要使关于x,y多项式4x+7y+3﹣2ky+2k不含y的项,则k的值是()A.0B.C.D.﹣10、下面去括号正确的是()A.x 2﹣(2y 2﹣x+z)=x 2﹣2y 2﹣x+zB.2a+(﹣6x+4y﹣2)=2a﹣6x+4y ﹣2C.3a﹣[6a﹣(4a﹣1)]=3a﹣6a﹣4a+1D.﹣(2x 2﹣y)+(z+1)=﹣2x 2﹣y﹣z﹣111、已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是()A.2B.3C.4D.612、观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n(n是正整数)的结果为()A.(2n+1)2B.(2n-1)2C.(n+2) 2D.n 213、挪威数学家阿贝尔,年轻时就利用阶梯形,发现了一个重要的恒等式——阿贝尔公式:右图是一个简单的阶梯形,可用两种方法,每一种把图形分割成为两个矩形.利用它们之间的面积关系,可以得到:a1b1+a2b2=()A.a1(b1-b2)+(a1+a2)b1B.a2(b2-b1)+(a1+a2)b2C.a1(b1-b2)+(a1+a2)b2D.a2(b1-b2)+(a1+a2)b114、一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x 2﹣5x+3B.﹣x 2+x﹣1C.﹣x 2+5x﹣3D.x 2﹣5x﹣1315、若﹣3x2m y3与2x4y n是同类.则m n=()A.5B.6C.7D.8二、填空题(共10题,共计30分)16、观察下面两行数:第一行:4,−9,16,−25,36,…第二行:7,−6,19,−22,39,…则第二行中第 n 个数是________.17、在长为am,宽为bm的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为________m2,现为增加美感,增加了竖直方向的宽为1m的小路,则此时余下草坪的面积可表示为________m2.18、若多项式不含项,则=________19、用火柴棍象如图这样搭三角形,则搭2017个这样的三角形需要________根火柴棍.20、若9a x b3与﹣7a2x﹣4b3是同类项,则x=________.21、观察下列算式:,,,,请你在察规律之后并用你得到的规律填空:________×________+________= ,第n个式子呢? ________22、观察下列按规律排列的一组数:51, 52, 53, 55, 58,513,…,若x,y,z表示这组数中连续的三个数,则x,y,z所满足的关系式为________.23、“x平方的3倍与-5的差”用代数式表示为:________.24、找规律.一张长方形桌子可坐6人,按下图方式将桌子拼在一起.① 2张桌子拼在一起可坐________人;3张桌子拼在一起可坐________人;n张桌子拼在一起可坐________人.② 一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐________人.25、若单项式与的和是单项式,则常数的值是________.三、解答题(共5题,共计25分)26、计算:(3x+4y)2-(4y-3x)(3x+4y)27、某人购买三种商品所用金额的比是2:3:4,若购买种商品的金额为元,则他购买这三种商品的总金额是多少元?28、如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.29、观察下面的计算:,;,;,;,﹔根据上面的计算,你能作出什么猜测?你将用什么方法来判断你的猜想是正确的?30、已知代数式的值与字母的取值无关,求的算术平方根.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、D5、D6、B8、C9、C10、B11、C12、A13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、。
北师大版七年级数学上册第三章 整式及其加减 单元复习测试题一、选择题1.下列说法正确的是( )A .单项式是整式,整式也是单项式 B.3x -15是单项式C .6x 2-3x +1的项分别是6x 2,-3x ,1 D.1x +2是一次二项式2.下列各组单项式中,不是同类项的是( )A .3a 2b 与-2ba 2B .32m 与23m C .-xy 2与2yx 2D .-ab 2与2ab3.若3xm +5y 2与x 3y n 的和是单项式,则m n=( ) A .2B .4C .8D .94.减去-4a 结果等于3a 2-2a -1的多项式是( ) A .3a 2-6a -1 B .5a 2-1 C .3a 2+2a -1D .3a 2+6a -15.下列各式中与a -b -c 的值不相等的是(B) A .a -(b +c) B .a -(b -c) C .(a -b)+(-c) D .(-c)-(b -a)6.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( )A .3a +2bB .3a +4bC .6a +2bD .6a +4b7.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .2528.设A ,B ,C 均为多项式,小方同学在计算“A -B ”时,误将符号抄错而计算成了“A +B ”,得到结果是C ,其中A =12x 2+x -1,C =x 2+2x ,那么A -B =( )A .x 2-2x B .x 2+2xC .-2D .-2x二、填空题9.在式子①m +5;②ab ;③a =1;④0;⑤π;⑥3(m +n);⑦3x >5中,代数式有_____个. 10.单项式-πx 2y2的系数是_____,次数是_____.11.排球每个m 元,足球每个n 元,则代数式5m +10n 表示_____ 12.合并同类项:4a 2+6a 2-a 2=_____.13.当a =-1,b =3时,代数式2a -b 的值等于_____. 14.(2)若多项式-43x m -3-2x +1是六次三项式,则m 的值是9.15.观察下列单项式:ab 2,-2a 2b 3,3a 3b 4,-4a 4b 5,…,按此规律,第2 020个单项式是_____16.按照如图所示的方式摆放餐桌,每个小长方形代表一张餐桌,每个小圆圈代表一个人,按这样规律下去,摆n 张餐桌可以坐_____人.…17.已知A =x 2-2xy ,B =y 2+3xy ,则化简2A -3B =_____.18.如图所示是一个运算程序示意图.若第一次输入k 的值为125,则第2 020次输出的结果是_____.19.已知a +4b =-15,那么式子9(a +2b)-2(2a -b)的值是_____.三、解答题 20.化简:(1)5a 2+3ab -4-2ab -5a 2;(2)-x +2(2x -2)-3(3x +5).21.先化简,再求值:(3x 2-xy +y)-2(5xy -4x 2+y),其中x =-2,y =13.22.某公园里一块草坪的形状如图中的阴影部分(长度单位:m). (1)用整式表示草坪的面积; (2)若a =2,求草坪的面积.23.某市出租车收费标准是:起步价为8元,3千米后每千米为2元,若某人乘坐了x(x>3)千米.(1)用含x的代数式表示他应支付的车费;(2)行驶30千米,应付多少钱?(3)若他支付了46元,你能算出他乘坐的路程吗?24.嘉淇准备完成题目:化简:(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?25.已知a ,b ,c 在数轴上的位置如图所示.(1)填空:①a ,b 之间的距离为_____; ②b ,c 之间的距离为_____; ③a ,c 之间的距离为_____;(2)化简:|a +1|-|c -b|+|a +b -1|. 参考答案回顾与思考(三) 整式及其加减一、选择题1.下列说法正确的是(C)A .单项式是整式,整式也是单项式 B.3x -15是单项式。
单元测试(三) 整式及其加减(时间:120分钟 满分:150分)一、选择题(本大题共15小题,每小题3分,共45分)1.下列各式中不是单项式的是( )A .-a 3B .-15C .0D .-3a2.单项式-3xy 2z 3的系数是( )A .-1B .5C .6D .-33.某班数学兴趣小组共有a 人,其中女生占30%,那么女生人数是( )A .30%aB .(1-30%)aC.a 30%D.a 1-30%4.下列各组式子中,为同类项的是( )A .5x 2y 与-2xy 2B .4x 与4x 2C .-3xy 与32yx D .6x 3y 4与-6x 3z 4 5.当a =-1,b =2时,代数式a 2b 的值是( )A .-2B .1C .2D .-16.列式表示“比m 的平方的3倍大1的数”是( )A .(3m )2+1B .3m 2+1C .3(m +1)2D .(3m +1)27.若m ,n 为自然数,多项式x m +y n +4m +n 的次数应是( )A .mB .nC .m ,n 中的较大数D .m +n8.化简2x -(x -y)-y 的结果是( )A .3xB .xC .x -2yD .2x -2y9.(玉林中考)下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=110.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 211.下列判断错误的是( )A .多项式5x 2-2x +4是二次三项式B .单项式-a 2b 3c 4的系数是-1,次数是9C .式子m +5,ab ,-2,s v 都是代数式D .多项式与多项式的和一定是多项式12.十位数字是x ,个位数字是y 的两位数是 ( )A .xyB .x +10yC .x +yD .10x +y13.(厦门中考)某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元14.(湘西中考)已知x -2y =3,则代数式6-2x +4y 的值为( )A .0B .-1C .-3D .315.下面一组按规律排列的数:0,2,8,26,80,…,则第2 016个数是( )A .32 016B .32 015C .32 016-1D .32 015-1二、填空题(本大题共5小题,每小题5分,共25分)16.去括号:-(3x -2)=________.17.请你结合生活实际,设计具体情境,解释下列代数式30a的意义:________________________________. 18.对于有理数a ,b ,定义a ⊙b =3a +2b ,则(x +y)⊙(x -y)化简后得________.19.当m =________时,代数式 2x 2+(m +2)xy -5x 不含xy 项.20.若用围棋子摆出下列一组图形:…(1) (2) (3)按照这种方法摆下去,第n 个图形共用________枚棋子.三、解答题(本大题共7小题,共80分)21.(8分)化简下列各式:(1)a +2b +3a -2b; (2)2(a -1)-(2a -3)+3.22.(8分)先化简,再求值:(2m 2-3mn +8)-(5mn -4m 2+8),其中m =2,n =1.23.(10分)如图所示:(1) 用代数式表示阴影部分的面积;(2) 当a =10,b =4时,求阴影部分的面积(π取3.14,结果精确到0.01).24.(12分)已知a ,b ,c 在数轴上的位置如图所示,求|b +c |-|a -b |-|c -b |的值.25.(12分)已知长方形的一边长为2a+3b,另一边比它短(b-a),试计算此长方形的周长.26.(14分)已知A=2a2+3ab-2a-1,B=-a2+ab-1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值.27.(16分)某农户承包荒山若干亩,种果树2 000棵.今年水果总产量为18 000千克,此水果在市场上每千克售a元,在果园每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1 000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1)分别用a,b表示两种方式出售水果的收入;(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.参考答案1.D 2.D 3.A 4.C 5.C 6.B 7.C 8.B 9.C 10.C11.D 12.D 13.B 14.A 15.D 16.-3x +2 17.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的30a18.5x +y 19.-2 20.3n 21.(1)原式=4a. (2)原式=4. 22.原式=2m 2-3mn +8-5mn +4m 2-8=6m 2-8mn.当m =2,n =1时,原式=6×22-8×2×1=8. 23.(1)ab -12πb 2.(2)当a =10,b =4时,ab -12πb 2≈10×4-12×3.14×42=14.88. 24.由图知:b +c >0,a -b <0,c -b >0,|b +c|-|a -b|-|c -b|=b +c -[-(a -b)]-(c -b)=b +c +a -b -c +b =a +b. 25.长方形的另一边长为3a +2b ,则周长为2[(2a +3b)+(3a +2b)]=2(5a +5b)=10a +10b. 26.(1)3A +6B =3(2a 2+3ab -2a -1)+6(-a 2+ab -1)=6a 2+9ab -6a -3-6a 2+6ab -6=15ab -6a -9.(2)因为15ab -6a -9=a(15b -6)-9,且3A +6B 的值与a 的取值无关,所以15b =6,即b =25. 27.(1)将这批水果拉到市场上出售收入为18 000a -18 0001 000×8×25-18 0001 000×100=18 000a -3 600-1 800=18 000a -5 400(元).在果园直接出售收入为18 000b 元.(2)当a =1.3时,市场收入为18 000a -5 400=18 000×1.3-5 400=18 000(元).当b =1.1时,果园收入为18 000b =18 000×1.1=19 800(元).因为18 000<19 800,所以应选择在果园出售.。
第三章整式及其加减 第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.在0,a ,a -b ,a2,a 2b +ab 2,3>2,3+3=6中,代数式有( )A .3个B .4个C .5个D .6个2.列代数式表示“比m 的平方的3倍大1的数”是( ) A .(3m )2+1 B .3m 2+1 C .3(m +1)2 D .(3m +1)23.某商店对一品牌服装进行优惠促销,将原价为a 元/件的服装以(45a -20)元/件售出则以下四种说法中可以准确表达该商品促销方法的是( )A .将原价降低20元后,再打8折B .将原价打8折之后,再降低20元C .将原价降低20元后,再打2折D .将原价打2折后,再降低20元4.若a =4,b =12,则代数式a 2-ab 的值为( ) A .64 B .30 C .-30 D .-32 5.下列各式中,不是同类项的是( ) A .2ab 2与-3b 2a B .-2πx 2与x 2 C .-12m 3n 2与5n 2m 3 D .-xy2与6yx 26.计算2m 2n -3nm 2的结果为( )A .-1B .-5 m 2nC .-m 2nD .不能合并 7.化简x -[y -2x -(-x -y )]=( ) A .2x B .-2x C .3x -2y D .2x -2y8.如果代数式2a 2+3a +1的值是6,那么代数式6a 2+9a +5的值为( ) A .18 B .16 C .15 D .209.已知M =4x 2-5x +11,N =3x 2-5x +10,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .不确定10.古希腊数学家把1,3,6,10,15,21,…叫做三角数,它们有一定的规律,若把第1个三角数记为a 1,第2个三角数记为a 2,…,第n 个三角数记为a n ,则a n -1+a n =( )A .(n -1)2B .n 2C .(n +1)2D .(n +2)2第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.多项式1+2xy -3xy 2的次数是________,最高次项的系数为________. 12.已知12x n -2m y 4与-x 3y 2n 的和仍是单项式,则(mn)2018=________.13.已知x 是两位数,y 是三位数,将y 放在x 左边组成的五位数可表示为________. 14.若2a 2-3a =6,则4a 2-6a +100=________. 15.定义一种运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,计算⎪⎪⎪⎪⎪⎪x +1 3x -1 2=________.16.一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-a n -1(n ≥2,且n 为正整数),则a 2018=________.三、解答题(共72分)17.(6分)化简:5(x -y)+2(x -y)-3(x -y).18.(6分)已知关于x ,y 的单项式-3x a y 与bx 2y 能合并为一项,其结果为-6x 2y ,求多项式2(-4a 2+1)-5(a 2-ba)+4(3a 2-ab)的值.19.(8分)已知A =2a 2+3ab -2a -1,B =-a 2+ab -1. (1)求3A +6B 的值;(2)若3A +6B 的值与a 的取值无关,求b 的值.20.(8分)(1)已知多项式-23x 2y m +1+xy 2-2x 3+8是六次四项式,单项式-35x 3a y 5-m 的次数与该多项式的次数相同,求m ,a 的值;(2)已知多项式mx 4+(m -2)x 3+(2n +1)x 2-3x +n 不含x 2和x 3的项,请你写出这个多项式,并求出当x =-1时,这个多项式的值.21.(10分)某市居民使用自来水按如下标准收费:若每户月用水量不超过20 m 3,则按2.4元/m 3收费;若月用水量超过20 m 3,则超过20 m 3的部分按4元/m 3收费.(1)小明家7月份用水15 m 3,则需交水费________元;小李家7月份用水24 m 3,则需交水费________元.(2)小王家7月份用水a m 3,则小王家应交水费多少元?22.(10分)某超市在五一期间进行促销,其优惠方法如下:(1)王老师一次性购物600元,他实际付款________元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款________元,当x 大于或者等于500元时,他实际付款________元(用含x 的代数式表示);(3)如果王老师两次购物款合计820元,第一次购物的货款为a 元(a 小于300且大于200),用含a 的代数式表示王老师两次购物实际付款多少元?23.(12分)如图3-Z -1,在一些大小相等的正方形内分别排列着一些等圆.图3-Z -1(2)⑳个图形中有多少个圆.(3)若图3-Z-1中正方形的边长为12,分别计算出前3个图形中阴影部分的面积,并由此给出一个关于这些图形中的阴影部分面积的合理猜想.24.(12分)汽车从甲地向乙地行驶,汽车离乙地的距离s(千米)与行驶时间t(时)之间的关系如下表所示:(1)(2)当t=6.5时,求汽车离乙地的距离s(千米)的值;(3)根据所列代数式回答:你知道甲地和乙地相距多远吗?(4)如果这辆汽车上午8:00从甲地出发,途中休息1小时,请你计算,如果按这样的速度,几点钟可以到达乙地?1.C 2.B3.B [解析] 代数式45a -20的意义是比a 的80%少20,故商品促销的方法是先按原价打8折,然后降低20元.4.D 5.D6.C [解析] 2m 2n -3nm 2=-m 2n .故选C. 7.D 8.D9.A [解析] M -N =x 2+1.因为x 2≥0,所以x 2+1≥1>0,所以M >N . 10.B11.3 -3 12.1 13.100y +x 14.11215.5-x [解析] ⎪⎪⎪⎪⎪⎪x +13x -12=2(x +1)-3(x -1)=5-x .解题突破针对新定义问题,首先要根据定义内容,理解运算法则,然后套用公式计算即可. 16.2 [解析] a 1=12,a 2=11-12=2,a 3=11-2=-1,a 4=11-(-1)=12,…,可以发现:该组数以12,2,-1循环出现.因为2018÷3=672……2,所以a 2018=2. 方法指导对于给出运算方式,找出第n 个数据的问题,可先代入几个数据,找出其变化规律,并观察变化过程中是否有周期变化,从而求解.17.4x -4y18.解:由题意可知a =2,-3+b =-6,解得b =-3. 多项式化简为-a 2+ab +2.将a =2,b =-3代入,得原式=-8. 19.解:(1)3A +6B =15ab -6a -9.(2)因为15ab -6a -9=(15b -6)a -9,且3A +6B 的值与a 的取值无关,所以15b -6=0,解得b =25.20.解:(1)根据题意,知2+m +1=6,3a +5-m =6,解得m =3,a =43.(2)因为多项式mx 4+(m -2)x 3+(2n +1)x 2-3x +n 不含x 2和x 3的项, 所以m -2=0,2n +1=0,解得m =2,n =-12,即多项式为2x 4-3x -12,当x =-1时,原式=2+3-12=92.21.解:(1)小明家7月份用水15 m 3,则需交水费15×2.4=36(元); 小李家7月份用水24 m 3,则需交水费20×2.4+(24-20)×4=64(元). (2)当0≤a ≤20时,小王家应交水费2.4a 元;当a >20时,小王家应交水费20×2.4+4(a -20)=(4a -32)元. 22.解:(1)500×0.9+(600-500)×0.8=530(元). (2)0.9x (0.8x +50)(3)王老师两次购物的实际付款为0.9a +0.8×(820-a -500)+450=(0.1a +706)元. 23.解:(1)表中数据依次为1,4,9,16,25,36. (2)n 2 400(3)图①中阴影部分的面积为144-36π. 图②中阴影部分的面积为144-36π. 图③中阴影部分的面积为144-36π. 这些图形中阴影部分的面积都等于144-36π. 24.(1)360-40t (2)100千米(3)相距360千米(4)下午18:00可以到达乙地。
一,选择。
(每题3分,共36分) 1、下列各式不是代数式的是( ) A .πr 2 B .3C . 3+x=yD .5yx - 2、一辆汽车在a 分钟内行驶4m米,则它在4小时内行驶( )。
A 、3m米B 、a m 10米C 、a m 60米D 、am 米3.一台电视机成本价为a 元,销售价比成本价增加了0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为 ( )A .a )701)(251(0000++元B .a )251(700000+元C .a )701)(251(0000-+元D .a )70251(0000++元4.已知a -5b =-3,则4-31a +35b 的值是( ). A .0B .2C .4D .55.如果单项式22m x y +与n x y 的和仍然是一个单项式,则m 、n 的值是( )A.m=2,n=2 B.m=-1,n=2 C.m=-2,n=2 D.m=2,n=-1 6.+-=-+-)()(c a d c b a ( )A . b d -B .d b --C .d b -D . d b +7.若A=4x 2-3x-2,B=4x 2-3x-4,则A,B 的大小关系是( )A.A<BB.A=BC.A>BD.无法确定 8、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22 B 、)123(123-+-+=-+-y x a y x a C 、1253)]12(5[3+--=---x x x x x x D 、-)1()2(12-+--=+--a y x a y x9、已知:关于x 的多项式2323435)1()5(3x x x x n x m x 和不含+--++-( ) A. m=-5,n=-1 B. m=5,n=1 C. m=-5,n=1 D. m=5,n=-110.若将代数式中的任意2个字母交换,代数式不变,则称这个代数式为完全对称 如A+B+C 就是完全对称式,下列三个代数式:①(a-b)2;②ab+bc+ca; ③a 2b+b 2c+c 2a.其中是完全对称式的是?A ①②B ①③C ②③D ①②③ 11.一列数a 1、a 2、a 3……..其中a 1=21,a n=111--n a ,(n 为不小于2的整数),则a 2015的值是( )。
A.21B. 2C. -1D.-2 12. (2013重庆))下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1棵棋子,第②个图形一共有6棵棋子,第③个图形一共有16棵棋子,…,则第⑥个图形中棋子的颗数为()A. 51B. 70C.76D.81二、填空。
(每题3分,共18分) 1.多项式-12x 3y+3xy 3-5x 2y 3-1是______次______项式,最高次项是______,常数项是_________,最高次项的系数是_________. 2.多项式(m-4)x︱m ︱-2y 3+3x 2y 2是五次二项式,则m= 。
3. 三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵4、数a 、b 在数轴上的位置如图所示,化简a b a --= ___。
5.第三队种的树比第二队种的树的一半少6棵,三队共种树__ ___棵._.6.如图,在图(1)中,互不重叠的三角形共有4个,在图(2)中,互不重叠的三角形共有7个,在图(3)中,互不重叠的三角形共有10个,…,则在第n 个图形中,互不重叠的 三角形共有( )个。
三/解答题。
1.(6分)已知 1232+-=a a A ,2352+-=a a B ,求B A 32-.其中a=-91。
2.(6分)已知有理数在数轴上的位置如图所示,化简:|a+b|-|a-b|-|-b|+|a| 3.(8分)十一”前夕,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。
(1)分别写出两印刷厂的收费y (元)与印制数量 x (份)之间的函数关系式; (2)旅行社要印制2400份宣传材料,选择哪家印刷厂比较合算?4.(8分)某位同学做一道题:已知两个多项式A 、B ,求A-B 的值.他误将A-B 看成A+B ,求得结果为3x 2-3x+5,已知B=x 2-x-1.(1)求多项式A ; (2)求A-B 的正确答案.5.(10分)一张正方形的桌子可坐4人,按照如图所示的方式将桌子拼在一起,回答下列问题:(1)两张桌子拼在一起可以坐几人?三张桌子拼在一起可以坐几人?n张桌子拼在一起可以坐几人?(2)一家酒楼有60张这样的正方形桌子,按图所示的方式每4张拼成一张大桌子,则60张桌子可以拼成15张大桌子,共可坐多少人?(3)在(2)中若每4张桌子拼成一张大的正方形桌子,共可坐多少人?(4)对于这家酒楼,(2)、(3)中哪种拼桌子的方式能使坐的人更多?6.(10分)探索规律:将连续的偶数2,4,6,8,…,排成如下表:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.二,选择。
(每题3分,共36分) 1、下列各式不是代数式的是( )A .πr 2B .3C . 3+x=yD . 5yx -2、一辆汽车在a 分钟内行驶4m米,则它在4小时内行驶()。
A 、3m 米B 、a m 10米C 、a m 60米D 、am 米4.下列说法中正确的是( ) A .x 的次数是0 B .y1是单项式 C .21是单项式 D .a 5-的系数是55.化简 )]72(53[2b a a b a ----的结果是 ( )A .b a 107+-B .b a 45+C .b a 4--D .b a 109- 6.一台电视机成本价为a 元,销售价比成本价增加了0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为 ( )A .a )701)(251(0000++元B .a )251(700000+元C .a )701)(251(0000-+元D .a )70251(0000++元 7.下列各组单项式中,是同类项的是( )A. 32b a 与b a 2 B.y x 23与23xy C.a 与1 D. bc 2与abc 28.下列计算正确的是( )A.x x x =-45B.2x x x =+ C.85332x x x =+ D.33323x x x =+- 9.如果单项式22m x y+与nx y 的和仍然是一个单项式,则m 、n 的值是( )10.下列各题去括号所得结果正确的是( )A.22(2)2x x y z x x y z --+=-++B.(231)231x x y x x y --+-=+-+C.3[5(1)]351x x x x x x ---=--+D.22(1)(2)12x x x x ---=---11.若-4mx y 2与x 4n y 是同类项,则m-n 的值是( ) A.2 B.6 C.-2 D.-612、代数式,21a a +43,21,2009,,3,42mnbc a a b a xy -+中单项式的个数是( )A 、3B 、4C 、5D 、613.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 22223421y y xy x +=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A .xy 7-B . xy 7+C . xy -D .xy +14、如果∣a +2∣+(b -12)=0,那么代数式2005(a+b)的值是( )(A )-2005; (B )2005; (C )-1; (D )115、如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A .8 B .9 C .16 D .17 二、填空。
(每题3分,共18分) 1.多项式-12x 3y+3xy 3-5x 2y 3-1是______次______项式,最高次项是______,常数项是2.单项式853ab-的系数是 ,次数是 . 3.当2x =-时,代数式651x x+-的值是 ;4.计算:22224(2)(2)a b ab a b ab --+= ;5.在代数式0,a 2+1,x 2y,-a,x+-2xy+1,23-a 2b 中,单项式有____,多项式有________. 6. (2008年湖州市)将自然数按以下规律排列,则2008所在的位置是第 行第 列.7、若代数式2x 2+3x +7的值是8,则代数式4x 2+6x +15= 。
8.如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2015个图案中“♣”,共 个。
三、解答题1. (12分)化简: 2237(43)2x x x x ⎡⎤----⎣⎦ (2)()xy y y yx ---+2.(8分)化简求值 (1))3123()21(22122b a b a a -----其中 32,2=-=b a .3.(8分)某位同学做一道题:已知两个多项式A 、B ,求A-B 的值.他误将A-B 看成A+B ,求得结果为3x 2-3x+5,已知B=x 2-x-1.(1)求多项式A ; (2)求A-B 的正确答案4 (6分)有这样一道题“当2,2-==b a 时,求多项式⎪⎭⎫ ⎝⎛---+-2233233414213b b a b a b b a b a ⎪⎭⎫⎝⎛++b a b a 23341 322+-b 的值”,马小虎做题时把2=a 错抄成2-=a ,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.5、已知:;)()(,,0553212=+-m x y x m 满足2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值.6.在如图所示的2011年1月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a 、b 、c 、d 又有什么规律呢?请用含a 、b 、c 、d 的等式表示。
(其中a 、b 、c 、d 四个数之间的大小关系是a<b<c<d ,a 、b 、c 、d 整数)。