大学物理半导体3
- 格式:ppt
- 大小:967.00 KB
- 文档页数:37
《半导体物理实验》课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:半导体物理实验所属专业:电子材料与器件工程专业本科生课程性质:专业必修课学分: 4(二)课程简介、目标与任务;本课程是为物理科学与技术学院电子材料与器件工程专业大四本科生所开设的实验课,是一门专业性和实践性都很强的实践教学课程。
开设本课程的目标和任务是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制坚定基础。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;由于是实验课,所以需要学生首先掌握《半导体物理》和《半导体器件》的基本知识,再通过本课程培养学生对半导体材料和器件的制备及测试方法的实践能力。
其具体要求包括:1、了解半导体材料与器件的基本研究方法;2、理解半导体材料与器件相关制备与基本测试设备的原理、功能及使用方法,并能够独立操作;3、通过亲自动手操作提高理论与实践相结合的能力,提高理论学习的主动性。
开设本课程的目的是培养学生实事求是、严谨的科学作风,培养学生的实际动手能力,提高实验技能。
(四)教材与主要参考书。
教材:《半导体物理实验讲义》,自编教材参考书:1. 半导体器件物理与工艺(第三版),施敏,苏州大学出版社,2. [美]A.S.格罗夫编,齐健译.《半导体器件物理与工艺》.科学出版社,1976二、课程内容与安排实验一绪论1、介绍半导体物理实验的主要内容2、学生上课要求,分组情况等实验二四探针法测量电阻率一、实验目的或实验原理1、了解四探针电阻率测试仪的基本原理;2、了解的四探针电阻率测试仪组成、原理和使用方法;3、能对给定的薄膜和块体材料进行电阻率测量,并对实验结果进行分析、处理。
二、实验内容1、测量单晶硅样品的电阻率;2、测量FTO导电层的方块电阻;3、对测量结果进行必要的修正。
三、实验仪器与材料四探针测试仪、P型或N型硅片、FTO导电玻璃。
大学物理半导体物理学与电子学物理学是研究自然界基本规律的科学,而大学物理则是在此基础上深入探究自然现象与物质本质之间的关系。
本文将介绍大学物理中的一个重要领域——半导体物理学与电子学。
一、半导体物理学的基础半导体是指在一定条件下,比金属导电能力差但比绝缘体好的材料。
半导体物理学研究的核心是半导体材料的电子结构和输运性质。
1. 半导体结构半导体材料的晶体结构由原子排列组成,一般由离子晶体和共价晶体两种构成。
离子晶体的晶格中有正负离子,共价晶体则是由共用电子配对形成的晶体。
2. 能带理论能带理论是描述半导体材料中电子能级分布的理论模型。
半导体材料中存在导带和禁带(或称能隙),导带中的电子能量较高,可以在外电场作用下参与导电;而禁带中的电子能量较低,不容易移动。
二、半导体材料与器件半导体物理学的研究不仅限于理论,还深入到材料与器件层面。
半导体材料的性质决定了所制备器件的性能。
1. 半导体材料常见的半导体材料有硅和锗。
硅材料由地壳上的石英经过高温还原得到,具有较高的纯度和稳定性。
锗材料在一些特殊应用中有一定的使用价值。
2. 半导体器件半导体器件是利用半导体材料制造的电子器件。
常见的半导体器件有二极管、晶体管、集成电路等。
二极管是最简单的半导体器件,具有单向导电性。
晶体管可以放大电信号,是现代电子设备中不可或缺的元件。
集成电路是多个晶体管等元件在一个芯片上集成而成,极大地提高了电子器件的功能与性能。
三、电子学的基础知识电子学是研究电子器件与电子系统的学科,它与半导体物理学紧密相关。
在电子学领域,我们需要了解一些重要的基础知识。
1. 电子的流动电子在物质中的流动形成了电流,是电子学研究的核心内容。
电子的流动受到导体的电阻和电势差的影响。
根据欧姆定律,电流与电压成正比,与电阻成反比。
2. 电子器件电子学中常用的器件有电阻、电容、电感等。
电阻用来限制电流的流动,电容可以储存电荷,电感用来储存磁场能量。
四、半导体物理学与电子学的应用半导体物理学与电子学的应用广泛,为现代科技和工业的发展做出了重要贡献。
课时安排:2课时教学目标:1. 理解半导体的基本概念、导电性能及其应用。
2. 掌握半导体材料的特性,包括本征半导体、杂质半导体以及PN结的形成。
3. 理解PN结的单向导电特性,并学会分析二极管的基本电路。
4. 了解半导体三极管的结构、工作原理以及放大作用。
教学内容:一、半导体基础知识1. 半导体的定义、导电性能及其特点。
2. 本征半导体与杂质半导体的区别。
3. 半导体材料的能带结构。
二、PN结的形成与特性1. PN结的形成过程。
2. PN结的特性:单向导电性、反向截止特性。
3. PN结的伏安特性曲线。
三、半导体二极管1. 二极管的基本结构、符号及主要参数。
2. 二极管的伏安特性曲线及主要参数。
3. 二极管的应用电路:整流、稳压、限幅等。
四、半导体三极管1. 三极管的结构、符号及分类。
2. 三极管的工作原理:放大作用。
3. 三极管的放大电路:共发射极、共基极、共集电极。
教学过程:第一课时:一、导入新课1. 通过生活中的实例,如手机、电脑等,引入半导体的概念。
2. 提问:什么是半导体?它有哪些特点?二、讲授新课1. 半导体基础知识:介绍半导体的定义、导电性能及其特点。
2. 本征半导体与杂质半导体的区别:讲解本征半导体、杂质半导体以及能带结构。
三、课堂练习1. 让学生分析不同半导体材料的导电性能差异。
2. 讨论半导体的应用领域。
第二课时:一、复习导入1. 回顾上节课所学内容,提问:什么是PN结?PN结有哪些特性?二、讲授新课1. PN结的形成与特性:讲解PN结的形成过程、单向导电性、反向截止特性。
2. PN结的伏安特性曲线:分析PN结的伏安特性曲线,讲解其主要参数。
三、讲授新课1. 半导体二极管:介绍二极管的基本结构、符号及主要参数。
2. 二极管的伏安特性曲线及主要参数:分析二极管的伏安特性曲线,讲解其主要参数。
3. 二极管的应用电路:讲解整流、稳压、限幅等应用电路。
四、课堂练习1. 让学生分析二极管在电路中的作用。
半导体器件物理施敏答案【篇一:施敏院士北京交通大学讲学】t>——《半导体器件物理》施敏 s.m.sze,男,美国籍,1936年出生。
台湾交通大学电子工程学系毫微米元件实验室教授,美国工程院院士,台湾中研院院士,中国工程院外籍院士,三次获诺贝尔奖提名。
学历:美国史坦福大学电机系博士(1963),美国华盛顿大学电机系硕士(1960),台湾大学电机系学士(1957)。
经历:美国贝尔实验室研究(1963-1989),交通大学电子工程系教授(1990-),交通大学电子与资讯研究中心主任(1990-1996),国科会国家毫微米元件实验室主任(1998-),中山学术奖(1969),ieee j.j.ebers奖(1993),美国国家工程院院士(1995), 中国工程院外籍院士 (1998)。
现崩溃电压与能隙的关系,建立了微电子元件最高电场的指标等。
施敏院士在微电子科学技术方面的著作举世闻名,对半导体元件的发展和人才培养方面作出了重要贡献。
他的三本专著已在我国翻译出版,其中《physics of semiconductor devices》已翻译成六国文字,发行量逾百万册;他的著作广泛用作教科书与参考书。
由于他在微电子器件及在人才培养方面的杰出成就,1991年他得到了ieee 电子器件的最高荣誉奖(ebers奖),称他在电子元件领域做出了基础性及前瞻性贡献。
施敏院士多次来国内讲学,参加我国微电子器件研讨会;他对台湾微电子产业的发展,曾提出过有份量的建议。
主要论著:1. physics of semiconductor devices, 812 pages, wiley interscience, new york, 1969.2. physics of semiconductor devices, 2nd ed., 868 pages, wiley interscience, new york,1981.3. semiconductor devices: physics and technology, 523 pages, wiley, new york, 1985.4. semiconductor devices: physics and technology, 2nd ed., 564 pages, wiley, new york,2002.5. fundamentals of semiconductor fabrication, with g. may,305 pages, wiley, new york,20036. semiconductor devices: pioneering papers, 1003 pages, world scientific, singapore,1991.7. semiconductor sensors, 550 pages, wiley interscience, new york, 1994.8. ulsi technology, with c.y. chang,726 pages, mcgraw hill, new york, 1996.9. modern semiconductor device physics, 555 pages, wiley interscience, new york, 1998. 10. ulsi devices, with c.y. chang, 729 pages, wiley interscience, new york, 2000.课程内容及参考书:施敏教授此次来北京交通大学讲学的主要内容为《physics ofsemiconductor device》中的一、四、六章内容,具体内容如下:chapter 1: physics and properties of semiconductors1.1 introduction 1.2 crystal structure1.3 energy bands and energy gap1.4 carrier concentration at thermal equilibrium 1.5 carrier-transport phenomena1.6 phonon, optical, and thermal properties 1.7 heterojunctions and nanostructures 1.8 basic equations and exampleschapter 4: metal-insulator-semiconductor capacitors4.1 introduction4.2 ideal mis capacitor 4.3 silicon mos capacitorchapter 6: mosfets6.1 introduction6.2 basic device characteristics6.3 nonuniform doping and buried-channel device 6.4 device scaling and short-channel effects 6.5 mosfet structures 6.6 circuit applications6.7 nonvolatile memory devices 6.8 single-electron transistor iedm,iscc, symp. vlsi tech.等学术会议和期刊上的关于器件方面的最新文章教材:? s.m.sze, kwok k.ng《physics of semiconductordevice》,third edition参考书:? 半导体器件物理(第3版)(国外名校最新教材精选)(physics of semiconductordevices) 作者:(美国)(s.m.sze)施敏 (美国)(kwok k.ng)伍国珏译者:耿莉张瑞智施敏老师半导体器件物理课程时间安排半导体器件物理课程为期三周,每周六学时,上课时间和安排见课程表:北京交通大学联系人:李修函手机:138******** 邮件:lixiuhan@案2013~2014学年第一学期院系名称:电子信息工程学院课程名称:微电子器件基础教学时数: 48授课班级: 111092a,111092b主讲教师:徐荣辉三江学院教案编写规范教案是教师在钻研教材、了解学生、设计教学法等前期工作的基础上,经过周密策划而编制的关于课程教学活动的具体实施方案。
半导体物理学电子在半导体中的行为在半导体物理学中,电子在半导体中的行为是研究的重点之一。
半导体是一种介于导体和绝缘体之间的材料,其导电性质可由施加的外加电场或温度来控制。
本文将对电子在半导体中的行为进行探讨,并介绍半导体的基本原理和相关应用。
一、半导体的基本概念半导体是一种晶体结构的材料,其原子结构比金属和绝缘体都要复杂。
在半导体中,价电子能级与导带能级之间存在能隙,该能隙决定了半导体的导电性质。
半导体通常分为P型和N型两种类型。
二、P型半导体中电子的行为在P型半导体中,杂质原子掺入导致半导体中的空穴增加,即缺少一个价电子的位置。
电子通过空穴进行传导,形成电流。
在P型半导体中,电子从高能级的价带跃迁至低能级的导带,填补空缺的位置。
这里需要注意的是,电子的行为受到外界温度和电场的影响。
三、N型半导体中电子的行为与P型半导体相反,N型半导体中杂质原子的掺入导致半导体中成为电子供体,电子数量增加。
电子在N型半导体中形成电流。
与P型类似,电子从价带跃迁至导带,填充空缺的位置。
同样需要注意电子在外界条件下的行为变化。
四、PN结的行为PN结是由P型和N型半导体材料构成的结构,其具有特殊的导电特性。
当P型和N型半导体相接触时,形成的空间电荷区域会阻止电子的传导。
但是,当在PN结上施加正向电压时,空间电荷区域会被压缩,电流可以通过。
而反向电压下,空间电荷区域会扩展,电流被阻断。
五、半导体器件的应用半导体的特性使其被广泛应用于电子器件制造。
如晶体管、二极管等。
晶体管作为一种控制电流的器件,可以放大信号和开关电路。
二极管则具有整流特性,使电流只能在单个方向上流动。
这些器件的设计和制造依赖于对电子在半导体中行为的深入研究。
六、半导体物理学的研究进展随着科技的不断发展,半导体物理学的研究进展日新月异。
如表面态、量子效应等的发现,为半导体器件的精确控制和性能提升提供了新的思路。
同时,以硅材料为代表的半导体材料,在集成电路等领域的应用也在不断扩大。
大学物理实验6-7半导体热敏电阻的温度特性实验目的:1. 掌握半导体热敏电阻的温度特性;2. 学习使用K2320027测温表进行温度测量;3. 学习使用半导体热敏电阻测试电路进行实验。
实验器材:1. 半导体热敏电阻试样;2. PT100温度传感器;3. 数字万用表;4. 恒流源;5. 变阻器;6. K2320027测温表;7. 恒温槽;8. 多用万能表。
实验原理:(一)半导体热敏电阻特性半导体材料的电阻率随温度的变化是非常大的。
在普通的半导体材料中,当温度从0℃升高到100℃的时候,电阻率可能变化10到100倍。
这一变化是非常敏感的,并且在不同的材料中具有不同的表现。
P型半导体材料电阻率随着温度的升高而减小,N型半导体材料电阻率随着温度的升高而增大。
在一些作为热敏电阻的材料中,电阻率的变化可以达到数百倍。
常用的热敏电阻材料有硼烯、碳、氮化硅、硅、锗、铝烯、锑酸铋等。
(二)半导体热敏电阻测试电路如图所示是半导体热敏电阻的测试电路。
实验中,要使用一台数字恒流源对半导体热敏电阻供应恒定的电流。
在半导体热敏电阻的两端并联一个变阻器,来测量半导体热敏电阻的阻值。
这一测量一般会通过多用万能表或与数显电压计相结合来完成。
同时,一个PT100温度传感器连接在半导体热敏电阻的一端,用来测量环境温度,以满足热敏电阻的临界温度的确定。
实验步骤:1. 启动恒温槽,将温度调节到1℃,使其恒温。
2. 将半导体热敏电阻的两端分别连接到数字万用表的电流档和电压档上,确定使用的恒流值。
3. 将PT100温度传感器的两端引线接入数字万用表的温度测量接口上。
4. 将数字恒流源连接在半导体热敏电阻的一端。
5. 打开数字万用表的电源开关,进行基准校准。
6. 在温度档下,使用K2320027测温表测量温度;同时多用万能表或数显电压计测量热敏电阻电阻值。
7. 将恒流值依次修改,取一定范围内的数值,得到热敏电阻的阻值;同样,取一定范围的温度值,得到温度值。
第一篇 半导体中的电子状态习题1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。
1-3、试指出空穴的主要特征。
1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。
1-5、某一维晶体的电子能带为[])sin(3.0)cos(1.01)(0ka ka E k E --=其中E 0=3eV ,晶格常数a=5х10-11m 。
求:(1) 能带宽度;(2) 能带底和能带顶的有效质量。
题解:1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。
温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。
反之,温度降低,将导致禁带变宽。
因此,Ge 、Si 的禁带宽度具有负温度系数。
1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。
主要特征如下:A 、荷正电:+q ;B 、空穴浓度表示为p (电子浓度表示为n );C 、E P =-E nD 、m P *=-m n *。
1-4、 解:(1) Ge 、Si:a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;b )间接能隙结构c )禁带宽度E g 随温度增加而减小;(2) GaAs :a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;b )直接能隙结构;c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;1-5、 解:(1) 由题意得:[][])sin(3)cos(1.0)cos(3)sin(1.002220ka ka E a kd dEka ka aE dk dE +=-=eVE E E E a kd dEa k E a k d dEa k a k a k ka tg dkdE o ooo1384.1min max ,01028.2)4349.198sin 34349.198(cos 1.0,4349.198,01028.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.1831,04002222400222121=-=∆<⨯-=+==>⨯=+====∴==--则能带宽度对应能带极大值。
半导体物理第一章半导体中的电子状态单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场是具有与晶格同周期的周期性势场。
1.1半导体的晶格结构和结合性质1.大量的硅、锗原子组合成晶体靠的是共价键结合,他们的晶体结构与碳原子组成的一种金刚石晶格都属于金刚石型结构。
2.闪锌矿型结构(见课本8页)1.2半导体中电子的状态和能带1.Φ(r,t)=Ae i(k.r−wt) k为平面波的波数2.k=|k|=2л/λ波的传播方向为与波面法线平行3.在晶体中波函数的强度也随晶格周期性变化,所以在晶格中各点找到该电子的概率也具有周期性变化的性质。
这反映了电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动,这种运动称为电子在晶体内的公有化运动。
1.3半导体中的电子的运动有效质量1.导带低电子的有效能量1h2(d2Edk2)k=0=1m n∗2.引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中的电子外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
3.能量带越窄二次微商越小,有效质量越大。
内层电子的能量带越窄,有效质量大;外层电子的能量带宽,有效质量小。
1.4本征半导体的到点机构空穴1.可以认为这个空状态带有正电。
2.正电荷为空状态所有,它带的电荷是+q。
3.空穴:通常把价带中空着的状态看成是带正电的粒子,称为空穴。
.空穴不仅带有正电荷+q,而且还具有正的有效质量。
4引进空穴概念后,就可以把价带中大量电子对电流的贡献用少量的空穴表达出来。
半导体中除了导电带上电子导体作用外,价带中还有空穴的导电作用,这就是本征半导体的导电机构。
1.6 硅和锗的能带结构硅和锗的禁带宽度是随温度变化的,在T=0K时,硅和锗的禁带宽度E g分别趋近于1.70eV和0.7437eV.随着温度的升高,E g按如下规律减小E g(T)=E g(0)- -aT2T+β,式中E g(T)和E g(0)分别表示温度为T和0K时的禁带宽度,a,β为温度系数。
半导体高中物理
半导体物理是研究半导体材料的性质、结构及其在电子器件中的应用的一门学科。
它是物理学、化学和材料科学的交叉领域,对于现代电子技术的发展具有重要意义。
半导体物理的主要内容包括:
1. 半导体的基本概念:半导体是一种介于导体(如金属)和绝缘体(如玻璃、橡胶)之间的材料,其电导率介于两者之间。
半导体的导电性能受温度、杂质等因素的影响较大。
2. 半导体的能带结构:半导体中的电子能量分布在不同的能带中,主要有价带、导带和禁带。
价带中的电子受到束缚,不能自由移动;导带中的电子可以自由移动,参与导电过程。
禁带是价带和导带之间的能量间隔,决定了半导体的导电类型(n型或p型)。
3. 载流子:半导体中的电子和空穴都可以作为载流子参与导电过程。
n型半导体中的多数载流子是电子,p型半导体中的多数载流子是空穴。
4. 掺杂:通过向半导体中添加杂质元素,可以改变其导电类型和导电性能。
n型半导体中加入五价元素(如磷),p型半导体中加入三价元素(如硼)。
5. p-n结:将n型半导体和p型半导体结合形成的结构称为p-n结。
p-n结具有单向导电性,即在正向偏置下电阻很小,电流可以顺利通过;在反向偏置下电阻很大,电流几乎不流动。
p-n结是许多半导体器件的基础。
6. 二极管:利用p-n结的特性制成的电子器件。
二极管具有整流、稳压等功能,广泛应用于电路中。
7. 晶体管:利用p-n结和多层半导体结构制成的电子器件。
晶体管具有放大和开关功能,是现代电子设备的核心元件。
第九章导体与介质中的静电场Electrostatic field in conductor and dielectric §9-1,2静电场中的导体§9-3电容器的电容§9-6电介质中的高斯定理§9-8 静电场的能量§9-1,2静电场中的导体一、导体的静电平衡( electrostatic equilibrium )1.导体绝缘体半导体1)导体(conductor)导电能力极强的物体(存在大量可自由移动的电荷)2)绝缘体(电介质,dielectric)导电能力极弱或不能导电的物体3)半导体(semiconductor)导电能力介于上述两者之间的物体EE E E iii E e E q F 导体静电平衡条件:导体内任一点的电场强度都等于零Ei E E2. 导体的静电平衡条件导体的内部和表面都没有电荷作任何宏观定向运动的状态.导体的静电平衡状态:静电感应E* 推论(静电平衡状态)证:在导体上任取两点p , ql d E V V i qpq pqp V V 0i Epq导体静电平衡条件:2)导体表面任一点场强方向垂直于表面1)导体为等势体,导体表面为等势面否则其切向分量将引起导体表面自由电子的运动,与静电平衡相矛盾。
3.导体上电荷的分布1)当带电导体处于静电平衡状态时,导体内部处处没有净电荷存在, 电荷只能分布于导体的表面上.qdV iiV证明:在导体内任取体积元dV由高斯定理体积元d v 任取导体带电只能在表面!iiqS d E 01 ,0 i E dVn e En e E E S d e E S d E nS E 0S2).导体表面附近的场强方向与表面垂直,大小与该处电荷的面密度成正比.ne ES结论:孤立的带电导体,外表面各处的电荷面密度与该处曲率半径成反比,410R Q V RRrr R ,44,22rRr R rR q Q r R R rQq1)导体表面凸出而尖锐的地方(曲率较大)电荷面密度较大2)导体表面平坦的地方(曲率较小)电荷面密度较小3)导体表面凹进去的地方(曲率为负)电荷面密度更小rq V r 041rq R Q V V R r 004141l d E 导体内,0l d E 腔沿电场线l d E (违反环路定理)在静电平衡状态下,导体空腔内各点的场强等于零,空腔的内表面上处处没有电荷分布.ld E l d E l d E导体内腔沿电场线二、空腔导体(带电荷Q )1 腔内无电荷,导体的电荷只能分布在外表面。
半导体器件物理施敏课后答案半导体器件物理施敏课后答案【篇一:半导体物理物理教案(03级)】>学院、部:材料与能源学院系、所;微电子工程系授课教师:魏爱香,张海燕课程名称;半导体物理课程学时:64实验学时:8教材名称:半导体物理学2005年9-12 月授课类型:理论课授课时间:2节授课题目(教学章节或主题):第一章半导体的电子状态1.1半导体中的晶格结构和结合性质1.2半导体中的电子状态和能带本授课单元教学目标或要求:了解半导体材料的三种典型的晶格结构和结合性质;理解半导体中的电子态, 定性分析说明能带形成的物理原因,掌握导体、半导体、绝缘体的能带结构的特点本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):1.半导体的晶格结构:金刚石型结构;闪锌矿型结构;纤锌矿型结构2.原子的能级和晶体的能带3.半导体中电子的状态和能带(重点,难点)4.导体、半导体和绝缘体的能带(重点)研究晶体中电子状态的理论称为能带论,在前一学期的《固体物理》课程中已经比较完整地介绍了,本节把重要的内容和思想做简要的回顾。
本授课单元教学手段与方法:采用ppt课件和黑板板书相结合的方法讲授本授课单元思考题、讨论题、作业:作业题:44页1题本授课单元参考资料(含参考书、文献等,必要时可列出)1.刘恩科,朱秉升等《半导体物理学》,电子工业出版社2005?2.田敬民,张声良《半导体物理学学习辅导与典型题解》?电子工业出版社20053. 施敏著,赵鹤鸣等译,《半导体器件物理与工艺》,苏州大学出版社,20024. 方俊鑫,陆栋,《固体物理学》上海科学技术出版社5.曾谨言,《量子力学》科学出版社注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案;3. “重点”、“难点”、“教学手段与方法”部分要尽量具体;4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课。
授课类型:理论课授课时间:2节授课题目(教学章节或主题):第一章半导体的电子状态1.3半导体中的电子运动——有效质量1.4本征半导体的导电机构——空穴本授课单元教学目标或要求:理解有效质量和空穴的物理意义,已知e(k)表达式,能求电子和空穴的有效质量,速度和加速度本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):1.半导体中e(k)与k的关系(重点,难点)2.半导体中电子的平均速度3.半导体中电子的加速度4.有效质量的物理意义(重点,难点)【篇二:《半导体器件物理》理论课程教学大纲】=txt>课程编码:01222316 课程模块:专业方向课修读方式:限选开课学期:5 课程学分:2.5课程总学时:51 理论学时:36实践学时:15一、课程性质、内容与目标本课程是高等学校本科集成电路设计与集成系统、微电子技术专业必修的一门专业主干课,是研究集成电路设计和微电子技术的基础课程。