专题六 机械能及其守恒定律
- 格式:pdf
- 大小:3.61 MB
- 文档页数:10
机械能及其守恒定律机械能是描述物体在运动的过程中所具有的能量状态,即力学中的一种能量形式。
它包括了物体所具有的动能和势能。
在物体运动的过程中,动能随着速度的增加不断增加,而势能则随着物体的位置变化而变化。
机械能守恒定律是力学中的一种基本定律,它可以帮助我们更深入地理解物体在运动的过程中所具有的能量状态。
根据机械能守恒定律,一个物体在运动的过程中,其机械能的总量始终保持不变。
在无外力干扰的情况下,物体的机械能总量可以从动能和势能两个方面来进行刻画。
动能是由物体的质量和速度共同决定的,而势能则由其位置和重力加速度决定。
具体而言,动能可以表示为:K = 1/2mv²其中,m是物体的质量,v是物体的速度。
而势能可以表示为:U = mgh其中,m是物体的质量,h是物体的高度,g是重力加速度。
因此,机械能可以表示为:E = K + U在物体在运动的过程中,机械能总量的变化可以通过动能和势能之间的转化来进行刻画。
例如,一个物体在下降的过程中,其高度不断降低,势能的值减小,而动能的值则增加。
这种转化的过程被称为“能量转换”。
机械能守恒定律指出,在没有任何外界力的情况下,一个物体在运动的过程中其机械能总量保持不变。
换句话说,机械能总量在物体运动的过程中保持恒定。
这个定律适用于任何形式的物体运动,如自由落体、弹性碰撞等等。
机械能守恒定律有着广泛的应用,例如在工程领域中的动力学问题、机器的设计和运作等。
它也被广泛应用于环境工程和自然资源管理中。
例如,在水力发电站中,机械能守恒定律被用来描述水流在测量点的流动状态,以及水流的动态特性。
总之,机械能守恒定律是力学中的一种基本定律,它描述了物体在运动过程中所具有的能量状态。
在无外界干扰的情况下,物体的机械能总量保持不变,这种定律有着广泛的应用领域,为解决各种物理问题提供了有力的工具。
高中物理机械能及守恒定律专题及解析高中物理机械能及守恒定律专题及解析一、机械能的概念及计算公式机械能是指一个物体同时具有动能和势能的能量,它是物体运动时的总能量。
机械能可以通过以下公式计算:机械能 = 动能 + 势能其中,动能的公式为:动能 = 1/2 ×质量 ×速度²势能的公式为:势能 = 质量 ×重力加速度 ×高度二、机械能守恒定律的表述及应用机械能守恒定律指的是,在一个封闭系统中,如果只有重力做功,没有其他非保守力做功,那么该系统的机械能守恒,即机械能的总量不会发生变化。
这一定律可以通过以下实验进行验证:将一个小球从一定高度上自由落下,当小球下落到一定高度时,用一个弹性绳接住小球,使其反弹上升,然后再次自由下落。
实验结果表明,当小球反弹的高度恰好等于初始下落高度时,机械能守恒定律成立。
在实际应用中,机械能守恒定律常常用于解决与能量转换和效率有关的问题。
例如,我们可以利用机械能守恒定律计算斜面上物体的滑动速度或滑动距离,来评估机械装置的效率。
此外,机械能守恒定律还可以用于解决弹簧振子、单摆等周期性运动问题。
三、机械能守恒定律的应用实例分析1. 斜面上物体滑动问题假设一个物体从斜面的顶端自由滑下,忽略空气阻力和摩擦力,那么当物体滑到斜面的底端时,动能和势能的变化可以用机械能守恒定律来表达。
设物体的质量为m,斜面的高度差为h,斜面的倾角为θ。
假设物体在斜面上的速度为v,那么动能和势能的变化可以表示为:动能的变化:ΔK = K(终) - K(始) = 1/2 × m × v² - 0 = 1/2 × m ×v²势能的变化:ΔU = U(终) - U(始) = m × g × h × sinθ - 0 = m × g× h × sinθ根据机械能守恒定律,动能的变化等于势能的变化,即:1/2 × m × v² = m × g × h × sinθ通过求解上述方程,可以得到物体在斜面上的滑动速度v的数值。
专题六 机械能及其守恒定律一、选择题1.(2020年全国卷Ⅰ) 行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。
若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D.延长了司机的受力时间并增大了司机的受力面积2. (2020年全国卷Ⅰ) 一物块在高3.0m 、长5.0m 的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s 的变化图中直线I 、II 所示,重力加速度取210/m s 。
则 A .物块下滑过程中机械能不守恒 B .物块与斜面间的动摩擦因数为0.5 C .物块下滑时加速度的大小为26.0/m s D. 当物块下滑2.0m 时机械能损失了12J3.(2019年全国Ⅱ卷)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。
若摩托车经过a 点时的动能为1E ,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为2E ,该摩托车恰能越过坑到达b 点。
21E E 等于 A.20 B.18 C.9.0 D.3.04. (2020年全国Ⅲ卷)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。
已知甲的质量为1kg ,则碰撞过程两物块损失的机械能为A. 3JB. 4JC. 5JD. 6J5.(2019年全国Ⅱ卷)从地面竖直向上抛出一物体,其机械能E 总等于动能k E 与重力势能p E 之和。
取地面为重力势能零点,该物体的E 总和p E 随它离开地面的高度h 的变化如图所示。
重力加速度取102m /s 。
由图中数据可得A .物体的质量为2 kgB .0h =时,物体的速率为20 m/sC .2h =m 时,物体的动能k E =40 JD .从地面至h =4 m ,物体的动能减少100 J6.(2019年全国Ⅲ卷)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
,合外力做功为零.的粗糙的斜面体上,当两者一起向右匀速直线运所受重力做的功是多少?摩擦力做功多少?,则在两球向左下摆动时.下列说法正确的是:一个力对物体做不做功,是正功还是负功,判断的方法是:①看力与位移之间夹角,或者看力与速度方向之间球的速度方向就是锐角;为钝角时,力对物体做负功,上例作用力与反作用力同时存在,作用力做功时,反作用力可能做功,也可能不做功,可能做正功,也可能做负功,不要以为作用力与反作用力大小相等、方向相反,就一定有作用力、反作用力的功数值相等,一正一负.所以作用力与反作用力做功不这类力做功与物体的运动路径有关。
在上例中,滑动摩擦力是一个变力,方向在变化,可转化为恒力做功,同时滑动摩擦力做功要看物体运动的路程,这是摩擦力做功的特)由功率的定义;(4)由动能定理求解.的小球,开始时,细线被拉直,并处于水O A的过程中,,则心脏每跳动一次所需的时间是,心房、心室共同处于期,lmmHg=133.322Pa)收缩一次输出血量平均为70ml,那依题意sinθ=5/100。
汽车将加速上坡,速,如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. E k=½mv2,其大小与参照系的选22只须考虑整个过程的功量及过程始末的动能.若过程包含了几个运动性质不同的分过程.即可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功.计算时要把各力的功连同符号(正负)一同代入公式.W=Fscosα求出变力做的圆周运动,运动过程中小球受到空气阻力的作用.设此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在解决这类问题关键是分清哪一过A)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系与L、L二弹簧相连,仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和与弹簧相连,当A、与一质量为m=10kg的重物相连,,开始时让它们处于静止状态.不计绳6m/ s而动能定理揭示的是物体动能的变化跟并在半圆最高点D水平进入轨道,然物体在绳、杆、轨道约束的情况下在竖直平面内做圆周运动,往往伴随着动能,势能的相互转化,若机械能守恒,即可根据机械能守恒去求解物体在运动中经过某位里时的速度,再结合圆周运动、牛顿定律可求解相关的运动学、动力学的量.点由静止释放后到达最将该十mg0.5l=½mv2C5中在速度改变瞬间(B中绳的作用力与速度垂直,所以只改变了速度的方向而没有改变速度.由动量定理可知,沿半径方向绳的拉力,因此该情况就有能量损失,也就不可用机械能守恒O点下摆,当摆到或者从一个物体转移到另一个若物体最后静止在B点的左侧或中水面静止在同一高度上,水受到重力、器壁压力和两。
专题六机械能及其守恒定律考点一功和功率1.(2013浙江理综,17,6分)如图所示,水平木板上有质量m=1.0kg的物块,受到随时间t变化的水平拉力F作用,用力传感器测出相应时刻物块所受摩擦力F f的大小。
取重力加速度g=10m/s2,下列判断正确的是()A.5s内拉力对物块做功为零B.4s末物块所受合力大小为4.0NC.物块与木板之间的动摩擦因数为0.4D.6s-9s内物块的加速度大小为2.0m/s2答案D2.(2013四川理综,10,17分)在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行。
劲度系数k=5N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面。
水平面处于场强E=5×104N/C、方向水平向右的匀强电场中。
已知A、B的质量分别为m A=0.1kg和m B=0.2kg,B所带电荷量q=+4×10-6C。
设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电量不变。
取g=10m/s2,sin37°=0.6,cos37°=0.8。
(1)求B所受静摩擦力的大小;(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6m/s2开始做匀加速直线运动。
A从M到N的过程中,B的电势能增加了ΔE p=0.06J。
已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4。
求A到达N点时拉力F的瞬时功率。
答案(1)0.4N(2)0.528W考点二动能定理及其应用3.(2013江苏单科,9,4分)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连。
弹簧处于自然长度时物块位于O点(图中未标出)。
物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ。
现用水平向右的力将物块从O点拉至A点,拉力做的功为W。
专题六 机械能及其守恒定律1.(2013·高考大纲全国卷,20题) 如图所示,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g .若物块上升的最大高度为H ,则此过程中,物块的( )A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH 【解析】选AC.运动过程中有摩擦力做功,考虑动能定理和功能关系.物块以大小为g 的加速度沿斜面向上做匀减速运动,运动过程中F 合=mg ,由受力分析知摩擦力f =12mg ,当上升高度为H 时,位移s =2H ,由动能定理得ΔE k =-2mgH ;由功能关系知ΔE =W f =-12mgs =-mgH ,选项A 、C 正确. 2.(2013·高考北京卷,19题)在实验操作前应该对实验进行适当的分析.研究平抛运动的实验装置示意图如图所示.小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平飞出.改变水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.某同学设想小球先后三次做平抛运动,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距.若三次实验中,小球从抛出点到落点的水平位移依次为x 1,x 2,x 3,机械能的变化量依次为ΔE 1、ΔE 2、ΔE 3,忽略空气阻力的影响,下面分析正确的是( )A .x 2- x 1=x 3-x 2,ΔE 1=ΔE 2=ΔE 3B .x 2- x 1>x 3-x 2,ΔE 1=ΔE 2=ΔE 3C .x 2- x 1>x 3-x 2,ΔE 1<ΔE 2<ΔE 3D .x 2- x 1<x 3-x 2,ΔE 1<ΔE 2<ΔE 3【解析】选B.由题意知,在竖直方向上,y 12=y 23,又因为在竖直方向上小球运动的速度越来越大,因此t 12>t 23;在水平方向上x 12=x 2-x 1=v 0t 12,x 23=x 3-x 2=v 0t 23,故有:x 2-x 1>x 3-x 2,又因忽略空气阻力的影响,故此过程中机械能守恒,所以有ΔE 1=ΔE 2=ΔE 3=0,选项B 正确.3.(2013·高考山东卷,16题) 如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A .两滑块组成系统的机械能守恒B .重力对M 做的功等于M 动能的增加C .轻绳对m 做的功等于m 机械能的增加D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功【解析】选CD.除重力以外其他力对物体做的功等于物体机械能的变化,故M 克服摩擦力做的功等于两滑块组成的系统机械能的减少量,拉力对m 做的功等于m 机械能的增加量,选项C 、D 正确.4.(2013·高考广东卷,19题)如图,游乐场中,从高处A 到水面B 处有两条长度相同的光滑轨道.甲、乙两小孩沿不同轨道同时从A 处自由滑向B 处,下列说法正确的有( )A .甲的切向加速度始终比乙的大B .甲、乙在同一高度的速度大小相等C .甲、乙在同一时刻总能到达同一高度D .甲比乙先到达B 处【解析】选BD.甲、乙两小孩沿不同轨道从A 运动到B 时,只有重力做功,根据机械能守恒定律和甲、乙两小孩运动的v -t 图象解决问题.甲、乙两小孩沿光滑轨道从A 运动到B ,只有重力做功,根据机械能守恒定律,得mgh =12m v 2,即v =2gh ,所以甲、乙两小孩在同一高度时,速度大小相等,选项B 正确;甲、乙两小孩在运动过程的v -t 图象如图所示.由v -t 图象可知,选项A 、C 错误,选项D 正确.5.(2013·高考江苏卷,9题)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m ,AB =a ,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W .撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.重力加速度为g .则上述过程中( )A .物块在A 点时,弹簧的弹性势能等于W -12μmga B .物块在B 点时,弹簧的弹性势能小于W -32μmga C .经O 点时,物块的动能小于W -μmgaD .物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能【解析】选BC.由于有摩擦,O 点不在AB 的中点,而是在AB 中点的左侧(如图所示).由题知AB =a ,OA >a 2,OB <a 2.根据功能关系,物块在A 点时,弹簧的弹性势能E p =W -μmgOA <W -12μmga ,选项A 错误;物块在B 点时,弹簧的弹性势能E ′p =E p -μmga =W -μmgOA -μmga <W -32μmga ,选项B 正确;物块在O 点的动能E k =E p -μmgOA =W -2μmgOA <W -μmga ,选项C 正确;物块动能最大时,弹簧的弹力kx =μmg ,此时物块处于M 点(如图所示),若BM 光滑,则物块能运动至M ′点速度为零,则OM ′=OM ,由于存在摩擦,OB <OM ,故物块动能最大时弹簧的弹性势能大于物块在B 点时弹簧的弹性势能,选项D 错误.6.(2013·高考北京卷,23题)蹦床比赛分成预备运动和比赛动作两个阶段,最初运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段.把蹦床简化为一个竖直放置的轻弹簧,弹力大小F =kx (x 为床面下沉的距离,k 为常量).质量m =50 kg 的运动员静止站在蹦床上,床面下沉x 0=0.10 m ;在预备运动中,假定运动员所做的总功W 全部用于增加其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为Δt =2.0 s ,设运动员每次落下使床面压缩的最大深度均为x 1.取重力加速度g =10 m/s 2,忽略空气阻力的影响.(1)求常量k ,并在图中画出弹力F 随x 变化的示意图;(2)求在比赛动作中,运动员离开床面后上升的最大高度h m ;(3)借助F -x 图像可以确定弹力做功的规律,在此基础上,求 x 1和W 的值.【解析】(1)床面下沉x 0=0.10 m 时,运动员受力平衡mg =kx 0得k =mg x 0=5.0×103 N/mF -x 图线如图所示.(2)运动员从x =0处离开床面,开始腾空,其上升、下落的时间相等,所以运动员上升的最大高度为h m =12g ⎝⎛⎭⎫Δt 22=5.0 m. (3)参考由速度-时间图象求位移的方法,F -x 图线下的面积等于弹力做的功,从x 处到x =0,弹力做功W TW T =12·x ·kx =12kx 2 运动员从x 1处上升到最大高度h m 的过程,根据动能定理,有12kx 21-mg (x 1+h m )=0-0 得x 1=x 0+x 20+2x 0h m =1.1 m对整个预备运动,由题设条件以及功能关系,有W +12kx 20=mg (h m +x 0) 得W =2 525 J ≈2.5×103 J.答案:(1)5.0×103 N/m 如图所示 (2)5.0 m (3)1.1 m 2.5×103 J7.(2013·高考新课标全国卷Ⅱ,25题)一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示.己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g =10 m/s 2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t =0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.【解析】从v -t 图像中获取速度及加速度信息.根据摩擦力提供加速度,且不同阶段的摩擦力不同,利用牛顿第二定律列方程求解.(1)从t =0时开始,木板与物块之间的摩擦力使物块加速,使木板减速,此过程一直持续到物块和木板具有共同速度为止.由图可知,在t 1=0.5 s 时,物块和木板的速度相同.设t =0到t =t 1时间间隔内,物块和木板的加速度大小分别为a 1和a 2,则a 1=v 1t 1① a 2=v 0-v 1t 1② 式中v 0=5 m/s 、v 1=1 m/s 分别为木板在t =0、t =t 1时速度的大小.设物块和木板的质量均为m ,物块和木板间、木板与地面间的动摩擦因数分别为μ1、μ2,由牛顿第二定律得μ1mg =ma 1 ③(μ1+2μ2)mg =ma 2 ④联立①②③④式得μ1=0.20 ⑤μ2=0.30. ⑥(2)在t 1时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向.设物块与木板之间的摩擦力大小为f ,物块和木板的加速度大小分别为a ′1和a ′2,则由牛顿第二定律得f =ma ′ ⑦2μ2mg -f =ma ′2 ⑧假设f <μ1mg ,则a ′1=a ′2;由⑤⑥⑦⑧式得f =μ2mg >μ1mg ,与假设矛盾.故f =μ1mg ⑨由⑦⑨式知,物块加速度的大小a ′1等于a 1;物块的v -t 图像如图中点划线所示. 由运动学公式可推知,物块和木板相对于地面的运动距离分别为s 1=2×v 212a 1⑩ s 2=v 0+v 12t 1+v 212a ′2⑪ 物块相对于木板的位移的大小为s =s 2-s 1 ⑫联立①⑤⑥⑧⑨⑩⑪⑫式得s =1.125 m.答案:(1)0.20 0.30 (2)1.125 m。
机械能及其守恒定律一、追寻守恒量相互作用的物体凭借其位置而具有的能量叫势能。
物体由于运动而具有的能量叫动能。
二、功1.概念:物体受到力的作用,并在力的方向上发生一段位移,就叫做力对物体做了功.2.做功的两个不可缺少的因素:力和物体在力的方向上发生的位移.3.恒力对物体做功大小的计算式为: W =F l cos α,单位:J.1J=1N ·M其中F 应是恒力,α是F 和l 方向之间的夹角,l cos α即为在力的方向上发生的位移。
4.功有正负,但功是标量.(1)功的正、负的判断:若00≤α<900,则F 做正功; 若α=900,则F 不做功;若900<α≤1800,则F 做负功.(2)功的正负的意义:功是标量,所以功的正、负不表示方向.功的正、负也不表示大小。
功的正、负表示是动力对物体做功还是阻力对物体做功,或者说功的正、负表示是力对物体做了功,还是物体克服这个力做了功.功的正、负还表示能量转化的方向,如:重力做正功,重力势能减小,重力做负功,重力势能增加,合外力做正功,物体动能增加,合外力做负功,物体动能减小.5.功的计算(1)恒力的功,直接利用W=Fl cos α来计算,变力的功可用动能定理或功能关系计算.(2)合外力的功:等于各个力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+……也可先求合力,再利用W=F 合l cos α求解。
三、功率1.概念:功跟完成这些功所用时间的比值叫做功率.功率是表示物体做功快慢的物理量.2.功率的定义式:tW P =,导出公式αcos Fv P =,其中α是F 与v 的夹角. 说明:①定义式求出的为平均功率,若功率一直不变,则为瞬时功率.②导出式中若v 为平均速度,则P 为平均功率;若v 为瞬时速度,则P 为瞬时功率,式中α为力F 与物体速度v 之间的夹角.3.功率是标量.4.功率的单位有W 、kW 、马力.其换算关系为:1kW=1000W,1马力=735W.1W=1J/s5.发动机名牌上的额定功率,指的是该机正常工作时的最大输出功率.实际功率是机器工作时实际的输出功率。
机械能及守恒定律引言机械能是物理学中一个重要的概念,它描述了一个物体在力的作用下所具有的能量。
机械能的守恒定律是指在一个封闭系统中,机械能的总量保持不变。
在本文中,我们将介绍机械能及其守恒定律的基本原理和应用。
机械能的定义机械能是由物体的动能和势能组成的。
动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
势能是物体由于位置而具有的能量,它与物体的质量和重力势能或弹性势能有关。
根据这些定义,机械能可以表示为以下公式:机械能(E)= 动能(K)+ 势能(U)动能可以表示为以下公式:动能(K)= 0.5 × 质量(m)× 速度的平方(v²)重力势能可以表示为以下公式:重力势能(U)= 质量(m)× 重力加速度(g)× 高度(h)弹性势能可以表示为以下公式:弹性势能(U)= 0.5 × 弹性系数(k)× 形变的平方机械能守恒定律的原理机械能守恒定律是来自于能量守恒定律的一个特例。
能量守恒定律是指在一个封闭系统中,能量的总量保持不变。
机械能守恒定律是能量守恒定律在机械能方面的应用。
根据机械能的定义和能量守恒定律,我们可以得出机械能守恒定律的表达式:初始机械能(E₁)= 最终机械能(E₂)在没有外力做功和没有能量转化的情况下,机械能守恒定律成立。
这意味着一个物体在自由下落过程中,重力势能的减少等于动能的增加。
机械能守恒定律的应用机械能守恒定律在实际生活中有广泛的应用。
以下是一些常见的应用场景:1. 自由落体运动当一个物体从高处自由落下时,根据机械能守恒定律,我们可以计算物体的速度和高度的关系。
如果知道物体的初始高度和速度,我们可以推算出物体在任意时刻的位置和速度。
2. 弹簧振动弹簧振动是一个典型的应用机械能守恒定律的例子。
当一个弹簧振子在平衡位置附近发生振动时,弹性势能和动能之间会相互转换,但它们的总和保持不变。
这使我们能够计算弹簧振动的周期和频率。
功和能、机械能守恒定律一、功●概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
●公式:W=FScosθ●功是标量,但它有正功、负功。
功的正负表示能量传递的方向,即功是能量转化的量度。
当时,即力与位移成锐角,力做正功,功为正当时,即力与位移垂直,力不做功,功为零当时,即力与位移成钝角,力做负功,功为负●功是一个过程所对应的量,因此功是过程量。
●功仅与F、S、θ有关,与物体所受的其它外力、速度、加速度无关。
●几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即:W总=W1+W2+…+Wn或W总=F合Scosθ二、功率●概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
●公式:(平均功率)(平均功率或瞬时功率)单位:瓦特W●分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P实≤P额。
三、重力势能●定义:物体由于被举高而具有的能,叫做重力势能。
●公式:;h——物体具参考面的竖直高度。
●参考面①重力势能为零的平面称为参考面;②选取:原则是任意选取,但通常以地面为参考面若参考面未定,重力势能无意义,不能说重力势能大小如何选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面选取无关。
●重力势能是标量,但有正负。
重力势能为正,表示物体在参考面的上方;重力势能为负,表示物体在参考面的下方;重力势能为零,表示物体在参考面的上●重力做功特点:物体运动时,重力对它做的功之跟它的初、末位置有关,而跟物体运动的路径无关。
●重力做功与重力势能的关系:四、弹性势能●概念:发生弹性形变的物体的各部分之间,由于弹力的相互作用具有势能,称之为弹性势能。
●弹簧的弹性势能:影响弹簧弹性势能的因素有:弹簧的劲度系数k和弹簧形变量x。
●弹力做功与弹性势能的关系:弹力做正功时,物体弹性势能减少;弹力做负功时,物体弹性势能增加。
十二指肠憩室与胆道结石关系的探讨
[背景]十二指肠憩室在行内镜下逆行胰胆管造影术(endoscopic retrograde cholangio-pancreatography, ERCP)检出率约为3.2%-26%,目前研究报告对十二指肠憩室是否对胆管插管或者术后主要并发症有影响仍有一定争议。
[目的]探讨十二指肠憩室的存在与胆道结石关系,对ERCP胆管插管及对术后主要并发症的影响,并从侧面了解我院初期ERCP水平。
[方法]回顾性分析2010年1月至2012年1月期间,在我院行ERCP的179例患者,分析比较憩室组(A组)与非憩室(B组)患者的年龄,胆道结石发生率,胆结石发生部位、插管成功率及并发症。
[结果]179例患者中,憩室组59例,男性为30名,女性为29名,平均年龄为67岁。
憩室伴发胆道结石达55例,其中原发性胆总管结石为8例。
非憩室组120例,男性为57名,女性为63名,平均年龄为57岁。
非憩室组胆道结石为92例,原发性胆总管结石为14例。
原发性胆总管结石发生率两组分别为:13.56%和11.67%,两者有统计学差异(P=0.001)。
憩室组插管成功率达91.53%(54/59),非憩室组达96.67%(116/120),插管成功率无统计学意义(91.53%VS96.67%, P=0.139, Fisher矫正后为0.158)。
憩室组与非憩室组PEP发生率分别达:11.86%(7/59)及8.33%(10/120),两组之间PEP发生率无差别(11.86%VS8.33%,P=-0.574)。
[结论]十二指肠憩室的存在随年龄增大而发病率升高,憩室的存在与胆道结石发生相关,其对ERCP插管成功率及术后主要并发症无影响。
专题六机械能及其守恒考点1 功和功率1.[2017全国Ⅱ,14,6分]如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力()A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心2.[2018天津,10,16分]我国自行研制、具有完全自主知识产权的新一代大型喷气式客机C919首飞成功后,拉开了全面试验试飞的新征程.假设飞机在水平跑道上的滑跑是初速度为零的匀加速直线运动,当位移x=1.6×103 m时才能达到起飞所要求的速度v=80 m/s.已知飞机质量m=7.0×104 kg,滑跑时受到的阻力为自身重力的0.1倍,重力加速度取g=10 m/s2.求飞机滑跑过程中:(1)加速度a的大小;(2)牵引力的平均功率P.拓展变式1.如图所示,A、B物体叠放在水平面上,A用不可伸长的细绳系住,绳的另一端固定在墙上,用力F拉着B右移.用F'、f AB和f BA分别表示绳对A的拉力、A对B的摩擦力和B对A的摩擦力,则()A.F做正功,f AB做负功,f BA做正功,F'不做功B.F和f BA做正功,f AB和F'做负功C.F做正功,其他力都不做功D.F做正功,f AB做负功,f BA和F'不做功2.[2015海南,4,3分]如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgRB.mgRC.mgRD.mgR3.[2018海南,6,4分]某大瀑布的平均水流量为5 900 m3/s,水的落差为50 m.已知水的密度为1.00×103 kg/m3.在大瀑布水流下落过程中,重力做功的平均功率约为()A.3×106 WB.3×107 WC.3×108 WD.3×109 W4.[2021宁夏银川检测]如图1所示,物体受到水平推力F的作用在粗糙水平面上做直线运动,得到推力F、物体速度v随时间t变化的规律如图2所示,g=10 m/s2,则()A.第1 s内推力做功为1 JB.第2 s内物体克服摩擦力做的功为2 JC.第1.5 s时推力F的功率为2 WD.第2 s内推力F做功的平均功率为1.5 W5.[2015新课标全国Ⅱ,17,6分]一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f 恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()A BC D考点2 动能定理1.[2020江苏,4,3分]如图所示,一小物块由静止开始沿斜面向下滑动,最后停在水平地面上.斜面和地面平滑连接,且物块与斜面、物块与地面间的动摩擦因数均为常数.该过程中,物块的动能E k与水平位移x关系的图像是 ()2.[2019天津,10,16分]图1图2完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示.为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150 m,BC水平投影L2=63 m,图中C点切线方向与水平方向的夹角θ=12°(sin 12°≈0.21).若舰载机从A点由静止开始做匀加速直线运动,经t=6 s到达B点进入BC.已知飞行员的质量m=60 kg,g=10 m/s2,求:(1)舰载机水平运动的过程中,飞行员受到的水平力所做的功W;(2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大.拓展变式1.[2018全国Ⅱ,14,6分]如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功2.[2019全国Ⅲ,17,6分]从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图所示.重力加速度取10 m/s2.该物体的质量为()A.2 kgB.1.5 kgC.1 kgD.0.5 kg3.[2018江苏,4,3分]从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图像是()A B C D4.[2015新课标全国Ⅰ,17,6分]如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=mgR,质点恰好可以到达Q点B.W>mgR,质点不能到达Q点C.W=mgR,质点到达Q点后,继续上升一段距离D.W<mgR,质点到达Q点后,继续上升一段距离5.[2016全国Ⅰ,25,18分]如图,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态.直轨道与一半径为R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内.质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出).随后P沿轨道被弹回,最高到达F点,AF=4R.已知P与直轨道间的动摩擦因数μ=,重力加速度大小为g.(取sin 37°=,cos 37°=)(1)求P第一次运动到B点时速度的大小.(2)求P运动到E点时弹簧的弹性势能.(3)改变物块P的质量,将P推至E点,从静止开始释放.已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G 点在C点左下方,与C点水平相距R、竖直相距R.求P运动到D点时速度的大小和改变后P的质量.考点3 机械能守恒定律拓展变式1.[2017天津,4,6分]“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点时,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变2.[2015新课标全国Ⅱ,21,6分,多选]如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b 放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为C.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg考点4 功能关系、能量守恒定律[2018天津,2,6分]滑雪运动深受人民群众喜爱.某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中()A.所受合外力始终为零B.所受摩擦力大小不变C.合外力做功一定为零D.机械能始终保持不变拓展变式1.[广东高考]如图是安装在列车车厢之间的摩擦缓冲器结构图.图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦.在车厢相互撞击使弹簧压缩的过程中()A.缓冲器的机械能守恒B.摩擦力做功消耗机械能C.垫板的动能全部转化为内能D.弹簧的弹性势能全部转化为动能2.[2019全国Ⅰ,21,多选]在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示.在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a-x关系如图中虚线所示.假设两星球均为质量均匀分布的球体.已知星球M的半径是星球N的3倍,则()A.M与N的密度相等B.Q的质量是P的3倍C.Q下落过程中的最大动能是P的4倍D.Q下落过程中弹簧的最大压缩量是P的4倍3.[多选]如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连, 弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大, 到达C处的速度为零,AC=h.圆环在C处获得竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为mv2C.在C处,弹簧的弹性势能为mv2-mghD.上滑经过B的速度大于下滑经过B的速度4.[2016全国Ⅱ,21,6分,多选]如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释放,它在下降的过程中经过了N点.已知在M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<.在小球从M点运动到N点的过程中()A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N点时的动能等于其在M、N两点的重力势能差5.[2017江苏,9,4分,多选]如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L.B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°.A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g,则此下降过程中()A.A的动能达到最大前,B受到地面的支持力小于mgB.A的动能最大时,B受到地面的支持力等于mgC.弹簧的弹性势能最大时,A的加速度方向竖直向下D.弹簧的弹性势能最大值为mgL6.[江苏高考,多选]如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A 点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零,重力加速度为g.则上述过程中()A.物块在A点时,弹簧的弹性势能等于W-μmgaB.物块在B点时,弹簧的弹性势能小于W-μmgaC.经过O点时,物块的动能小于W-μmgaD.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能7.[2018江苏,7,4分,多选]如图所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置.物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点.在从A到B的过程中,物块()A.加速度先减小后增大B.经过O点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功8.[2016全国Ⅱ,25,20分]轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示.物块P与AB间的动摩擦因数μ=0.5.用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动.重力加速度大小为g.(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.考点5 实验:探究动能定理[2017北京,21,18分]如图甲所示,用质量为m的重物通过滑轮牵图甲引小车,使它在长木板上运动,打点计时器在纸带上记录小车的运动情况.利用该装置可以完成“探究动能定理”的实验.(1)打点计时器使用的电源是(选填选项前的字母).A.直流电源B.交流电源(2)实验中,需要平衡摩擦力和其他阻力,正确操作方法是(选填选项前的字母).A.把长木板右端垫高B.改变小车的质量在不挂重物且(选填选项前的字母)的情况下,轻推一下小车.若小车拖着纸带做匀速运动,表明已经消除了摩擦力和其他阻力的影响.A.计时器不打点B.计时器打点图乙(3)接通电源,释放小车,打点计时器在纸带上打下一系列点,将打下的第一个点标为O.在纸带上依次取A、B、C……若干个计数点,已知相邻计数点间的时间间隔为T.测得A、B、C……各点到O点的距离为x1、x2、x3……,如图乙所示.实验中,重物质量远小于小车质量,可认为小车所受的拉力大小为mg.从打O点到打B点的过程中,拉力对小车做的功W= ,打B点时小车的速度v= .图丙(4)以v2为纵坐标,W为横坐标,利用实验数据作出如图丙所示的v2-W图像.由此图像可得v2随W变化的表达式为.根据功与能的关系,动能的表达式中可能包含v2这个因子;分析实验结果的单位关系,与图线斜率有关的物理量应是.(5)假设已经完全消除了摩擦力和其他阻力的影响,若重物质量不满足远小于小车质量的条件,则从理论上分析,下面正确反映v2-W关系的是.A B C D拓展变式1.[多选]在用如图所示的装置做“探究功与速度变化的关系”的实验时,下列说法正确的是.A.为了平衡摩擦力,实验中可以将长木板的左端适当垫高,使小车拉着穿过打点计时器的纸带自由下滑时能保持匀速运动B.每次实验中橡皮筋的规格要相同,拉伸的长度要一样C.可以通过改变橡皮筋的条数来改变拉力做功的数值D.可以通过改变小车的质量来改变拉力做功的数值E.实验中要先释放小车再接通打点计时器的电源F.通过打点计时器打下的纸带来测定小车加速过程中获得的最大速度G.通过打点计时器打下的纸带来测定小车加速过程中获得的平均速度2.[2020全国Ⅲ,22,6分]某同学利用图(a)所示装置验证动能定理.调整木板的倾角平衡摩擦阻力后,挂上钩码,钩码下落,带动小车运动并打出纸带.某次实验得到的纸带及相关数据如图(b)所示.已知打出图(b)中相邻两点的时间间隔为0.02 s,从图(b)给出的数据中可以得到,打出B点时小车的速度大小v B= m/s,打出P点时小车的速度大小v P= m/s.(结果均保留2位小数)若要验证动能定理,除了需测量钩码的质量和小车的质量外,还需要从图(b)给出的数据中求得的物理量为.3.图1[2017江苏,10,8分]利用如图1所示的实验装置探究恒力做功与物体动能变化的关系.小车的质量为M=200.0 g,钩码的质量为m=10.0 g,打点计时器的电源为50 Hz的交流电.(1)挂钩码前,为了消除摩擦力的影响,应调节木板右侧的高度,直至向左轻推小车观察到.(2)挂上钩码,按实验要求打出的一条纸带如图2所示.选择某一点为O,依次每隔4个计时点取一个计数点.用刻度尺量出相邻计数点间的距离Δx,记录在纸带上.计算打出各计数点时小车的速度v,其中打出计数点“1”时小车的速度v1=m/s.图2(3)将钩码的重力视为小车受到的拉力,取g=9.80 m/s2,利用W=mgΔx算出拉力对小车做的功W.利用E k=Mv2算出小车动能,并求出动能的变化量ΔE k.计算结果见下表.W/10-3 J 2.45 2.92 3.35 3.81 4.26ΔE k/10-3 J 2.31 2.73 3.12 3.61 4.00请根据表中的数据,在方格纸上作出ΔE k-W图像.(4)实验结果表明,ΔE k总是略小于W.某同学猜想是由于小车所受拉力小于钩码重力造成的.用题中小车和钩码质量的数据可算出小车受到的实际拉力F= N.4.[2020福建三明高三第二阶段考试]为了“探究动能改变与合外力做功的关系”,某同学设计了如下实验方案: 第一步:把带有定滑轮的足够长的木板有滑轮的一端垫起,把质量为M的滑块通过细绳与质量为m的带夹子的重锤跨过定滑轮相连,重锤同时连接一穿过打点计时器的纸带;调整木板倾角,直到轻推滑块后,滑块沿木板向下匀速运动,如图甲所示.第二步:如图乙所示,保持木板的倾角不变,将打点计时器安装在木板靠近滑轮处,取下细绳和重锤,将滑块与纸带相连,使纸带穿过打点计时器,然后接通电源,释放滑块,使之从静止开始向下加速运动,打出的纸带如图丙所示.请回答下列问题:请回答下列问题:(1)已知打下各相邻计数点间的时间间隔为Δt,则打点计时器打B点时滑块运动的速度v B= .(2)已知重锤质量为m,当地的重力加速度为g,要测出某一过程合外力对滑块做的功还必须测出这一过程中滑块(写出物理量名称及符号,只写一个物理量),合外力对滑块做功的表达式W合= .(3)算出打下A、B、C、D、E点时合外力对滑块所做的功W以及滑块的速度v,若以v2为纵轴、W为横轴建立直角坐标系,并描点作出v2-W图像,则由分析可知该图像是一条,根据图像还可求得.考点6 实验:验证机械能守恒定律图1[2016北京,21(2),14分]利用图1装置做“验证机械能守恒定律”实验.(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图2所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C.图2已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p= ,动能变化量ΔE k= .(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是.A.利用公式v=gt计算重物速度B.利用公式v=计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2-h图像,并做如下判断:若图像是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.拓展变式1.(1)利用如图所示装置进行验证机械能守恒定律的实验时,需要测量重锤由静止开始自由下落到某点时的瞬时速度v和下落高度h.某班同学利用实验得到的纸带,设计了以下四种测量方案:A.用刻度尺测出重锤下落的高度h,并测出下落时间t,通过v=gt计算出瞬时速度vB.用刻度尺测出重锤下落的高度h,并通过v=计算出瞬时速度vC.根据做匀变速直线运动时纸带上某点的瞬时速度等于这点前后相邻两点间的平均速度,测算出瞬时速度v,并通过h=计算出高度hD.用刻度尺测出重锤下落的高度h,根据做匀变速直线运动时纸带上某点的瞬时速度等于这点前后相邻两点间的平均速度,测算出瞬时速度v以上方案中正确的是.(2)在实验中,某同学根据实验测得的数据,通过计算发现,在下落过程中,重锤动能的增加量略大于重力势能的减少量,若实验测量与计算均无错误,则出现这一问题的原因可能是.A.重锤的质量偏大B.交流电源的电压偏高C.交流电源的频率小于50 HzD.重锤下落时受到的阻力过大2.如图1所示是用“落体法”验证机械能守恒定律的实验装置.(g取9.80 m/s2)(1)选出一条点迹清晰的纸带如图2所示,其中O点为打点计时器打下的第一个点,A、B、C为三个计数点,打点计时器通以频率为50 Hz的交变电流.用分度值为1 mm的刻度尺测得OA=12.41 cm,OB=18.90 cm,OC=27.06 cm,在计数点A和B、B和C之间还各有一个点,重锤的质量为1.00 kg.某同学根据以上数据算出:当打点计时器打到B点时重锤的重力势能比开始下落时减少了 J;此时重锤的速度v B= m/s,此时重锤的动能比开始下落时增加了 J.(结果均保留3位有效数字)(2)该同学利用实验时打出的纸带,测量出了各计数点到打点计时器打下的第一个点的距离h,算出了各计数点对应的速度v,然后以h为横轴、以v2为纵轴作出了如图3所示的图线,图线的斜率近似等于.A.19.60B.9.80C.4.90图线未过原点O的原因是.3.某同学用如图甲所示装置验证机械能守恒定律,将小球a、b(均可视为质点)分别固定于一轻杆的两端,杆水平且处于静止状态.释放后轻杆逆时针转动,已知重力加速度大小为g.(1)选择实验中使用的遮光条时,用螺旋测微器测量遮光条A的宽度如图乙所示,其读数为mm,另一个遮光条B的宽度为0.50 cm,为了减小实验误差,实验中应选用遮光条(填“A”或者“B”)进行实验.(2)若遮光条的宽度用d表示,测出小球a、b质量分别为m a、m b(b的质量含遮光条质量),光电门记录遮光条挡光的时间为t,转轴O到a、b两球的距离分别为l a、l b,光电门在O点的正下方,不计遮光条长度,如果系统(小球a、b以及杆)的机械能守恒,应满足的关系式为(用题中测量的字母表示).4.[2016全国Ⅱ,22,6分]某物理小组对轻弹簧的弹性势能进行探究,实验装置如图(a)所示:轻弹簧放置在光滑水平桌面上,弹簧左端固定,右端与一物块接触而不连接,纸带穿过打点计时器并与物块连接.向左推物块使弹簧压缩一段距离,由静止释放物块,通过测量和计算,可求得弹簧被压缩后的弹性势能.图(a)(1)实验中涉及下列操作步骤:①把纸带向左拉直②松手释放物块③接通打点计时器电源④向左推物块使弹簧压缩,并测量弹簧压缩量上述步骤正确的操作顺序是(填入代表步骤的序号).(2)图(b)中M和L纸带是分别把弹簧压缩到不同位置后所得到的实际打点结果.打点计时器所用交流电的频率为50 Hz.由M纸带所给的数据,可求出在该纸带对应的实验中物块脱离弹簧时的速度为m/s.比较两纸带可知, (填“M”或“L”)纸带对应的实验中弹簧被压缩后的弹性势能大.图(b)答案专题六机械能及其守恒考点1 功和功率1.A由于大圆环是光滑的,因此小环下滑的过程中,大圆环对小环的作用力方向始终与速度方向垂直,因此作用力不做功,A项正确,B项错误;小环刚下滑时,大圆环对小环的作用力背离大圆环的圆心,滑到大圆环圆心以下的位置时,大圆环对小环的作用力指向大圆环的圆心,C、D项错误.2.(1)2 m/s2(2)8.4×106 W解析:(1)飞机滑跑过程中做初速度为零的匀加速直线运动,有v2=2ax ①代入数据解得a=2 m/s2②.(2)设飞机滑跑受到的阻力为F阻,依题意有F阻=0.1mg ③设发动机的牵引力为F,根据牛顿第二定律有F-F阻=ma ④设飞机滑跑过程中的平均速度为,有=⑤在滑跑阶段,牵引力的平均功率P=F⑥联立②③④⑤⑥式得P=8.4×106 W.1.D求恒力做功时,定义式W=Fl cos α中的l应是力F的作用物体发生的位移,F'、f BA的作用物体(即A物体)没有发生位移,所以它们做的功均为零;而F、f AB的作用物体(即B物体)发生了位移,所以它们做的功均不为零,F与B的位移方向相同,做正功,f AB与B的位移方向相反,做负功,D正确.2.C在Q点,质点受到竖直向下的重力和竖直向上的支持力的作用,两力的合力充当向心力,所以有F N-mg=m,F N=2mg,联立解得v=,质点由P到Q的过程中,根据动能定理有mgR-W f=mv2,解得W f=mgR,所以质点克服摩擦力做的功为mgR,C正确.3.D每秒流下水的质量为m=5 900 m3×1.00×103 kg/m3=5.9×106 kg,每秒重力做的功W=mgh=5.9×106×10×50 J=2.95×109 J,即重力做功的平均功率约为P==3×109 W,选项D正确.4.B从v-t图像中可知物体在第1 s内速度为零,即处于静止状态,所以推力做功为零,故A项错误;v-t图像与坐标轴围成的面积表示位移,所以第2 s内的位移为x=×1×2 m=1 m,由v-t图像可以知道在2~3 s的时间内,物体做匀速运动,处于受力平衡状态,所以滑动摩擦力的大小f为2 N,故第2 s内摩擦力做功为W f=-fx=-2×1 J=-2 J,所以克服摩擦力做功2 J,故B项正确;第1.5 s时速度为1 m/s,则1.5 s时推力的功率为P=Fv=3×1 W=3 W,故C项错误;在第2 s内F做的功为W=Fx=3×1 J=3 J,所以第2 s内推力F做功的平均功率为== W= 3 W,故D项错误.5.A在v-t图像中,图线的斜率代表汽车运动时的加速度,由牛顿第二定律可得:在0~t1时间内,-f=ma,当速度v不变时,加速度a为零,在v-t图像中为一条水平线;当速度v变大时,加速度a变小,在v-t图像中为一条斜率逐渐。