专题六 机械能及其守恒定律
- 格式:pdf
- 大小:3.61 MB
- 文档页数:10
机械能及其守恒定律机械能是描述物体在运动的过程中所具有的能量状态,即力学中的一种能量形式。
它包括了物体所具有的动能和势能。
在物体运动的过程中,动能随着速度的增加不断增加,而势能则随着物体的位置变化而变化。
机械能守恒定律是力学中的一种基本定律,它可以帮助我们更深入地理解物体在运动的过程中所具有的能量状态。
根据机械能守恒定律,一个物体在运动的过程中,其机械能的总量始终保持不变。
在无外力干扰的情况下,物体的机械能总量可以从动能和势能两个方面来进行刻画。
动能是由物体的质量和速度共同决定的,而势能则由其位置和重力加速度决定。
具体而言,动能可以表示为:K = 1/2mv²其中,m是物体的质量,v是物体的速度。
而势能可以表示为:U = mgh其中,m是物体的质量,h是物体的高度,g是重力加速度。
因此,机械能可以表示为:E = K + U在物体在运动的过程中,机械能总量的变化可以通过动能和势能之间的转化来进行刻画。
例如,一个物体在下降的过程中,其高度不断降低,势能的值减小,而动能的值则增加。
这种转化的过程被称为“能量转换”。
机械能守恒定律指出,在没有任何外界力的情况下,一个物体在运动的过程中其机械能总量保持不变。
换句话说,机械能总量在物体运动的过程中保持恒定。
这个定律适用于任何形式的物体运动,如自由落体、弹性碰撞等等。
机械能守恒定律有着广泛的应用,例如在工程领域中的动力学问题、机器的设计和运作等。
它也被广泛应用于环境工程和自然资源管理中。
例如,在水力发电站中,机械能守恒定律被用来描述水流在测量点的流动状态,以及水流的动态特性。
总之,机械能守恒定律是力学中的一种基本定律,它描述了物体在运动过程中所具有的能量状态。
在无外界干扰的情况下,物体的机械能总量保持不变,这种定律有着广泛的应用领域,为解决各种物理问题提供了有力的工具。
高中物理机械能及守恒定律专题及解析高中物理机械能及守恒定律专题及解析一、机械能的概念及计算公式机械能是指一个物体同时具有动能和势能的能量,它是物体运动时的总能量。
机械能可以通过以下公式计算:机械能 = 动能 + 势能其中,动能的公式为:动能 = 1/2 ×质量 ×速度²势能的公式为:势能 = 质量 ×重力加速度 ×高度二、机械能守恒定律的表述及应用机械能守恒定律指的是,在一个封闭系统中,如果只有重力做功,没有其他非保守力做功,那么该系统的机械能守恒,即机械能的总量不会发生变化。
这一定律可以通过以下实验进行验证:将一个小球从一定高度上自由落下,当小球下落到一定高度时,用一个弹性绳接住小球,使其反弹上升,然后再次自由下落。
实验结果表明,当小球反弹的高度恰好等于初始下落高度时,机械能守恒定律成立。
在实际应用中,机械能守恒定律常常用于解决与能量转换和效率有关的问题。
例如,我们可以利用机械能守恒定律计算斜面上物体的滑动速度或滑动距离,来评估机械装置的效率。
此外,机械能守恒定律还可以用于解决弹簧振子、单摆等周期性运动问题。
三、机械能守恒定律的应用实例分析1. 斜面上物体滑动问题假设一个物体从斜面的顶端自由滑下,忽略空气阻力和摩擦力,那么当物体滑到斜面的底端时,动能和势能的变化可以用机械能守恒定律来表达。
设物体的质量为m,斜面的高度差为h,斜面的倾角为θ。
假设物体在斜面上的速度为v,那么动能和势能的变化可以表示为:动能的变化:ΔK = K(终) - K(始) = 1/2 × m × v² - 0 = 1/2 × m ×v²势能的变化:ΔU = U(终) - U(始) = m × g × h × sinθ - 0 = m × g× h × sinθ根据机械能守恒定律,动能的变化等于势能的变化,即:1/2 × m × v² = m × g × h × sinθ通过求解上述方程,可以得到物体在斜面上的滑动速度v的数值。
专题六 机械能及其守恒定律一、选择题1.(2020年全国卷Ⅰ) 行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。
若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D.延长了司机的受力时间并增大了司机的受力面积2. (2020年全国卷Ⅰ) 一物块在高3.0m 、长5.0m 的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s 的变化图中直线I 、II 所示,重力加速度取210/m s 。
则 A .物块下滑过程中机械能不守恒 B .物块与斜面间的动摩擦因数为0.5 C .物块下滑时加速度的大小为26.0/m s D. 当物块下滑2.0m 时机械能损失了12J3.(2019年全国Ⅱ卷)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。
若摩托车经过a 点时的动能为1E ,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为2E ,该摩托车恰能越过坑到达b 点。
21E E 等于 A.20 B.18 C.9.0 D.3.04. (2020年全国Ⅲ卷)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。
已知甲的质量为1kg ,则碰撞过程两物块损失的机械能为A. 3JB. 4JC. 5JD. 6J5.(2019年全国Ⅱ卷)从地面竖直向上抛出一物体,其机械能E 总等于动能k E 与重力势能p E 之和。
取地面为重力势能零点,该物体的E 总和p E 随它离开地面的高度h 的变化如图所示。
重力加速度取102m /s 。
由图中数据可得A .物体的质量为2 kgB .0h =时,物体的速率为20 m/sC .2h =m 时,物体的动能k E =40 JD .从地面至h =4 m ,物体的动能减少100 J6.(2019年全国Ⅲ卷)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。
,合外力做功为零.的粗糙的斜面体上,当两者一起向右匀速直线运所受重力做的功是多少?摩擦力做功多少?,则在两球向左下摆动时.下列说法正确的是:一个力对物体做不做功,是正功还是负功,判断的方法是:①看力与位移之间夹角,或者看力与速度方向之间球的速度方向就是锐角;为钝角时,力对物体做负功,上例作用力与反作用力同时存在,作用力做功时,反作用力可能做功,也可能不做功,可能做正功,也可能做负功,不要以为作用力与反作用力大小相等、方向相反,就一定有作用力、反作用力的功数值相等,一正一负.所以作用力与反作用力做功不这类力做功与物体的运动路径有关。
在上例中,滑动摩擦力是一个变力,方向在变化,可转化为恒力做功,同时滑动摩擦力做功要看物体运动的路程,这是摩擦力做功的特)由功率的定义;(4)由动能定理求解.的小球,开始时,细线被拉直,并处于水O A的过程中,,则心脏每跳动一次所需的时间是,心房、心室共同处于期,lmmHg=133.322Pa)收缩一次输出血量平均为70ml,那依题意sinθ=5/100。
汽车将加速上坡,速,如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. E k=½mv2,其大小与参照系的选22只须考虑整个过程的功量及过程始末的动能.若过程包含了几个运动性质不同的分过程.即可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功.计算时要把各力的功连同符号(正负)一同代入公式.W=Fscosα求出变力做的圆周运动,运动过程中小球受到空气阻力的作用.设此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在解决这类问题关键是分清哪一过A)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系与L、L二弹簧相连,仍守恒,即对于物体系统只有动能与势能的相互转化,而无机械能与其他形式转化(如系统无滑动摩擦和与弹簧相连,当A、与一质量为m=10kg的重物相连,,开始时让它们处于静止状态.不计绳6m/ s而动能定理揭示的是物体动能的变化跟并在半圆最高点D水平进入轨道,然物体在绳、杆、轨道约束的情况下在竖直平面内做圆周运动,往往伴随着动能,势能的相互转化,若机械能守恒,即可根据机械能守恒去求解物体在运动中经过某位里时的速度,再结合圆周运动、牛顿定律可求解相关的运动学、动力学的量.点由静止释放后到达最将该十mg0.5l=½mv2C5中在速度改变瞬间(B中绳的作用力与速度垂直,所以只改变了速度的方向而没有改变速度.由动量定理可知,沿半径方向绳的拉力,因此该情况就有能量损失,也就不可用机械能守恒O点下摆,当摆到或者从一个物体转移到另一个若物体最后静止在B点的左侧或中水面静止在同一高度上,水受到重力、器壁压力和两。
专题六机械能及其守恒定律考点一功和功率1.(2013浙江理综,17,6分)如图所示,水平木板上有质量m=1.0kg的物块,受到随时间t变化的水平拉力F作用,用力传感器测出相应时刻物块所受摩擦力F f的大小。
取重力加速度g=10m/s2,下列判断正确的是()A.5s内拉力对物块做功为零B.4s末物块所受合力大小为4.0NC.物块与木板之间的动摩擦因数为0.4D.6s-9s内物块的加速度大小为2.0m/s2答案D2.(2013四川理综,10,17分)在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行。
劲度系数k=5N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面。
水平面处于场强E=5×104N/C、方向水平向右的匀强电场中。
已知A、B的质量分别为m A=0.1kg和m B=0.2kg,B所带电荷量q=+4×10-6C。
设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电量不变。
取g=10m/s2,sin37°=0.6,cos37°=0.8。
(1)求B所受静摩擦力的大小;(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6m/s2开始做匀加速直线运动。
A从M到N的过程中,B的电势能增加了ΔE p=0.06J。
已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4。
求A到达N点时拉力F的瞬时功率。
答案(1)0.4N(2)0.528W考点二动能定理及其应用3.(2013江苏单科,9,4分)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连。
弹簧处于自然长度时物块位于O点(图中未标出)。
物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ。
现用水平向右的力将物块从O点拉至A点,拉力做的功为W。
专题六 机械能及其守恒定律1.(2013·高考大纲全国卷,20题) 如图所示,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g .若物块上升的最大高度为H ,则此过程中,物块的( )A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH 【解析】选AC.运动过程中有摩擦力做功,考虑动能定理和功能关系.物块以大小为g 的加速度沿斜面向上做匀减速运动,运动过程中F 合=mg ,由受力分析知摩擦力f =12mg ,当上升高度为H 时,位移s =2H ,由动能定理得ΔE k =-2mgH ;由功能关系知ΔE =W f =-12mgs =-mgH ,选项A 、C 正确. 2.(2013·高考北京卷,19题)在实验操作前应该对实验进行适当的分析.研究平抛运动的实验装置示意图如图所示.小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平飞出.改变水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.某同学设想小球先后三次做平抛运动,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距.若三次实验中,小球从抛出点到落点的水平位移依次为x 1,x 2,x 3,机械能的变化量依次为ΔE 1、ΔE 2、ΔE 3,忽略空气阻力的影响,下面分析正确的是( )A .x 2- x 1=x 3-x 2,ΔE 1=ΔE 2=ΔE 3B .x 2- x 1>x 3-x 2,ΔE 1=ΔE 2=ΔE 3C .x 2- x 1>x 3-x 2,ΔE 1<ΔE 2<ΔE 3D .x 2- x 1<x 3-x 2,ΔE 1<ΔE 2<ΔE 3【解析】选B.由题意知,在竖直方向上,y 12=y 23,又因为在竖直方向上小球运动的速度越来越大,因此t 12>t 23;在水平方向上x 12=x 2-x 1=v 0t 12,x 23=x 3-x 2=v 0t 23,故有:x 2-x 1>x 3-x 2,又因忽略空气阻力的影响,故此过程中机械能守恒,所以有ΔE 1=ΔE 2=ΔE 3=0,选项B 正确.3.(2013·高考山东卷,16题) 如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A .两滑块组成系统的机械能守恒B .重力对M 做的功等于M 动能的增加C .轻绳对m 做的功等于m 机械能的增加D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功【解析】选CD.除重力以外其他力对物体做的功等于物体机械能的变化,故M 克服摩擦力做的功等于两滑块组成的系统机械能的减少量,拉力对m 做的功等于m 机械能的增加量,选项C 、D 正确.4.(2013·高考广东卷,19题)如图,游乐场中,从高处A 到水面B 处有两条长度相同的光滑轨道.甲、乙两小孩沿不同轨道同时从A 处自由滑向B 处,下列说法正确的有( )A .甲的切向加速度始终比乙的大B .甲、乙在同一高度的速度大小相等C .甲、乙在同一时刻总能到达同一高度D .甲比乙先到达B 处【解析】选BD.甲、乙两小孩沿不同轨道从A 运动到B 时,只有重力做功,根据机械能守恒定律和甲、乙两小孩运动的v -t 图象解决问题.甲、乙两小孩沿光滑轨道从A 运动到B ,只有重力做功,根据机械能守恒定律,得mgh =12m v 2,即v =2gh ,所以甲、乙两小孩在同一高度时,速度大小相等,选项B 正确;甲、乙两小孩在运动过程的v -t 图象如图所示.由v -t 图象可知,选项A 、C 错误,选项D 正确.5.(2013·高考江苏卷,9题)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m ,AB =a ,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W .撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.重力加速度为g .则上述过程中( )A .物块在A 点时,弹簧的弹性势能等于W -12μmga B .物块在B 点时,弹簧的弹性势能小于W -32μmga C .经O 点时,物块的动能小于W -μmgaD .物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能【解析】选BC.由于有摩擦,O 点不在AB 的中点,而是在AB 中点的左侧(如图所示).由题知AB =a ,OA >a 2,OB <a 2.根据功能关系,物块在A 点时,弹簧的弹性势能E p =W -μmgOA <W -12μmga ,选项A 错误;物块在B 点时,弹簧的弹性势能E ′p =E p -μmga =W -μmgOA -μmga <W -32μmga ,选项B 正确;物块在O 点的动能E k =E p -μmgOA =W -2μmgOA <W -μmga ,选项C 正确;物块动能最大时,弹簧的弹力kx =μmg ,此时物块处于M 点(如图所示),若BM 光滑,则物块能运动至M ′点速度为零,则OM ′=OM ,由于存在摩擦,OB <OM ,故物块动能最大时弹簧的弹性势能大于物块在B 点时弹簧的弹性势能,选项D 错误.6.(2013·高考北京卷,23题)蹦床比赛分成预备运动和比赛动作两个阶段,最初运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段.把蹦床简化为一个竖直放置的轻弹簧,弹力大小F =kx (x 为床面下沉的距离,k 为常量).质量m =50 kg 的运动员静止站在蹦床上,床面下沉x 0=0.10 m ;在预备运动中,假定运动员所做的总功W 全部用于增加其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为Δt =2.0 s ,设运动员每次落下使床面压缩的最大深度均为x 1.取重力加速度g =10 m/s 2,忽略空气阻力的影响.(1)求常量k ,并在图中画出弹力F 随x 变化的示意图;(2)求在比赛动作中,运动员离开床面后上升的最大高度h m ;(3)借助F -x 图像可以确定弹力做功的规律,在此基础上,求 x 1和W 的值.【解析】(1)床面下沉x 0=0.10 m 时,运动员受力平衡mg =kx 0得k =mg x 0=5.0×103 N/mF -x 图线如图所示.(2)运动员从x =0处离开床面,开始腾空,其上升、下落的时间相等,所以运动员上升的最大高度为h m =12g ⎝⎛⎭⎫Δt 22=5.0 m. (3)参考由速度-时间图象求位移的方法,F -x 图线下的面积等于弹力做的功,从x 处到x =0,弹力做功W TW T =12·x ·kx =12kx 2 运动员从x 1处上升到最大高度h m 的过程,根据动能定理,有12kx 21-mg (x 1+h m )=0-0 得x 1=x 0+x 20+2x 0h m =1.1 m对整个预备运动,由题设条件以及功能关系,有W +12kx 20=mg (h m +x 0) 得W =2 525 J ≈2.5×103 J.答案:(1)5.0×103 N/m 如图所示 (2)5.0 m (3)1.1 m 2.5×103 J7.(2013·高考新课标全国卷Ⅱ,25题)一长木板在水平地面上运动,在t =0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度-时间图像如图所示.己知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g =10 m/s 2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t =0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.【解析】从v -t 图像中获取速度及加速度信息.根据摩擦力提供加速度,且不同阶段的摩擦力不同,利用牛顿第二定律列方程求解.(1)从t =0时开始,木板与物块之间的摩擦力使物块加速,使木板减速,此过程一直持续到物块和木板具有共同速度为止.由图可知,在t 1=0.5 s 时,物块和木板的速度相同.设t =0到t =t 1时间间隔内,物块和木板的加速度大小分别为a 1和a 2,则a 1=v 1t 1① a 2=v 0-v 1t 1② 式中v 0=5 m/s 、v 1=1 m/s 分别为木板在t =0、t =t 1时速度的大小.设物块和木板的质量均为m ,物块和木板间、木板与地面间的动摩擦因数分别为μ1、μ2,由牛顿第二定律得μ1mg =ma 1 ③(μ1+2μ2)mg =ma 2 ④联立①②③④式得μ1=0.20 ⑤μ2=0.30. ⑥(2)在t 1时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向.设物块与木板之间的摩擦力大小为f ,物块和木板的加速度大小分别为a ′1和a ′2,则由牛顿第二定律得f =ma ′ ⑦2μ2mg -f =ma ′2 ⑧假设f <μ1mg ,则a ′1=a ′2;由⑤⑥⑦⑧式得f =μ2mg >μ1mg ,与假设矛盾.故f =μ1mg ⑨由⑦⑨式知,物块加速度的大小a ′1等于a 1;物块的v -t 图像如图中点划线所示. 由运动学公式可推知,物块和木板相对于地面的运动距离分别为s 1=2×v 212a 1⑩ s 2=v 0+v 12t 1+v 212a ′2⑪ 物块相对于木板的位移的大小为s =s 2-s 1 ⑫联立①⑤⑥⑧⑨⑩⑪⑫式得s =1.125 m.答案:(1)0.20 0.30 (2)1.125 m。
机械能及其守恒定律一、追寻守恒量相互作用的物体凭借其位置而具有的能量叫势能。
物体由于运动而具有的能量叫动能。
二、功1.概念:物体受到力的作用,并在力的方向上发生一段位移,就叫做力对物体做了功.2.做功的两个不可缺少的因素:力和物体在力的方向上发生的位移.3.恒力对物体做功大小的计算式为: W =F l cos α,单位:J.1J=1N ·M其中F 应是恒力,α是F 和l 方向之间的夹角,l cos α即为在力的方向上发生的位移。
4.功有正负,但功是标量.(1)功的正、负的判断:若00≤α<900,则F 做正功; 若α=900,则F 不做功;若900<α≤1800,则F 做负功.(2)功的正负的意义:功是标量,所以功的正、负不表示方向.功的正、负也不表示大小。
功的正、负表示是动力对物体做功还是阻力对物体做功,或者说功的正、负表示是力对物体做了功,还是物体克服这个力做了功.功的正、负还表示能量转化的方向,如:重力做正功,重力势能减小,重力做负功,重力势能增加,合外力做正功,物体动能增加,合外力做负功,物体动能减小.5.功的计算(1)恒力的功,直接利用W=Fl cos α来计算,变力的功可用动能定理或功能关系计算.(2)合外力的功:等于各个力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+……也可先求合力,再利用W=F 合l cos α求解。
三、功率1.概念:功跟完成这些功所用时间的比值叫做功率.功率是表示物体做功快慢的物理量.2.功率的定义式:tW P =,导出公式αcos Fv P =,其中α是F 与v 的夹角. 说明:①定义式求出的为平均功率,若功率一直不变,则为瞬时功率.②导出式中若v 为平均速度,则P 为平均功率;若v 为瞬时速度,则P 为瞬时功率,式中α为力F 与物体速度v 之间的夹角.3.功率是标量.4.功率的单位有W 、kW 、马力.其换算关系为:1kW=1000W,1马力=735W.1W=1J/s5.发动机名牌上的额定功率,指的是该机正常工作时的最大输出功率.实际功率是机器工作时实际的输出功率。