第22章 二次函数 单元检测题2
- 格式:pdf
- 大小:288.05 KB
- 文档页数:6
第二十二章 二次函数单元检测卷一、单选题(共30分,每小题3分) 1.下列函数中,属于二次函数的是( ) A .3y x =-B .22(1)y x x =-+C .(1)1y x x =--D .21y x =2.抛物线y =3(x ﹣1)2+1的顶点坐标是( ) A .(1,1)B .(﹣1,1)C .(﹣1,﹣1)D .(1,﹣1)3.将二次函数2=2+3y x x -配方为()2y x h k =-+的形式为( ) A .()211y x =-+B .()212y x =-+C .()223y x =--D .()221y x =--4.由二次函数2231y x +=(﹣),可知( ) A .其图象的开口向下 B .其图象的对称轴为直线x =﹣3 C .其最小值为1D .当x <3时,y 随x 的增大而增大5.把抛物线2y x =-向左平移1个单位,再向上平移3个单位,平移后的解析式为( ) A .2(1)3y x =--+ B .2(1)3y x =-++ C .2(1)3y x =---D .2(1)3y x =-+-6.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( ) A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小(第6题图) (第7题图)7.二次函数2y x bx c =-++的图象如图所示:若点()11,A x y ,()22,B x y 在此函数图象上,121x x <<,1y 与2y 的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 28.当0ab >时,2y ax =与y ax b =+的图象大致是( )A.B.C.D.9.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,①4ac<b2,①2a+b=0,①a-b+c>2,其中正确的结论的个数是()A.1B.2C.3D.410.如图,在正方形ABCD中,4→→向终点C运动,连接DP,AB=,点P从点A出发沿路径A B C作DP的垂直平分线MN与正方形ABCD的边交于M,N两点,设点P的运动路程为x,PMN的面积为y,则下列图象能大致反映y与x函数关系的是()A .B .C .D .二、填空题(共24分,每小题3分)11.抛物线 23y x =- 向上平移 4 个单位长度,得到抛物线____;再向____平移____个单位长度得到抛物线 231y x =--.12.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.13.已知二次函数22y x x m ++=-的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 _____.(第13题图) (第14题图)14.如图,已知抛物线y =ax 2+bx +c 与直线y =k +m 交于A (﹣3,﹣1)、B (0,3)两点,则关于x 的不等式ax 2+bx +c >kx +m 的解集是______.15.某单位商品的利润y(元)与变化的单价x 之间的关系为:y =-5x 2+10x ,当0.5≤x≤2时,最大利润是_____元.16.如图,以地面为x 轴,一名男生推铅球,铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.(第16题图) (第17题图)17.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当1020x ≤≤时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).18.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.三、解答题(共66分)19.写出下列抛物线的开口方向,对称轴及顶点坐标.(共8分) (1)()21513y x =--; (2)()2421y x =-++.20.如图,已知二次函数2y ax bx c =++的图象过A (2,0),B (0,-1)和C (4,5)三点.(共8分) (1)求二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线1y x =+,并写出当在什么范围内时,一次函数的值大于二次函数的值.21.掷实心球是兰州市高中阶段学校招生体育考试的选考项目.如图1是一名女生投掷实心球,实心求行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示,抛出时起点处高度为5m3,当水平距离为3m时,实心球行进至最高点3m处.(共6分)(1)求y关于x的函数表达式;(2)根据兰州市高中阶段学校招生体有考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.70m,此项考试得分为满分10分.该女生在此项考试中是否得满分,请说明理由.22.如图,在①ABC中,①B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向点B以2mm/s 的速度移动,动点Q从点B开始沿边BC向点C以4mm/s的速度移动.如果P,Q两点分别从A,B两点同时出发,请求出①PBQ的面积S与出发时间t的函数解析式及t的取值范围.(共6分)23.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m),设花圃的宽AB为xm,面积为S2m.(共9分)(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为452m的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?(结果保留两位小数)24.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓。
第22章 二次函数单元检测试题一、选择题:(每小题4分,共32分)1、抛物线742++-=x x y 的顶点坐标为( )A 、(-2,3)B 、(2,11)C 、(-2,7)D 、(2,-3) 2、若抛物线c x x y +-=22与y 轴交于点(0,-3),则下列说法不正确的是( ) A 、抛物线开口方向向上 B 、抛物线的对称轴是直线1=xC 、当1=x 时,y 的最大值为-4D 、抛物线与x 轴的交点为(-1,0),(3,0) 3、要得到二次函数222-+-=x x y 的图象,需将2x y -=的图象( )A 、向左平移2个单位,再向下平移2个单位B 、向右平移2个单位,再向上平移2个单位C 、向左平移1个单位,再向上平移1个单位D 、向右平移1个单位,再向下平移1个单位 4、在平面直角坐标系中,若将抛物线3422+-=x x y 先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后,所得到的抛物线的顶点坐标为( ) A 、(-2,3) B 、(-1,4) C 、(1,4) D 、(4,3) 5、抛物线c bx x y ++=2的图象向右平移2个单位,再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为( )A 、2,2==c b B 、0,2==c b C 、1,2-=-=c b D 、2,3=-=c b 6、二次函数y=ax 2+bx+1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <1 7、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为x=12-.下列结论中,正确的是( )A .0>abcB .0=+b aC .02>+c bD .b c a 24<+8、二次函数c bx ax y ++=2的图像如图所示,反比列函数xay =与正比列函数bx y =在同一坐标系内的大致图像是( )二、填空题:(每小题4分,共40分) 1、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
数学试卷 第1页(共4页)数学试卷 第2页(共4页)第22章 《二次函数》单元检测试题考生注意: 1.考试时间90分钟.2. 全卷共三大题,满分100分.题号 一 二三总分 21 22 23 24 25 262728 分数一 、填空题(本题共10小题,每小题3分,共30分)1.已知圆的半径为10m ,当半径减小x (m)时,圆的面积就减小y (m 2 ),y 是x 的函数解析式为___ __________,定义域为______ ______. 2.二次函数y =ax 2 +4x+a 的最大值为3,求a =________.3.如果将二次函数y=2x 2 的图象沿x 轴向左平移1个单位,再沿y 轴向上平移2个单位,那么所得图象的函数解析式是_______ ___.4.已知(2)2my m x =-+是y 关于x 的二次函数,那么m 的值为__________.5.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:温度t /℃ -4 -2 0 1 4 植物高度增长量l /mm4149494625科学家经过猜想、推测出l 与t 之间是二次函数关系.由此可以推测最适合这种植物生长的温度为 ℃.6.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线231x y =于点B ,C ,则BC 的长为 .7.已知函数y =ax 2+bx +c 的图象的一部分如图所示.该图象过点(-1,0)和(0,1),且顶点在笫一象限,则a +b +c 的取值范围是________________.8.若二次函数y =x 2+2x +m 的图象与x 轴没有公共点,则m 的取值范围是__________.9.如图,把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q ,则图中阴影部分的面积为____.10.如图,四个二次函数的图象中,分别对应的是:①y=ax 2;②y=bx 2;③y=cx 2;④y=dx,则a、b 、c、d 的大小关系为.二、选择题(本题共10小题,每小题3分,共30分) 11.二次函数y=(x-1)2+2的最小值是( )A .2B .1C .-1D .-2 12.下列函数不属于二次函数的是( )A .y=(x ﹣1)(x ﹣2)B .y=(x +1)2C .y=2(x +3)2﹣2x 2D .y=1﹣x 213.二次函数y=a(x+k)2+k(a ≠0),无论k 取何值,其图象的顶点都在( )A .直线y=x 上B .直线y=-x 上 C.x 轴上 D .y 轴上14.已知函数y=ax 和y=a (x +m )2+n ,且a >0,m <0,n <0,则这两个函数图象在同一坐标系内的大致图象是( )A .B .C .D .6题7题8题9题数学试卷 第3页(共4页)数学试卷 第4页(共4页)装订线(装订线内不要答题)15.已知函数y=(m ﹣1)x 2﹣mx ﹣m 的图象如图所示,则m 的取值范围是( )A .m <54B .0<m <54C .m <1D .0<m <116.关于函数y=2x 2﹣4x ,下列叙述中错误的是( )A .函数图象经过原点B .函数图象的最低点是(1,﹣2)C .函数图象与x 轴的交点为(0,0),(2,0) D .当x >0时,y 随x 的增大而增大 17.下列函数中,当x <0时,y 随x 的增大而减小的是( )A .y =xB .y =x -1C .y =x 2D .y =-x 218.已知函数y=(k ﹣3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3 C .k <4 D .k ≤419.已知将二次函数y=x 2+bx+c 的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣4x ﹣5,则b ,c 的值为( )A .b=0,c=6B .b=0,c=﹣5C .b=0,c=﹣6D .b=0.c=520.二次函数y=ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,则下 列结论中正确的个数有( )①4a +b=0;②9a +3b +c <0;③若点A (﹣3,y 1),点B (﹣12 ,y 2),点C (5,y 3)在该函数图象上,则y 1<y 3<y 2;④若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.A .1个B .2个C .3个D .4个三、解答题(每题10分,满分40分) 21.已知二次函数y =-x 2-2x +3.(1)求它的顶点坐标和对称轴; (2)求它与x 轴的交点;(3)画出这个二次函数图象的草图.22.如图,抛物线y =-x 2+bx +c 与x 轴、y 轴分别相交于点A(-1,0),B(0,3),其顶点为D. (1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E ,求四边形ABDE 的面积.23、(本题12分)已知二次函数y = 2x 2 -4x -6. (1)用配方法将y = 2x 2 -4x -6化成y = a (x - h) 2 + k 的形式;并写出对称轴和顶点坐标。
第二十二章《二次函数》章末检测题一.选择题(共10小题)1.对于二次函数y=a(x+k)2+k(a≠0)而言,无论k取何实数,其图象的顶点都在()A.x轴上B.直线y=x上C.y轴上D.直线y=﹣x上2.若抛物线y=x2先向左平移2个单位长度,再向下平移3个单位长度,则所得到的新抛物线的解析式时()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c ﹣m=0没有实数根,有下列结论:①abc<0;②m<﹣2;③b2﹣4ac<0;④b2﹣4ac﹣8a=0.其中正确的有()A.1 个B.2个C.3个D.4个4.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),有下列结论:①2a+b=0,②abc>0;③方程ax2+bx+c=3有两个相等的实数根,④当y<0时,﹣2<x<4,其中正确的是()A.②③B.①③C.①③④D.①②③④5.如图,是二次函数y=ax2+bx+c的图象,①abc>0;②a+b+c<0;③4a﹣2b+c<0;④4ac ﹣b2<0,其中正确结论的序号是()A.①②③B.①③C.②④D.③④6.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=;③当x=0时,y2﹣y1=6;④AB+AC=10;⑤y1最小﹣y2最小=﹣4,其中正确结论的是()A.①②③④B.②③④C.①②③④⑤D.①②④⑤7.已知二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k>﹣1且k≠0C.k≥﹣1 D.k≥﹣1且k≠0 8.在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c的大致图象可能是()A.B.C.D.9.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,(a>b),x1、x2是此方程的两个实数根,且x1<x2.现给出四个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2;④x1<x2<b<a其中正确结论个数是()A.1 B.2 C.3 D.410.如图,抛物线与x轴交于A(﹣3,0),B(1,0),与y轴交于点C(0,3),连结AC,现有一宽度为1,长度足够的矩形沿x轴方向平移,交直线AC于点D和E,△ODE周长的最小值为()A.2+B.6 C.2D.2+3二.填空题(共6小题)11.已知函数y=x2﹣4x+m的图象与x轴只有一个交点,则m的值为.12.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),该抛物线的部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当x<0时,y随x增大而减小;⑤点P(m,n)是抛物线上任意一点,则m(am+b)≤a+b,其中正确的结论是.(把你认为正确的结论的序号填写在横线上)13.已知抛物线y=x2+kx+4﹣k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.14.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是.15.在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:s=v0t﹣gt2(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面m.16.如图,在平面直角坐标系中,抛物线y=x与直线y=交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:.三.解答题(共6小题)17.已知二次函数y=﹣x2+2x.(1)在给定的平面直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,请直接写出平移后图象所对应的函数关系式.18.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.19.进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?20.如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.21.已知二次函数y=ax2+bx+c,当x=3时,y有最小值﹣4,且图象经过点(﹣1,12).(1)求此二次函数的解析式;(2)该抛物线交x轴于点A,B(点A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求P A+PC的最小值,并求当P A+PC取最小值时点P的坐标.22.如图,矩形OABC在平面直角坐标系中,点A在x轴正半轴,点C在y轴正半轴,OA=4,OC=3,抛物线经过O,A两点且顶点在BC边上,与直线AC交于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.D.2.B.3.B.4.B.5.D.6.D.7.B.8.A.9.B.10.A.二.填空题11.412.①②⑤.13.24.14.﹣2.15.716.P1(,),P2(,),P3(,).三.解答题17.解:(1)函数图象如图所示;(2)当y<0时,x的取值范围:x<0或x>2;(3)∵图象沿x轴向左平移3个单位,再沿y轴向下平移1个单位,∴平移后的二次函数图象的顶点坐标为(﹣2,0),∴平移后图象所对应的函数关系式为:y=(x+2)2.(或y=﹣x2﹣4x﹣4)18.解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=﹣×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时,=,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时,=,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=﹣3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).19.解:(1)由题意可得,y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤40),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000的二次项系数﹣5<0,顶点的横坐标为:x=,30≤x≤40∴当x<45时,w随x的增大而增大,∴x=40时,w取得最大值,w=﹣5×402+450×40﹣7000=3000,即当售价x(元/包)定为40元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是3000元.20.解:(1)由已知可得∠A′OE=60°,A′E=AE,由A′E∥x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=b,OE=2b,b+2b=2+,所以b=1,A′、E的坐标分别是(0,1)与(,1).(2)因为A′、E在抛物线上,所以,所以,函数关系式为y=﹣x2+x+1,由﹣x2+x+1=0,得x1=﹣,x2=2,与x轴的两个交点坐标分别是(,0)与(,0).(3)不可能使△A′EF成为直角三角形.∵∠F A′E=∠F AE=60°,若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90°若∠A′EF=90°,利用对称性,则∠AEF=90°,A、E、A三点共线,O与A重合,与已知矛盾;同理若∠A′FE=90°也不可能,所以不能使△A′EF成为直角三角形.21.解:(1)∵当x=3时,y有最小值﹣4,∴设二次函数解析式为y=a(x﹣3)2﹣4.∵二次函数图象经过点(﹣1,12),∴12=16a﹣4,∴a=1,∴二次函数的解析式为y=(x﹣3)2﹣4=x2﹣6x+5.(2)当y=0时,有x2﹣6x+5=0,解得:x1=1,x2=5,∴点A的坐标为(1,0),点B的坐标为(5,0);当x=0时,y=x2﹣6x+5=5,∴点C的坐标为(0,5).连接BC交抛物线对称轴于点P,此时P A+PC取最小值,最小值为BC,如图所示.设直线BC的解析式为y=mx+n(m≠0),将B(5,0)、C(0,5)代入y=mx+n,得:,解得:,∴直线BC的解析式为y=﹣x+5.∵B(5,0)、C(0,5),∴BC=5.∵当x=3时,y=﹣x+5=2,∴当点P的坐标为(3,2)时,P A+PC取最小值,最小值为5.22.解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).。
检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。
第22章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列函数中是二次函数的是( B )A.y=3x-1 B.y=3x2-1C.y=(x+1)2-x2D.y=x3+2x-32.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为( D )A.0,5 B.0,1 C.-4,5 D.-4,13.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( B )A.y=(x+2)2+2 B.y=(x-2)2-2C.y=(x-2)2+2 D.y=(x+2)2-24.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是( C )A.x=1 B.x=2 C.x=3 D.x=45.若二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( C ) A.-1或3 B.-1 C.3 D.-3或16.抛物线y=x2-2x+1与坐标轴的交点个数为( C )A.无交点B.1个C.2个D.3个7.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是( C )8.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,∠OBC=45°,则下列各式成立的是( B )A.b-c-1=0 B.b+c+1=0C.b-c+1=0 D.b+c-1=09.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( B )10.(2014·泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x -1 0 1 3y-1353下列结论:①ac <0;②当x >1时,y 的值随x 的增大而减小;③3是方程ax 2+(b -1)x +c =0的一个根;④当-1<x <3时,ax 2+(b -1)x +c >0.其中正确的个数为( B )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.二次函数y =x 2+2x -4的图象的开口方向是__向上___,对称轴是__x =-1___,顶点坐标是__(-1,-5)___.12抛物线y =2x 2+8x +m 与x 轴只有一个公共点,则m 的值为__8___.13.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为__y =-x 2+4x -3___.14.公路上行驶的汽车急刹车时,刹车距离s(m )与时间t(s )的函数关系式为s =20t -5t 2,当遇到紧急情况时,司机急刹车,但由于惯性的作用,汽车要滑行__20___米才能停下来.15.隧道的截面是抛物线形,且抛物线的解析式为y =-18x 2+3.25,一辆车高3 m ,宽4 m ,该车__不能___通过该隧道.(填“能”或“不能”)16.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的增大而减小.这个函数解析式为__y =-x 2+5___.(写出一个即可)17.如图,二次函数y 1=ax 2+bx +c(a ≠0)与一次函数y 2=kx +m(k ≠0)的图象相交于点A(-2,4),B(8,2),则使y 1>y 2成立的x 的取值范围是__x <-2或x >8___.18.(2014·广安)如图,把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q ,则图中阴影部分的面积为__272___.三、解答题(共66分)19.(9分)已知二次函数y =-x 2-2x +3. (1)求它的顶点坐标和对称轴; (2)求它与x 轴的交点;(3)画出这个二次函数图象的草图. 解:(1)顶点(-1,4),对称轴x =-1 (2)(-3,0),(1,0) (3)图略20.(8分)如图,二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.解:(1)y =-12x 2+4x -6(2)∵该抛物线对称轴为直线x =-42×(-12)=4,∴点C 的坐标为(4,0),∴AC =OC-OA =4-2=2,∴S △ABC =12×AC ×OB =12×2×6=621.(8分)已知二次函数y =x 2+bx -c 的图象与x 轴两交点的坐标分别为(m ,0),(-3m ,0)(m ≠0).(1)求证:4c =3b 2;(2)若该函数图象的对称轴为直线x =1,试求二次函数的最小值.解:(1)由题意,m ,-3m 是一元二次方程x 2+bx -c =0的两根,根据一元二次方程根与系数的关系,得m +(-3m)=-b ,m ·(-3m)=-c ,∴b =2m ,c =3m 2,∴4c =12m 2,3b 2=12m 2,∴4c =3b 2 (2)由题意得-b 2=1,∴b =-2,由(1)得c =34b 2=34×(-2)2=3,∴y =x 2-2x -3=(x -1)2-4,∴二次函数的最小值为-422.(9分)如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A ,B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x(秒),△PBQ 的面积为y(cm 2).(1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.解:(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x ,∴y =12(18-2x)x ,即y=-x 2+9x(0<x ≤4)(2)由(1)知:y =-x 2+9x ,∴y =-(x -92)2+814,∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,即△PBQ 的最大面积是20 cm 223.(9分)如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?解:(1)A ,B ,C 的坐标分别为(1,0),(3,0),(2,3)(2)y =-3(x -2)2+3 (3)设抛物线的解析式为y =-3(x -2)2+k ,代入D(0,3),可得k=53,平移后的抛物线的解析式为y=-3(x-2)2+53,∴平移了53-3=43个单位24.(11分)(2014·武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:时间x(天) 1≤x <50 50≤x ≤90售价(元/件)x +4090每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y 元. (1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 解:(1)当1≤x <50时,y =(x +40-30)(200-2x)=-2x 2+180x +2000;当50≤x ≤90时,y =(90-30)(200-2x)=-120x +12000.综上,y =⎩⎪⎨⎪⎧-2x 2+180x +2000(1≤x <50)-120x +12000(50≤x ≤90)(2)当1≤x <50时,y =-2x 2+180x +2000=-2(x -45)2+6050,∵a =-2<0,∴当x =45时,y 有最大值,最大值为6050元;当50≤x ≤90时,y =-120x +12000,∵k =-120<0,∴y 随x 的增大而减小,∴当x =50时,y 有最大值,最大值为6000元.综上可知,当x =45时,当天的销售利润最大,最大利润为6050元 (3)4125.(12分)如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点. (1)求抛物线的解析式; (2)点M 是线段BC 上的点(不与B ,C 重合),过M 作NM ∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB ,NC ,是否存在点m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.解:(1)y =-x 2+2x +3(2)易求直线BC 的解析式为y =-x +3,∴M(m ,-m +3),又∵MN ⊥x 轴,∴N(m ,-m 2+2m +3),∴MN =(-m 2+2m +3)-(-m +3)=-m 2+3m(0<m <3) (3)S △BNC =S △CMN +S △MNB =12|MN|·|OB|,∴当|MN|最大时,△BNC 的面积最大,MN =-m 2+3m =-(m -32)2+94,所以当m =32时,△BNC 的面积最大为12×94×3=278。
第二十二章《二次函数》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分) 1.下列y关于x的函数中,属于二次函数的是()A.y=x﹣1 B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+12.在同一直角坐标系中,二次函数y=﹣3x2、、y=3x2的图象的共同点是()A.关于y轴对称,开口向上B.关于y轴对称,当x<0时,y随x的增大而减小C.关于y轴对称,最高点是原点D.关于y轴对称,顶点坐标是(0,0)3.二次函数y=﹣(x﹣2)2+1的图象中,若y随x的增大而减小,则x的取值范围是()A.x<2 B.x>2 C.x<﹣2 D.x>﹣24.已知一个二次函数,当x=1时,y有最大值8,其图象的形状、开口方向与抛物线y=﹣2x2相同,则这个二次函数的表达式是()A.y=﹣2x2﹣x+3 B.y=﹣2x2+4C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+65.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+66.下列函数解析式中,一定为二次函数的是()A.y=x+3 B.y=ax2+bx+c C.y=t2﹣2t+2 D.y=x2+7.已知二次函数的图象经过点、、、四点,则与的大小关系正确的是()A. B.C. D.不能确定8.下面所示各图是在同一平面直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象.正确的是()A.B.C.D.9.下列关于抛物线y=﹣x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(﹣1,2)C.在对称轴的右侧,y随x的增大而增大D.抛物线与x轴有两个交点10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是x≥0;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,则y1<y2其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分) 11.若y=(m2+m)x m2﹣2m﹣1﹣x+3是关于x的二次函数,则m=.12.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y =(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则的值为.13.若函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则常数k的值为.14.据权威部门发布的消息,2019年第一季度安徽省城镇居民人均可支配收入约为0.75万元,若第三季度安徽省城镇居民人均可支配收人为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为x,则y与x之间的函数表达式是.15.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行m才停下来.16.如图,已知抛物线y=x2+bx+c的对称轴为直线x=1,点A,B均在抛物线上,且AB与x轴平行,若点A的坐标为,则点B的坐标为.17.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第象限.18.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有.(只填序号)三.解答题(共46分,19题6分,20 ---24题8分)19. 已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?20. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22. 已知抛物线,如图所示,直线是其对称轴,确定,,,的符号;求证:;当取何值时,,当取何值时.23. 如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标.24. 某公司计划安排25人生产甲、乙两种产品,已知每人每天生产25件甲或15件乙,甲产品每件利润18元,当参与生产乙产品的工人少于10人时,乙产品每件利润为40元,在4人的基础上每增加1人,每件乙产品的利润下降1元,设每天安排x人生产甲产品,且不少于4人生产乙产品.(1)请根据以上信息完善下表:产品工人数(人)每天产量(件)每件利润(元)甲x18乙(2)请求出销售甲乙两种产品每天的总利润y关于x的表达式;(3)请你设计合理的工人分配方案,使得每天的利润最大化,并求出这个最大利润.答案解析一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 D D B D B C C B A A 二、填空题11. 312..13. 0或﹣1.14. y=0.75(1+x)2.15. 600.16.(2,).17.解:根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.18.解由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=∴abc>0,4ac<b2,当x<时,y随x的增大而减小.故①②⑤正确∵﹣=<1∴2a+b>0故③正确由图象可得顶点纵坐标小于﹣2,则④错误当x=1时,y=a+b+c<0故⑥错误故答案为①②③⑤三.解答题19. 解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.20. 解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.21.【答案】解:∵P(m,n)是抛物线y=x2+1上一动点,∴m2+1=n,∴m2=4n-4,∵点A(0,2),∴AP===n,∴点P到点A 的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,∵AP=2AD,∴PF=2DE,∴OF=2OE,设OE=a,则OF=2a,∴×(2a)2+1=2(a2+1),解得a=,∴a2+1=×2+1=,∴点D的坐标为(,),设OP的解析式为y=kx,则k=,解得k=,∴直线OP的解析式为y=x.【解析】根据点P在抛物线上用n表示出m2,再利用勾股定理列式求出AP,从而得到点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x 轴于F,根据AP=2AD判断出PF=2DE,得到OF=2OE,设OE=a,表示出OF=2a,然后代入抛物线解析式并列出方程求出a的值,再求出点D的坐标,最后利用待定系数法求一次函数解析式解答.22. 解:∵抛物线开口向下,∴,∵对称轴,∴,∵抛物线与轴的交点在轴的上方,∴,∵抛物线与轴有两个交点,∴;证明:∵抛物线的顶点在轴上方,对称轴为,∴当时,;根据图象可知,当时,;当或时,.23. 解:(1)设抛物线解析式为y=a(x+2)(x﹣4),把C(0,﹣4)代入得a•2•(﹣4)=﹣4,解得a=,∴抛物线解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4;(2)连接AC,则AC与抛物线所围成的图形的面积为定值,当△ACM的面积最大时,图中阴影部分的面积最小值,作MN∥y轴交AC于N,如图甲,设M(x, x2﹣x﹣4),由A(4,0),C(0,﹣4)知线段AC所在直线解析式为y=x﹣4,则N(x,x﹣4),∴MN=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,∴S△ACM=S△MNC+S△MNA=•4•MN=﹣x2+4x=﹣(x﹣2)2+4,当x=2时,△ACM的面积最大,图中阴影部分的面积最小值,此时M点坐标为(2,﹣4).24. 解:(1)请根据以上信息完善下表:产品工人数(人)每天产量(件)每件利润(元)甲x25x18乙25﹣x15(25﹣x)19+x(2)y=18×25x+15 (25﹣x)(19+x)=﹣15x2+540x+7125.(3)y=﹣15x2+540x+7125=﹣15(x﹣18)2+11985,当x=18时,y取得最大值,最大值为11985,∴分配18个人生产甲产品,7人生产乙产品时,可以获得最大利润11985元.。
检测内容:第二十二章得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.函数y =(m +1)xm 2+1是二次函数,则m 的值是( ) A .±1 B .-1 C .1 D .以上都不是2.抛物线y =-(x +2)2-3的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 3.(2016·张家界)在同一平面直角坐标系中,函数y =ax +b 与y =ax 2-bx 的图象可能是( )A ) ,B ) ,C ) ,D )4.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点(-45,y 1),(-54,y 2),(16,y 3),则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 25.如图,二次函数y =-x 2-2x 的图象与x 轴交于点A ,O ,在抛物线上有一点P 满足S △AOP =3,则点P 的坐标是( )A .(-3,-3)B .(1,-3)C .(-3,-3)或(-3,1)D .(-3,-3)或(1,-3),第5题图) ,第6题图),第7题图) ,第8题图)6.(2016·枣庄)如图,已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下四个结论:①abc =0;②a +b +c >0;③a >b ;④4ac -b 2<0.其中正确的结论有( )A .1个B .2个C .3个D .4个7.抛物线y =ax 2+2ax +a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴的交点坐标是( )A .(12,0) B .(3,0) C .(2,0) D .(1,0)8.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米9.已知二次函数y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是( ) A .k >-74 B .k >-74且k ≠0 C .k ≥-74 D .k ≥-74且k ≠010.已知函数y =⎩⎪⎨⎪⎧(x -1)2-1(x ≤3),(x -5)2-1(x >3),若使y =k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分)11.y =2x 2-8x +1的顶点坐标是________.当x______时,y 随x 的增大而增大;当x______时,y 随x 的增大而减小.12.已知下列函数:①y =x 2;②y =-x 2;③y =(x -1)2+2.其中图象通过平移可以得到函数y =-x 2+2x -3的图象有________.132+bx +c 的图象时,列了如下表格:14.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数解析式为________________.15.如果抛物线y =x 2+6x +c 的顶点在x 轴上,则c 的值为________. 16.(2016·梅州)如图,抛物线y =-x 2+2x +3与y 轴交于点C ,点D(0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为________.17.已知二次函数y =x 2-4x -6,若-1<x <6,则y 的取值范围为________.18.设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为________.三、解答题(共66分)19.(8分)已知抛物线y =x 2-2x -8.(1)求证:该抛物线与x 轴一定有两个交点;(2)若该抛物线与x 轴的两个交点为A ,B ,且它的顶点为P ,求△ABP 的面积.20.(10分)已知二次函数y =-12x 2-x +32.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y <0时,x 的取值范围;(3)若将此图象沿x 轴向左平移3个单位,请写出平移后图象对应的函数解析式.21.(10分)某学校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209 m ,与篮圈中心的水平距离为7 m ,当球出手后水平距离为4 m 时到达最大高度4 m ,设篮球运行轨迹为抛物线,篮圈距地面3 m .(1)建立如图所示的平面直角坐标系,问此球能否准确投中?(2)此时,若对方队员乙在甲前1 m 处跳起盖帽拦截,已知乙的最大摸高为3.1 m ,那么他能否获得成功?22.(12分)如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A ,B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1 cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y(cm 2).(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.23.(12分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件,市场调查反映:如果每件的售价每涨1元(每件售价不能高于45元),那么每星期少卖10件,设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数解析式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?24.(14分)如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M作NM∥y轴交抛物线于点N.若点M的横坐标为m,请用含m的代数式表示MN的长;(3)在(2)的条件下,连接NB,NC,是否存在m,使△BNC的面积最大?若存在,求m的值,若不存在,说明理由.单元清二1.C 2.D 3.C 4.A 5.D 6.C 7.D 8.A 9.D10.D 11.(2,-7) >2 <2 12.② 13.-4 14.y =-(x -2)2+1 15.9 16.(1+2,2)或(1-2,2) 17.-10≤y <6 18.y =18x 2-14x +2或y =-18x 2+34x +2 19.(1)Δ=36>0,∴抛物线与x 轴一定有两个交点 (2)S△ABP=2720.解:(1)(2)x <-3或x >1 (3)y =-12x 2-4x -6 21.解:(1)球出手点,最高点,篮圈坐标分别为(0,209),(4,4),(7,3),设这条抛物线的解析式为y =a(x -4)2+4,把点(0,209)的坐标代入函数关系式求出抛物线解析式为y =-19(x -4)2+4,再看点(7,3)是否在这条抛物线上,当x =7时,代入函数解析式计算y 值为3,所以能准确投中 (2)将x =1代入函数解析式中算出y 的值为3,∵3<3.1,故乙能获得成功 22.(1)∵S △PBQ =12PB ·BQ ,PB =AB -AP =18-2x ,BQ =x ,∴y =12(18-2x)x ,即y =-x 2+9x(0<x ≤4) (2)由(1)知:y =-x 2+9x ,∴y =-(x -92)2+814,∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,即△PBQ的最大面积是20 cm 2 23.(1)y =150-10x ,∵x ≥0,40+x ≤45,∴0≤x ≤5且x 为整数.∴所求的函数解析式为y=150-10x(0≤x ≤5且x 为整数) (2)设每星期的利润为w ,则w =y(40+x -30)=(150-10x)(x +10)=-10x 2+50x +1 500=-10(x -2.5)2+1 562.5,∵a =-10<0,∴当x =2.5时,w 有最大值1 562.5.∵x 为非负整数,∴当x =2时,40+x =42,y =130,w =1 560,当x =3时,40+x =43,y =120,w =1 560,∴当销售价定为42元时,每星期的利润最大且每星期的销售量较大,每星期的最大利润是1 560元 24.(1)设抛物线方程为:y =ax 2+bx +c(a ≠0),把A(-1,0),B(3,0),C(0,3)三点代入方程得⎩⎪⎨⎪⎧a -b +3=0,9a +3b +3=0,∴⎩⎪⎨⎪⎧a =-1,b =2,c =3,∴y =-x 2+2x +3 (2)设直线BC 的解析式为y =kx +b(k ≠0),把B(3,0),C(0,3)代入得⎩⎪⎨⎪⎧3k +b =0,b =3,∴直线AB 为y =-x +3,∴M(m ,-m +3),∴MN =(-m 2+2m +3)-(-m +3)-m 2+3m(0<m <3) (3)S △BNC =S △CMN +S △MNB =12·|MN|·|OB|,∴当|MN|最大时,△BNC 的面积最大.MN =-m 2+3m =-(m 2-3m +94)+94=-(m -32)2+94,所以当m =32时,△BNC 的面积最大为:12×94×3=278。
《第22章二次函数》单元检测试卷(一)一、选择题:1.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是( )A.x=1B.x=2C.x=3D.x=42.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)3.下列函数中,是二次函数的有( )①y=1-x2;②y=;③y=x(1-x);④y=(1-2x)(1+2x).A.1个B.2个C.3个D.4个4.二次函数y=a(x+k)2+k(a≠0),无论k取何值,其图象的顶点都在( )A.直线y=x上B.直线y=-x上C.x轴上D.y轴上5.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-26.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米7.二次函数y=x2+2x-3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,﹣4)8.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()9.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元D.30元10.如图是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面下降1m时,水面的宽度为()A.3 B.2 C.3 D.211.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大二、填空题:13若把二次函数y=x2+6x+2化为y=(x-h)2+k的形式,其中h,k为常数,则h+k= .14.抛物线y=(x-1)2+2的顶点坐标是 .15.已知点A(x1,y1)、B(x2,y2)都在二次函数y=﹣2(x﹣2)2+1的图象上,且x1<x2<2,则1,y1、y2的大小关系是.16a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)17.将抛物线y=3(x﹣4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是.18.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.19.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是_______.三、解答题:20.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.21.已知二次函数y=x 2+bx+c 的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.22. 如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2交于A ,B 两点,且A(1,0),抛物线的对称轴是x =-32.(1)求k 和a ,b 的值;(2)求不等式kx +1>ax 2+bx -2的解集.23.在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求∠BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.24.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线的一部分,如图。
人教版(2024年)九年级(上)单元检测卷第22章《二次函数》时间:100分钟满分:120分题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列函数中,y是x的二次函数的是( )A.y=3x+1B.xy=8C.D.y=x2﹣x﹣52.二次函数y=(x﹣1)2+2的顶点坐标是( )A.(﹣2,1)B.(1,2)C.(﹣1,2)D.(1,﹣2)3.二次函数y=x2﹣4x+7的图象的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.要得到二次函数y=﹣(x﹣2)2+1的图象,需将y=﹣x2的图象( )A.向左平移2个单位,再向下平移1个单位B.向右平移2个单位,再向上平移1个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位5.二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系xOy中,抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c=0根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法准确判断7.在二次函数y=﹣x2+2x+3中,当0<x<3时,y的取值范围是( )A.0<y<3B.1<y<4C.0<y≤4D.﹣4≤y<08.某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)29.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A.50B.90C.80D.7010.如图;二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,与y 轴正半轴交于点C,下列判断:①abc<0;②4ac﹣b2>0;③c﹣a<0;④2a+b=0;⑤若,(3,y2)是抛物线上的两个点,则y1>y2.其中正确的是( )A.①②③B.①②④C.③④⑤D.①④⑤二.填空题(共6小题,满分18分,每小题3分)11.抛物线y=﹣3x2的开口 .(填“向上”或“向下”)12.若y=(1﹣m)是二次函数,则m= .13.抛物线y=(x﹣1)2﹣1与y轴交点的纵坐标是 .14.已知二次函数y=ax2+bx+c(a>0)的图象上有四点A(﹣1,y1),B(3,y1),C(2,y2),D (﹣2,y3),则y1,y2,y3的大小关系是 .(从小到大排列)15.某段公路上汽车紧急刹车后前行的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=30t﹣5t2,遇到刹车时,汽车从刹车后到停下来前进了 m.16.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:x﹣1013y﹣3131①抛物线的开口向下;②其图象的对称轴为直线x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有 .三.解答题(共8小题,满分72分)17.(6分)已知抛物线y=x2﹣kx﹣3k与x轴的一个交点为(﹣2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.18.(6分)已知二次函数y=x2+px+q的图象经过A(0,1),B(2,﹣1)两点.(1)求p,q的值.(2)试判断点P(﹣1,2)是否在此函数的图象上.19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…﹣3﹣2﹣101…y…0﹣3﹣4﹣30…(1)这个二次函数的解析式是 ;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当﹣4<x<0时,y的取值范围为 .20.(8分)用100米长的篱笆在地上围成一个长方形,当长方形的宽由小到大变化时,长方形的面积也随之发生变化.设长方形的宽为x(米),长方形的面积为y(平方米).(1)求长方形的面积y(平方米)与长方形的宽x(米)之间的关系式;(2)当长方形的宽由1米变化到20米时,长方形面积由y1(平方米)变化到y2(平方米),求y1和y2的值.21.(10分)“动若脱兔”是一个汉语成语,这个成语的含义是在行动时变得敏捷迅速,就像脱逃的兔子一样.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.(1)野兔一次跳跃的最远水平距离为2.8m,最大竖直高度为0.98m,以其起跳点为原点,建立平面直角坐标系,求满足条件的抛物线的解析式;(无需写出取值范围)(2)若在野兔起跳点2米处有一个高度为0.65米的树桩,请问野兔是否能成功越过木桩,避免守株待兔的故事再次上演?22.(10分)如图,抛物线y=﹣x2+2x+c经过坐标原点O和点A,点A在x轴上.(1)求此抛物线的解析式,并求出顶点B的坐标;(2)连接OB,AB,求S△OAB;(3)若点C在抛物线上,且S△OAC=8,求点C的坐标.23.(10分)如图,抛物线与x轴交于A(﹣2,0),B(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)P是抛物线在第一象限的一个动点,点Q在线段BC上,且点Q始终在点P正下方,求线段PQ的最大值.24.(14分)综合与探究如图,抛物线y=ax2+bx﹣2与x轴交于A(﹣2,0),B(4,0),与y轴交于点C,作直线BC,P 是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线BC的函数表达式.(2)当点P在直线BC下方时,连接CP,BP,OP.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点Q,使以P,Q,B,C为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、y是x的一次函数,故此选项不合题意;B、y是x的反比例函数,故此选项不合题意;C、y是x2的反比例函数,故此选项不合题意;D、y是x的二次函数,故此选项符合题意;故选:D.2.解:二次函数y=(x﹣1)2+2的顶点坐标是(1,2).故选:B.3.解:∵y=x2﹣4x+7=(x﹣2)2+3,∴顶点坐标为(2,3),∴顶点在第一象限.故选:A.4.解:二次函数y=﹣x2的图象向右平移2个单位,再向上平移1个单位即可得到二次函数y=﹣(x﹣2)2+1的图象.故选:B.5.解:根据二次函数y=ax2+bx的图象可知,a<0,﹣>0,∴b>0,∴一次函数y=ax+b的图象经过第一、二、四象限,不经过第三象限.故选:C.6.解:∵y=ax2+bx+c的图象与x轴没有交点,且方程ax2+bx+c=0的根就是抛物线y=ax2+bx+c(a ≠0)的图象与x轴的交点的横坐标,∴关于x的方程ax2+bx+c=0的根的情况是没有实数根.故选:C.7.解:y=﹣x2+2x+3=﹣(x﹣1)2+4,∵﹣1<0,对称轴为直线x=1,∴当x=1时,y有最大值,最大值为4,∵3﹣1>1﹣0,∴当x=3时,y有最小值0,∴当0<x<3时,y的取值范围是0<y≤4,故选:C.8.解:∵该厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,∴该厂今年二月份新产品的研发资金为10(1+x)万元,三月份新产品的研发资金为10(1+x)2万元.根据题意得:y=10+10(1+x)+10(1+x)2.故选:B.9.解:设利润为w元,每顶头盔的售价为x元,由题意可得:w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,故选:D.10.解:由图象可得,a<0,c>0,∵二次函数y=ax2+bx+c(a<0)的图象与x轴分别交于,两点,∴对称轴为直线,∴b=﹣2a,∴2a+b=0,b>0,∴abc<0,∴故①④正确;∴二次函数y=ax2+bx+c(a<0)的图象与x轴有两个不同的交点,∴b2﹣4ac>0,∴4ac﹣b2<0,故②错误;∵a<0,c>0,∴c﹣a>0,故③错误;由图象可得,y1>0,y2<0,∴y1>y2,故⑤正确;∴①④⑤正确,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵抛物线y=﹣3x2,a=﹣3<0,∴抛物线y=﹣3x2的开口向下,故答案为:向下.12.解:∵y=(1﹣m)是二次函数,∴1﹣m≠0且m2+1=2,解得:m=﹣1.故答案为:﹣1.13.解:将x=0代入y=(x﹣1)2﹣1,得y=0,所以抛物线与y轴的交点坐标是(0,0).故答案为:0.14.解:依题意,A(﹣1,y1),B(3,y1),在二次函数y=ax2+bx+c(a为常数,且a>0)的图象上,∴对称轴为直线x==1,抛物线开口向上,∵2﹣1=1,1﹣(﹣2)=3,∴点C(2,y2)到对称轴的距离为1,点D(﹣2,y3)到对称轴的距离为3,点B(3,y1)到对称轴的距离为2,∴y2<y1<y3,故答案为:y2<y1<y3.15.解:∵s=﹣5t2+30t=﹣5(t﹣3)2+45,∴汽车刹车后到停下来前进了45m,故答案为:45.16.解:∵抛物线经过点(0,1),(3,1),∴抛物线的对称轴为直线,所以②错误;而x=﹣1时,y=﹣3,∴抛物线开口向下,所以①正确;当x<1时,函数值y随x的增大而增大,所以③正确;∵抛物线经过(﹣1,﹣3)和(0,1),∴抛物线与x轴的一个交点在(﹣1,0)和(0,0)之间,∴抛物线与x轴的一个交点在(3,0)和(4,0)之间,∴方程ax2+bx+c=0的根小于4.所以④错误.故答案为:①③.三.解答题(共8小题,满分72分)17.解:(1)根据题意得,4+2k﹣3k=0,所以k=4;得抛物线的解析式为y=x2﹣4x﹣12;(2)∵x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴抛物线与x轴的另一个交点坐标(6,0).18.解:(1)把A(0,1),B(2,﹣1)代入y=x2+px+q,得,解得,∴p,q的值分别为﹣3,1;(2)把x=﹣1代入y=x2﹣3x+1,得y=5,∴点P(﹣1,2)不在此函数的图象上.19.解:(1)由题意可得二次函数的顶点坐标为(﹣1,﹣4),设二次函数的解析式为:y=a(x+1)2﹣4,把点(0,﹣3)代入y=a(x+1)2﹣4,得a=1,故抛物线解析式为y=(x+1)2﹣4,即y=x2+2x﹣3;(2)如图所示:(3)∵y=(x+1)2﹣4,∴当x=﹣4时,y=(﹣4+1)2﹣4=5,当x=﹣0时,y=﹣3,又对称轴为x=﹣1,∴当﹣4<x<0时,y的取值范围是﹣4≤y<5.20.解:(1)由题意得:y=x(50﹣x)=﹣x2+50x,∴长方形的面积y(平方米)与长方形的宽x(米)之间的关系式为y=﹣x2+50x.(2)当x=1时,;当x=20时,.21.解:(1)依题意,由x=0,y=0和x=2.8,y=0可知,对称轴为直线.∴当x=1.4时,y有最大值0.98.即顶点坐标为(1.4,0.98).∴设抛物线的解析式为y=a(x﹣1.4)2+0.98.由题知函数图象过原点(0,0),把x=0,y=0代入y=a(x﹣1.4)2+0.98,得a(0﹣1.4)2+0.98=0,解得.∴抛物线的解析式为.(2)依题意,将x=2代入,得.∵0.8>0.65,∴野兔能成功越过木桩.22.解:(1)把(0,0)代入y=﹣x2+2x+c得c=0,∴抛物线解析式为y=﹣x2+2x,∵y=﹣x2+2x=﹣(x﹣1)2+1,∴顶点B的坐标为(1,1);(2)当y=0时,﹣x2+2x=0,解x1=0,x2=2,∴A(2,0),∴S△OAB=×2×1=1;(3)设C点坐标为(t,﹣t2+2t),∵S△OAC=8,∴×2×|﹣t2+2t|=8,即t2﹣2t=8或t2﹣2t=﹣8,解方程t2﹣2t=8得t1=﹣2,t2=4,∴C点坐标为(﹣2,﹣8),或(4,﹣8),方程t2﹣2t=﹣8无实数解,综上所述,C点坐标为(﹣2,﹣8),或(4,﹣8).23.解:(1)∵抛物线经过点C(0,4),∴可设抛物线解析式为y=ax2+bx+4,将点A(﹣2,0),B(4,0)代入,得,解得,∴抛物线解析式为:.(2)设经过点B、C的直线解析式为y=mx+n,将点B(4,0),C(0,4)代入,得,解得,∴经过点B、C的直线解析式为y=﹣x+4,设点,点Q(x,﹣x+4),∴,∴当x=2时,PQ有最大值2.24.解:(1)由题意得:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8)=ax2+bx﹣2,则﹣8a=﹣2,解得:a=,则抛物线的表达式为:y=x2﹣x﹣2;由抛物线的表达式知,点C(0,﹣2),由点B、C的坐标得,直线BC的表达式为:y=x﹣2;(2)设点P(t,x2﹣t﹣2),过点P作直线PN∥BC交y轴于点N,由点P、B的坐标得,直线PB的表达式为:y=(t+2)(x﹣4),则点N(0,﹣t﹣2),当时,则CN:ON=2:5,即CN=CO=,则点N(0,﹣),即﹣t﹣2=﹣,解得:t=,则点P(,﹣);(3)存在,理由:由抛物线的表达式知,其对称轴为直线x=1,设点Q(1,m),点P(t,t2﹣t﹣2),当BC为对角线时,由中点公式得:,解得:,则点Q(1,﹣);当BQ或BP为对角线时,则或,解得:m=或,则点Q(1,)或(1,),综上,Q(1,﹣)或(1,)或(1,).。
2023-2024学年九年级数学上册《第二十二章二次函数》单元检测卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.如果将抛物线y=x2+2向左平移1个单位长度,再向下平移4个单位长度,那么所得新抛物线的顶点坐标是()A.(−1,−2)B.(1,−2)C.(−1,2)D.(1,2)2.已知二次函数y=a(x+3)2﹣h(a≠0)有最大值1,则该函数图象的顶点坐标为()A.(﹣3,﹣1)B.(﹣3,1)C.(3,1)D.(3,﹣1)3.关于二次函数y=2x2+4x-3,下列说法正确是()A.图象与y轴的交点坐标为(0,3)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为-54.已知二次函数y=(x−ℎ)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或 -5 B.-1或5 C.1或 -3 D.1或35.若二次函数y=a2x2−bx−c的图象,过不同的六点A(−1,n)、B(5,n−1)、C(6,n+1)、D(√2,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y2<y1<y36.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x …0 3 4 …y … 2 -1 2 …则方程ax2+bx+3=0的根是()A.0或4 B.1或3 C.-1或1 D.无实根7.如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+ √2B.1﹣√2C.√2﹣1 D.1﹣√2或1+ √28.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:①abc>0;②9a+c>3b;③4a+b=0;④当x>-1时,y的值随x值的增大而增大.其中正确结论有()A.1个B.2个C.3个D.4个二、填空题9.请写出一个开口向下,对称轴为直线x=1,且与y轴的交点坐标为(0,2)的抛物线的解析式.10.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线。
人教版九年级上册数学第二单元二次函数单元测试卷一.选择题(共10小题)1.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s-t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关2.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①abc>0;②4a+2b+c>0;③9a-b+c=0;④若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为-8.其中正确的结论有()个A.2 B.3 C.4 D.53.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.4.将抛物线y=x2-4x-4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2-13 B.y=(x-5)2-5C.y=(x-5)2-13 D.y=(x+1)2-55.如果二次函数y=x2+2x+t与一次函数y=x的图象两个交点的横坐标分别为m、n,且m <1<n,则t的取值范围是()A.t>-2 B.t<-2 C.t>14D.t<146.已知抛物线y=-x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限7.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C在第一象限,且2≤[C]≤4,令t=2b2-4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2021C.2021≤t≤2020D.2020≤t≤20218.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x -1 0 1 3y -3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为直线x=1;③当x<2时,函数值y 随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个9.将函数y=-x2+2x+m(0≤x≤4)在x轴下方的图象沿x轴向上翻折,在x轴上方的图象保持不变,得到一个新图象.新图象对应的函数最大值与最小值之差最小,则m的值为()A.2.5 B.3 C.3.5 D.410.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,-3}=-3,min{-4,-2}=-4.则min{-x2+1,-x}的最大值是()A.√5−12B.√5+12C.1 D.0二.填空题(共6小题)11.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是12.对于任意实数m,抛物线y=x2+4mx+m+n与x轴都有交点,则n的取值范围是13.当-1≤x≤3时,二次函数y=x2-4x+5有最大值m,则m=14.在平面直角坐标系中,已知A(-1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为15.已知抛物线y=ax2+bx+c(a<0)的对称轴为x=-1,与x轴的一个交点为(2,0),若关于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有个16.对于一个函数,如果它的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=-x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,-1)和点B(-1,1),则a的取值范围是三.解答题(共7小题)17.已知抛物线C:y=x2+mx+n(m,n为常数).(1)如图,若抛物线C的顶点坐标为P(1,2),求m,n的值;(2)在(1)的条件下,设点Q(a,b)在抛物线C上,且点Q离y轴的距离不大于2,直接写出b的取值范围;(3)将抛物线C向左平移2个单位得到抛物线C1,将抛物线C向右平移2个单位得到抛物线C2,若C1与C2的交点坐标为(1,3),求抛物线C的函数解析式.18.在平面直角坐标系xOy中,抛物线y=x2-2x-3与x轴相交于A,B(点A在点B的左边),与y轴相交于C.(1)求直线BC的表达式.(2)垂直于y轴的直线l与直线BC交于点N(x1,y1),与抛物线相交于点P(x2,y2),Q (x3,y3).若x1<x2<x3,结合函数图象,求x1+x2+x3的取值范围.19.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象.图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第26天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?20.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?21.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:每件售价x(元)…15 16 17 18 …每天销售量y(件)…150 140 130 120 …(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?22.如图,在平面直角坐标系中,抛物线y=-√33x2−2√33x+√3与x轴交于A,B两点,与y轴交于点C.(1)若点P为直线AC上方抛物线上的动点,当△PAC的面积最大时,求此时P点的坐标;(2)若点Q是抛物线对称轴上的动点,点M是抛物线上的动点,当以点M、A、C、Q为顶点的四边形是平行四边形时,直接写出此时Q点的坐标.23.如图,抛物线C1:y=-12x2+2x+2的顶点为A,且与y轴于点B,将抛物线C1沿y=a 对称后,得到抛物线C2与y轴交于点C.(1)求A、B两点坐标;(2)若抛物线C2上存在点D,使得△BCD为等腰直角三角形,求出此时抛物线C2的表达式.参考答案一、选择题1 2 3 4 5 6 7 8 9 10D C C D B A B A C A二、填空题11、k≤54且k≠112、n≤−16413、1014、4 15、3 16、−12≤a<0或0<a≤12三、解答题17、18、19、20、21、22、23、1、最困难的事就是认识自己。
2023-2024学年秋学期九年级数学上册第22章单元检测卷二次函数(满分120分)一、单选题(本大题共12小题,每小题3分,共36分)1.如图是二次函数()20y ax bx c a =++≠的图象的一部分,给出下列命题:①0a b c ++=;②2b a >;③方程20ax bx c ++=的两根分别为3-和1;④当1x <时,0y <;⑤对于任意实数m ,2am bm c a b c ++≥-+恒成立.其中正确的命题是()A .②③④B .①③④C .①②③D .①③⑤2.在平面直角坐标系中,将抛物线y=﹣x 2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A .y=﹣x 2﹣x ﹣B .y=﹣x 2+x ﹣C .y=﹣x 2+x ﹣D .y=﹣x 2﹣x ﹣3.函数2y x =的图象向右平移2个单位后解析式变为()A .22y x =+B .22y x =-C .()22y x =-D .()22y x =+4.如图,抛物线y =a 1x 2与抛物线y =a 2x 2+bx 的交点P 在第三象限,过点P 作x 轴的平行线,与两条抛物线分别交于点M 、N ,若23PM PN =,则12a a 的值是()A .3B .2C .23D .125.使用家用燃气灶烧开同一壶水所需的燃气量y (单位3m )与旋钮的旋转角度x (单位:度,090x ︒<≤︒)近似满足函数关系()20y ax bx c a =++≠如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开同一壶水最节省燃气的旋钮的旋转角度约为()A .29︒B .30︒C .42︒D .49︒6.定义[a ,b ,c]为函数y=ax 2+bx+c 的特征数,下面给出特征数为[m ﹣1,m+1,﹣2m]的函数的一些结论,其中不正确的是()A .当m=2时,函数图象的顶点坐标为325,24⎛⎫-- ⎪⎝⎭B .当m >1时,函数图象截x 轴所得的线段长大于3C .当m <0时,函数在x <12时,y 随x 的增大而增大D .不论m 取何值,函数图象经过两个定点7.若抛物线y =x 2+mx +n 的顶点在x 轴上,且过点A (a ,b ),B (a +6,b ),则b 的值为()A .9B .6C .3D .08.若二次函数23y ax bx =+-的图象经过点()2,1-,则代数式2a b -的值为()A .2-B .2C .1-D .19.二次函数()()246y x x =--+的顶点坐标是()A .()2,6B .()4,6C .()3,5-D .()3,510.已知二次函数2y x bx c =-++的图像如图,其中b ,c 的值可能是()A .2,1b c =-=B .2,1b c ==C .2,1b c ==-D .2,1b c =-=-11.(2021·陕西·汉滨区汉滨初级中学九年级月考)已知点()11,A x y ,()22,B x y 在二次函数()23y a x c =-+的图象上,若1233x x ->-,则下列结论正确的是()A .120y y +>B .120y y ->C .()120a y y +>D .()120a y y ->12.将二次函数243y x x =-+通过配方可化为2()y a x h k =-+的形式,结果为()A .2(2)1y x =--B .2(2)3y x =-+C .2(2)3y x =++D .2(2)1y x =+-三、解答题(本大题共5小题,每小题8分,共40分)(本大题共8小题,每小题3分,共24分)13.如果2(2)mmy m x -=-是关于x 的二次函数,则m =.14.如图,抛物线22y x =-+,将该抛物线在x 轴和x 轴上方的部分记作1C ,将x 轴下方的部分沿x 轴翻折后记作2C ,1C 和2C 构成的图形记作3C .关于图形3C ,给出如下四个结论:①图形3C 关于y 轴成轴对称;②图形3C 有最小值,且最小值为0;③当0x >时,图形3C 的函数值都是随着x 的增大而增大的;④当22x -≤≤时,图形3C 恰好经过5个整点(即横、纵坐标均为整数的点),以上四个结论中,所有正确结论的序号是.15.已知直线1y mx n =+和抛物线22a y x bx c =++的图象大致位置如上图所示,若2mx n ax bx c +>++,则x 的取值范围是.16.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与点B ,C 重合),过点C 作CN DM ⊥交AB 于点N ,连结OM 、ON ,MN .下列五个结论:①CNB DMC ≅ ;②ON OM =;③ON OM ⊥;④若=2AB ,则OMN S 的最小值是1;⑤222AN CM MN +=.其中正确结论是;(只填序号)17.如图,在平面直角坐标系中,点A 、点B 均在抛物线2y x =上,且AB x ∥轴,点C 、点D 为线段AB 的三等分点,以CD 为边向下作矩形CDEF ,矩形CDEF 的顶点E 、F 均在此抛物线上,若矩形CDEF 的面积为2,则AB 的长为.18.如图,菱形ABCD 的三个顶点在二次函数()2220y ax ax a =++<的图象上,点,A B 分别是该抛物线的顶点和抛物线与y 轴的交点,则点D 的坐标为.19.二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如表:x…-10125…2y ax bx c=++⋯m 1-1-nt⋯且当12x =-时,与其对应的函数值0y >,有下列结论:①0abc >;②当1x >时,y 随x 的增大而减小;③关于x 的方程2ax bx c t ++=的两个根是5和15-;④103m n +>.其中正确的结论是.(填写序号)20.已知点()12,y 与()23,y 在函数()22113y x =-+的图像上,则1y 、2y 的大小关系为.三、解答题21.当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+2m -1①有y=(x -m)2+2m -1②,所以抛物线顶点坐标为(m ,2m -1),即x=m ③,y=2m -1④.当m 的值变化时,x ,y 的值也随之变化,因而y 的值也随x 值的变化而变化.将③代入④,得y=2x -1⑤.可见,不论m 取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足关系式:y=2x -1;根据上述阅读材料提供的方法,确定点(-2m,m -1)满足的函数关系式为_______.(2)根据阅读材料提供的方法,确定抛物线22211y x x m m m=-+++顶点的纵坐标y 与横坐标x 之间的关系式.22.如图,已知二次函数的图象M 经过A (﹣1,0),B (4,0),C (2,﹣6)三点.(1)求该二次函数的解析式;(2)点G 是线段AC 上的动点(点G 与线段AC 的端点不重合),若△ABG 与△ABC 相似,求点G 的坐标;(3)设图象M 的对称轴为l ,点D (m ,n )((12)m -<<)是图象M 上一动点,当△ACD 的面积为278时,点D 关于l 的对称点为E ,能否在图象M 和l 上分别找到点P 、Q ,使得以点D 、E 、P 、Q 为顶点的四边形为平行四边形?若能,求出点P 的坐标;若不能,请说明理由.23.为实现农村经济可持续发展,石家庄市相关部门指导对口帮扶县区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量y (袋)与每袋的售价x (元)之间关系如下表:每袋的售价x (元)…2030…日销售量y (袋)…2010…如果日销售量y (袋)是每袋的售价x (元)的一次函数,请回答下列问题:(1)求日销售量y (袋)与每袋的售价x (元)之间的函数表达式;(2)求日销售利润P (元)与每袋的售价x (元)之间的函数表达式;(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?24.如图,已知抛物线23y ax bx =+-,与x 轴交于()1,0A ,()3,0B -两点,与y 轴交于点C .点P 是线段BC 上一动点,过点P 作x 轴的垂线交抛物线于点D .(1)求抛物线的解析式;(2)连接CD ,是否存在点P ,使得PCD 是以PD 为腰的等腰三角形,若存在,求出P 点的坐标;若不存在,请说明理由.25.投掷实心球是2024年银川市高中阶段学校招生体育考试新增的选考项目.如图①是一名学生投掷实心球的示范动作,已知实心球行进路线是一条抛物线,距地面高度(m)y 与距起点水平距离(m)x 之间的函数关系如图②所示,掷出时起点A 处距地面高度为5m 3,行进过程中最高点B 与O 点的连线与地平面成45︒角,且B 点距地面的高度h 为3m .(1)求y 关于x 的函数表达式;(2)若实心球落地点C 与原点O 的距离可以近似看作本次掷实心球的成绩,则该学生掷实心球的成绩为多少?8参考答案:1.D2.A3.C4.B5.C6.C7.A8.B9.D10.B11.D12.A 13.-114.①②④15.45x -<<16.①②③⑤17.318.()2,2-19.①③④20.12y y </21y y >21.(1)y=112x --;(2)11y x =+22.(1)234y x x =--;(2)G (23,103-);(3)P (72,94-)或P (12-,94-).23.(1)y =-x +40;(2)P =-x 2+50x -400;(3)当每袋特色农产品以25元出售时,才能使每日所获得的利润最大,最大利润是225元.24.(1)223y x x =+-(2)存在,()23,2--或()2,1--25.(1)y 关于x 的函数表达式为()243327y x =--+;(2)该学生掷实心球的成绩为7.5m .。
人教版九年级上册数学第二单元二次函数单元测试卷一.选择题(共10小题)1.二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s-t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关2.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①abc>0;②4a+2b+c>0;③9a-b+c=0;④若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为-8.其中正确的结论有()个A.2 B.3 C.4 D.53.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.4.将抛物线y=x2-4x-4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2-13 B.y=(x-5)2-5C.y=(x-5)2-13 D.y=(x+1)2-55.如果二次函数y=x2+2x+t与一次函数y=x的图象两个交点的横坐标分别为m、n,且m <1<n,则t的取值范围是()A.t>-2 B.t<-2 C.t>14D.t<146.已知抛物线y=-x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限7.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C在第一象限,且2≤[C]≤4,令t=2b2-4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2021C.2021≤t≤2020D.2020≤t≤20212随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个9.将函数y=-x2+2x+m(0≤x≤4)在x轴下方的图象沿x轴向上翻折,在x轴上方的图象保持不变,得到一个新图象.新图象对应的函数最大值与最小值之差最小,则m的值为()A.2.5 B.3 C.3.5 D.410.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,-3}=-3,min{-4,-2}=-4.则min{-x2+1,-x}的最大值是()A.√5−12B.√5+12C.1 D.0二.填空题(共6小题)11.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是12.对于任意实数m,抛物线y=x2+4mx+m+n与x轴都有交点,则n的取值范围是13.当-1≤x≤3时,二次函数y=x2-4x+5有最大值m,则m=14.在平面直角坐标系中,已知A(-1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为15.已知抛物线y=ax2+bx+c(a<0)的对称轴为x=-1,与x轴的一个交点为(2,0),若关于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有个16.对于一个函数,如果它的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=-x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,-1)和点B(-1,1),则a的取值范围是三.解答题(共7小题)17.已知抛物线C:y=x2+mx+n(m,n为常数).(1)如图,若抛物线C的顶点坐标为P(1,2),求m,n的值;(2)在(1)的条件下,设点Q(a,b)在抛物线C上,且点Q离y轴的距离不大于2,直接写出b的取值范围;(3)将抛物线C向左平移2个单位得到抛物线C1,将抛物线C向右平移2个单位得到抛物线C2,若C1与C2的交点坐标为(1,3),求抛物线C的函数解析式.18.在平面直角坐标系xOy中,抛物线y=x2-2x-3与x轴相交于A,B(点A在点B的左边),与y轴相交于C.(1)求直线BC的表达式.(2)垂直于y轴的直线l与直线BC交于点N(x1,y1),与抛物线相交于点P(x2,y2),Q (x3,y3).若x1<x2<x3,结合函数图象,求x1+x2+x3的取值范围.19.某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象.图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第26天的日销售量是件,日销售利润是元.(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于600元的天数共有多少天?试销售期间,日销售最大利润是多少元?20.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每涨价1元,其销售量要减少10件.(1)为在月内赚取8000元的利润,售价应定为每件多少元?(2)要想获得的利润最大,该商场应当如何定价销售?21.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?22.如图,在平面直角坐标系中,抛物线y=-√33x2−2√33x+√3与x轴交于A,B两点,与y轴交于点C.(1)若点P为直线AC上方抛物线上的动点,当△PAC的面积最大时,求此时P点的坐标;(2)若点Q是抛物线对称轴上的动点,点M是抛物线上的动点,当以点M、A、C、Q为顶点的四边形是平行四边形时,直接写出此时Q点的坐标.x2+2x+2的顶点为A,且与y轴于点B,将抛物线C1沿y=a 23.如图,抛物线C1:y=-12对称后,得到抛物线C2与y轴交于点C.(1)求A、B两点坐标;(2)若抛物线C2上存在点D,使得△BCD为等腰直角三角形,求出此时抛物线C2的表达式.参考答案一、选择题二、填空题11、k≤54且k≠112、n≤−16413、1014、4 15、3 16、−12≤a<0或0<a≤12三、解答题17、18、19、20、21、22、23、精品 WORD 可修改 欢迎下载1、最困难的事就是认识自己。