基于欧洲规范的钢筋混凝土箱涵结构设计与计算_何坚
- 格式:pdf
- 大小:1.26 MB
- 文档页数:5
第18卷第6期2020年12月水利与建筑工程学报JournalofWaterResourcesandArchitecturalEngineeringVol.18No.6Dec.,2020DOI:10.3969/j.issn.1672-1144.2020.06.037收稿日期:2020 06 01 修稿日期:2020 06 27作者简介:董官炯(1988—),男,四川巴中人,硕士,工程师,主要从事水利水电工程设计工作。
E mail:502751173@qq.com中欧混凝土结构设计规范有关受扭承载力计算的比较董官炯,商开卫,王树平(中国电建集团成都勘测设计研究院有限公司,四川成都610072)摘 要:欧洲规范在国际工程建设领域应用较多,通过对《水工混凝土结构设计规范》(DL/T5057—2009和《混凝土结构设计》(EN1992—1—1)有关构件受扭承载力计算进行比较研究,并结合吊车梁计算实例,分析中欧规范在混凝土受扭构件结构计算中的差异。
结果表明采用欧洲规范进行受扭构件结构计算的安全度要高于中国规范,计算所需钢筋截面面积也更大。
关键词:受扭承载力计算;中欧混凝土结构设计规范;吊车梁;比较中图分类号:TV331;TV314 文献标识码:A 文章编号:1672—1144(2020)06—0219—04ComparisonofTorsionalCapacityCalculationBetweenChineseandEuropeanConcreteStructureDesignCodesDONGGuanjiong,SHANGKaiwei,WANGShuping(PowerChinaChengduEngineeringCorporationLimited,Chengdu,Sichuan610072,China)Abstract:Europeanstandardshavebeenwidelyappliedinthefieldofinternationalengineeringconstruction.Thetor sionalcapacitycalculationbetweenDL/T5057—2009DesignSpecificationforHydraulicConcreteStructuresandEN1992—1—1DesignofConcreteStructuresiscomparedinthispaper,anddifferencesofstructuralcalculationofcon cretetorsionmemberareanalyzedcombinedwiththecranebeamcalculation.TheresultsshowthatthesafetydegreeofthetorsionstructurecalculatedbytheEuropeanstandardsishigherandthereinforcementareaislarger.Keywords:torsionalcapacitycalculation;ChineseandEuropeanconcretestructuredesignstandards;cranebeam;comparing 近年来,越来越多的中国企业走出国门,响应国家“一带一路”和“走出去”的战略号召,承包国外各种各样的工程建设项目,因此了解国际常用规范和国内规范的差异很有必要。
箱涵结构计算一. 箱涵结构分析计算说明 1.计算内容淘浦东路—真南路下立交跨铁路段采用现浇混凝土箱形结构,主车道断面形式为单箱单室,机动车道净宽8.8米,净高4.5米,非机动车道净宽4.2米,净高2.5米,横断面见图1,箱涵全长43.7米.图1 主通道箱涵横断面箱涵采用C40防水钢筋混凝土结构,各部位结构尺寸见表1.2.荷载及组合(1)结构设计所考虑的荷载主要有三种:恒载,活载.恒载:结构自重,顶板上覆土自重,静止土压力,路面铺装活载:地面列车荷载(考虑冲击力的影响),机动车道车道荷载,非机动车道车道荷载,主动土压力(2)荷载组合荷载组合1:结构自重+顶板覆土自重+路面辅装+静止土压力荷载组合2: 结构自重+顶板覆土自重+路面辅装+地面列车荷载(考虑冲击力的影响)+ 主动土压力(3)主要设计参数结构自重:钢筋混凝土重度3/25m kN =γ 顶板上覆土自重: m kN q /48=车行道路面辅装: m kN q /2.391= 非车行道路面辅装: m kN q /1962=静止土压力:箱涵顶部m kN q /123=,箱涵底部m kN q /5.1064=(铁路桥涵设计基本规范TB 10002.1—2005)主动土压力:箱涵顶部m kN q /4.665=,箱涵底部m kN q /3.1726=(铁路桥涵设计基本规范TB 10002.1—2005)地面荷载:铁路荷载:中—活载 路面荷载:城A 车道荷载土的主要物理力学性质指标:3/18m kN =γ, 35=ϕ 3.结构计算荷载组合1,荷载组合2下的计算模型如图2,图3所示.q4图26图3本计算采用MIDAS/civil 软件对结构进行有限元分析,箱涵纵向计算取3.135米最不利荷载组合,进行配筋计算和裂缝验算.荷载组合1下的计算结果如图4—图6所示,荷载组合2下的计算结果如图7---图9所示,结构控制内力如表2所示。
2553 2147 1829 1589 1419 1311 1256 1272 1326 1399C i v i l O C E S S ORAGR AM 表示-方向-1253 -1211 -1169 -1127 -1085 -1043 -1001 -959 -917 -875表示-方向-675 -538 -415 MIDAS/CivilPOST-PROCESSOR BEAM DIAGRAM-z1.43455e+003表示-方向剪力3452 3250 3088 2974 2908 2955 3073 3255 3504 3826 2286 表示-方向弯矩图MIDAS/CivilPOST-PROCESSOR BEAM DIAGRAM表示-方向顶板,底板轴力表示-方向腹板轴力MIDAS/CivilPOST-PROCESSOR表示-方向腹板剪力表示-方向顶板,底板剪力应力,结果如下所示。
(一)孔径及净空净跨径L 0 = 6.00m 净高h 0 = 3.00m(二)设计安全等一级结构重要性系数r 0 =1.1(三)汽车荷载荷载等级公路 —Ⅰ级(四)填土情况涵顶填土高度H = 1.5m 土的内摩擦角Φ =35°填土容重γ1 =19kN/m 3地基容许承载力[σ0] =260kPa(五)建筑材料普通钢筋种类HRB335主钢筋直径22mm 钢筋抗拉强度设计值f sd =280MPa 钢筋弹性模量E s =200000MPa涵身混凝土强度等级C30涵身混凝土抗压强度设f cd =13.8MPa 涵身混凝土抗拉强度设f td = 1.39MPa 钢筋混凝土重力密度γ2 =25kN/m 3基础混凝土强度等级C20混凝土重力密度γ3 =24kN/m 3(一)、截面尺寸拟顶板、底板厚度δ =0.5m C 1 =0.15m 侧墙厚度t =0.5m C 2 =0.15m 横梁计算跨径L P = L 0+t= 6.5m L = L 0+2t=7m 侧墙计算高度h P = h 0+δ= 3.5m h = h 0+2δ =4m 基础襟边 c =0.1m 基础高度 d =0.1m 基础宽度B =7.2m图 L-01(一)恒载恒载竖向压力p 恒 = γ1H+γ2δ =41.00kN/m 2恒载水平压力顶板处e P1 = γ1Htan 2(457.72kN/m 2底板处e P2 = γ1(H+h)tan228.32kN/m 2钢 筋 混 凝 土 箱 涵 结 构 设 计一 、 设 计 资 料二 、 设 计 计 算三 、 荷 载 计 算(二)活载汽车后轮着地宽度一个汽车后轮横向分布> 1.3/2 m > 1.8/2 m故车轮压力扩散线相重 a =(0.6/2+Ht3.100m同理,纵向,汽车后0.2/2+Htan30°=0.966 m > 1.4/2 m故 b =(0.2/2+Ht 1.400m ∑G =140kN 车辆荷载垂直压力q 车 = ∑G/(a×b)32.26kN/m 2车辆荷载水平压力e 车 = q 车tan 2(45°8.74kN/m 2(一)构件刚度比K =(I 1/I 2)×0.54(二)节点弯矩和1、a种荷载作用下 (图涵洞四角节点弯矩M aA = M aB = M aC =-1/(K+1)·pL P 2/12横梁内法向力N a1 = N a2=0侧墙内法向力N a3 = N a4=pL P /2恒载p = p 恒 =41.00kN/m 2M aA = M aB= M aC =-93.83kN ·m N a3 = N a4=133.25kN 车辆荷载p = q 车 =32.26kN/m 2M aA = M aB= M aC =-73.82kN ·m 图 L-02N a3 = N a4=104.84kN2、b种荷载作用下 (图M bA = M bB = M bC =-K/(K+1)·ph P 2/12N b1= Nb2=ph P/2N b3 = N b4=0恒载p = e P1 =7.72kN/m 2M bA = M bB= M bC =-2.76kN ·m N b1 = N b2=13.52kN3、c种荷载作用下 (图图 L-03M cA = M cD =-K(3K+8)/[M cB = M cC =-K(2K+7)/[N c1 =ph P/6+(McA-M cB )/h P N c2 =ph P /3-(M cA -N c3 = N c4=0恒载p = e P2-e P1 =20.60kN/m 2M cA = M cD =-4.00kN ·m M cB= M cC=-3.36kN ·m N c1 =11.83kN N c2 =24.21kN图 L-044、d种荷载作用下 (图1.17 m0.6/2+Htan30°=四 、 内 力 计 算M dA =-[K(K+3)/[M dB =-[K(K+3)/[M dC =-[K(K+3)/[M dD =-[K(K+3)/[N d1 =(M dD-M dC )/h P N d2 =ph P -(M dD -M dC )/h P N d3 = N d4=-(M dB -M dC )/L P车辆荷载p = e 车 =8.74kN/m 2M dA =-16.68kN ·m M dB =10.09kN ·m M dC =-13.21kN ·m M dD =13.56kN ·m 图 L-05N d1 =7.65kN N d2 =22.95kN N d3 = N d4=-3.59kN5、节点弯矩、轴力计算(1)按《公路桥涵设计(2)按《公路桥涵设计(3)按《公件内力计1、顶板 (图L-06)x =L P /2P = 1.2p 恒+1.4q 车 =94.36kN N x = N 1 =46.19kN M x=M B +N 3x-271.64kN·m V x = Px-N 3=5.02kN2、底板 (图L-07)ω1 =1.2p 恒+1.4(q 车-=83.72kN/m 2ω2 =1.2p 恒+1.4(q 车=105.01kN/m 2x =L P /2N x = N 2 =84.94kN M x =M A +N 3x-ω1·x 2/2-=270.75kN ·m V x =ω1x+x 2(ω2-ω=-12.28kN3、左侧墙(图L-08)ω1 =1.4e P1+1.4e 车=23.05kN/m 2ω2 =1.4e P2+1.4e 车51.88kN/m 2x =h P /2N x = N 3 =301.65kNM x =M B +N 1x-ω1·x 2/2-=-172.20kN ·m V x =ω1x+x 2(ω2-ω=6.76kN 4、右侧墙(图L-09)ω1 =1.4e P1 =10.81kN/m 2ω2=1.4e P2 =39.65kN/m 2x =h P /2N x = N 4 =301.65kN图 L-08图 L-09图 L-06图 L-07M x =M C +N 1x-ω1·x 2/2-=-186.09kN ·m V x =ω1x+x 2(ω2-ω=-14.66kN5、构件内力汇总表(1)承载能(一)承载能力极1、顶板 (B-C)钢筋按左、右对称,用(1)跨中l 0 =6.50mh =0.50ma =0.05m h 0 =0.45mb =1.00mM d =271.64 kN ·m ,N d =46.19 kN , V d=5.02 kNe 0 = M d /N d=5.881i =h/121/2=0.144m五 、 截 面 设 计(3)采用上述计算方法,以及《公路桥涵设计通用规范》(JTG D60—2004)第4.1.7条规定,可得构件在正常使用极限状态下长期组合如下表:(2)采用上述计算方法,以及《公路桥涵设计通用规范》(JTG D60—2004)第4.1.7条规定,可得构件在正常使用极限状态下短期组合如下表:长细比l 0/i =45.03> 17.5由《公路钢筋混凝土及ξ1 =0.2+2.7e 035.483> 1.0 ,取ξ1 =1.00ξ2=1.15- 1.020> 1.0 ,取ξ2 =1.00η =1+(l 0/h)2ξ1ξη = 1.009由《公路钢筋混凝土及e = ηe 0+h/2-a 6.135mr 0N d e =f cd bx(h 0-x/2)311.73 =13800x(0.45-x/2)解得x =0.053 m≤ξb h 0 =0.56×0.45 =0.252 m 故为大偏心受压构件。
基于欧洲标准的钢混组合箱梁结构计算要点摘要:介绍了基于欧洲标准设计的城市高架桥上部钢混组合箱梁结构计算方法,以及验证内容:截面承载能力、面外扭转稳定承载能力、剪切稳定和受压腹板的面内稳定承载能力、纵向抗剪承载能力、疲劳承载能力等。
关键词:欧洲标准;钢混组合箱梁;可变荷载;疲劳损耗车辆;截面抗力;弯剪耦合高架桥上部结构型式选择施工周期短的钢混组合箱梁,本篇立足于基于欧洲标准的桥梁结构设计,对所采用的设计规范、设计标准、设计荷载、设计理论、计算要点等进行了全面的阐述,希望能对各位桥梁工程师在海外项目设计中提供帮助。
1概述1.1结构尺寸设计采用三跨连续的钢-混凝土组合箱梁结构形式,桥梁跨径组合3x30m,桥宽10m。
箱梁中心高度为1.5m,混凝土桥面板厚25cm,承托处厚40cm。
钢梁采用直腹板单箱单室断面,钢梁腹板厚20mm,在近支点20m范围钢梁顶板厚28mm,底板厚20mm,跨中25m范围钢梁顶板厚32mm,底板厚28mm。
主梁标准断面(m)1.2技术标准及规范钢混组合箱梁遵循的标准包括:① EN 1994-2 钢与混凝土组合结构设计第2部分总则与桥梁规则;② EN 1992-2 混凝土结构设计第2部分混凝土桥梁;③ EN 1993-2 钢结构设计第2部分钢桥;④ EN 1990 结构设计基础;⑤ EN 1991 结构上的作用。
2材料2.1结构主要材料及性能桥面板采用C35/45混凝土,全桥上部结构钢筋采用B500B。
2.1.1钢材钢主梁采用S355K2级别钢材,主要力学性能如下:40mm板厚以下屈服强度 f y=355MPa弹性模量 E a=210Gpa=210 000MPa材料线膨胀系数αth a= 10×10-6℃2.1.2剪力连接件连接件钢材等级为S235J2G3,主要力学性能如下:极限强度 f u=450MPa2.2材料分项系数针对承载能力极限状态(ULS)及针对正常使用极限状态(SLS)针对疲劳极限状态3作用3.1恒载1)自重一期恒载:钢构件和混凝土桥面板自重按构件断面重量自动计入,混凝土容重取为26kN/m3,钢材容重取78.5kN/m3。
SERIE RS46234Nota: Todos los centros de carga c 1, c 2, c 3 se toman desde la cara frontal de las ruedas (delanteras).(mostrado en 1000 kg.)(mostrado en 1000 kg.)56(mostrado en 1000 kg.)Nota: Todos los centros de carga c 1, c 2, c 3 se toman desde la cara frontal de las ruedas (delanteras).(mostrado en 1000 kg.)78(1) Desde la cara anterior de las ruedas delanteras. Se deben restar 100 mm para el centro de carga del lado delantero del Estabilizador, cuando sea aplicable (2) Para modelos CH solamente: Con función opcional "P(owered) P(ile) S(lope)" (Inclinación Lateral Asistida): restar 310 mm (3) Asiento de suspensión total en posición presionada(4) Estos datos son con el contenedor transportado 500 mm por delante de las ruedas (centro de carga 1720 mm)(5)La anchura del pasillo de apilado se basa en el cálculo según la norma VDI, tal y como se muestra en la ilustración. La British Industrial Truck Association (BITA) (AsociaciónBritánica de Carretillas Industriales) recomienda añadir 100 mm al espacio libre total (dimensión a) para conseguir un margen de trabajo adicional en la parte trasera de la carretilla.(6)Las cifras de trepabilidad se proporcionan para comparar las prestaciones de tracción pero no se pretende refrendar que el vehículo pueda funcionar en las rampas indicadas.9(1) Desde la cara anterior de las ruedas delanteras. Se deben restar 100 mm para el centro de carga del lado delantero del Estabilizador, cuando sea aplicable (2) Para modelos CH solamente: Con función opcional "P(owered) P(ile) S(lope)" (Inclinación Lateral Asistida): restar 310 mm (3) Asiento de suspensión total en posición presionada(4) Estos datos son con el contenedor transportado 500 mm por delante de las ruedas (centro de carga 1720 mm)(5) La anchura del pasillo de apilado se basa en el cálculo según la norma VDI, tal y como se muestra en la ilustración. La British Industrial Truck Association (BITA) (Asociación Británica de Carretillas Industriales) recomienda añadir 100 mm al espacio libre total (dimensión a) para conseguir un margen de trabajo adicional en la parte trasera de la carretilla.(6)Las cifras de trepabilidad se proporcionan para comparar las prestaciones de tracción pero no se pretende refrendar que el vehículo pueda funcionar en las rampas indicadas.10(1) Desde la cara anterior de las ruedas delanteras. Se deben restar 100 mm para el centro de carga del lado delantero del Estabilizador, cuando sea aplicable2) Para modelos CH solamente: Con función opcional "P(owered) P(ile) S(lope)" (Inclinación Lateral Asistida): reste 310 mm(3) Asiento de suspensión total en posición presionada(4) Estos datos son con el contenedor transportado 500 mm por delante de las ruedas (centro de carga 1720 mm)(5) La anchura del pasillo de apilado se basa en el cálculo según la norma VDI, tal y como se muestra en la ilustración. La British Industrial Truck Association (BITA) (Asociación Británicade Carretillas Industriales) recomienda añadir 100 mm al espacio libre total (dimensión a) para conseguir un margen de trabajo adicional en la parte trasera de la carretilla.(6)Las cifras de trepabilidad se proporcionan para comparar las prestaciones de tracción pero no se pretende refrendar que el vehículo pueda funcionar en las rampas indicadas.11(1) Desde la cara anterior de las ruedas delanteras. Se deben restar 100 mm para el centro de carga del lado delantero del Estabilizador, cuando sea aplicable 2) Para modelos CH solamente: Con función opcional "P(owered) P(ile) S(lope)" (Inclinación Lateral Asistida): reste 310 mm (3) Asiento de suspensión total en posición presionada(4) Estos datos son con el contenedor transportado 500 mm por delante de las ruedas (centro de carga 1720 mm)(5) La anchura del pasillo de apilado se basa en el cálculo según la norma VDI, tal y como se muestra en la ilustración. La British Industrial Truck Association (BITA) (Asociación Británica de Carretillas Industriales) recomienda añadir 100 mm al espacio libre total (dimensión a) para conseguir un margen de trabajo adicional en la parte trasera de la carretilla.(6)Las cifras de trepabilidad se proporcionan para comparar las prestaciones de tracción pero no se pretende refrendar que el vehículo pueda funcionar en las rampas indicadas.12EQUIPOS Y OPCIONES ESTÁNDAR*Estándar u Opcional en mercados seleccionados o en modelos seleccionados.Hay disponibles otras opciones a través de Special Products Engineering Department (SPED). Contacte con Hyster para ver más detalles.IH = Manipulador Intermodal / CH = Manipulador de contenedores14EQUIPAMIENTO DE EXTREMO DELANTEROZAPATA PARA MANIPULADOR DE CONTENEDORESZAPATA PARA CONTENEDOR ISO CON MPSZAPATA PARA CONTENEDOR ISO CON PPSCAMBIADOR DE HERRAMIENTAS ZAPATA CH PARA CAMBIADOR DE HERRAMIENTAS DE HERRAMIENTASZAPATA CON PATAS SOBREDIMENSIONADAS15。
欧洲结构设计标准(中文版)出版欧洲结构设计标准(中文版)的出版,标志着中国在建筑结构设计领域的又一重要里程碑。
这一版本的出现不仅为中国建筑师和工程师提供了更全面、更深入的设计参考,而且对于推动我国建筑设计行业的发展具有重要意义。
文章分为以下几个部分进行详述:一、背景与意义二、欧洲结构设计标准的概述三、欧洲结构设计标准的特点四、欧洲结构设计标准在中国的应用前景五、结论一、背景与意义随着中国经济的快速发展,建筑行业的规模也在不断扩大。
在这个过程中,如何确保建筑的安全性和稳定性成为了至关重要的问题。
为了达到这个目标,我们需要一个统一、科学、严谨的设计标准作为指导。
欧洲结构设计标准的引入,正是为了满足这一需求。
欧洲结构设计标准是欧洲各国多年实践经验的结晶,其科学性和实用性得到了全球广泛的认可。
它的中文版出版,无疑为中国的建筑师和工程师提供了一个宝贵的学习资源,有利于提高我国建筑设计的水平和质量。
二、欧洲结构设计标准的概述欧洲结构设计标准主要包括两大部分:一部分是关于结构设计的基本原则和方法,另一部分则是关于各种具体结构类型的设计指南。
其中,基本原则和方法部分涵盖了材料性能、荷载分析、结构计算等方面的内容;而具体结构类型的设计指南则包括了混凝土结构、钢结构、木结构等多种类型的建筑结构。
三、欧洲结构设计标准的特点欧洲结构设计标准的最大特点就是它的科学性和实用性。
它既考虑了理论知识,又注重实践操作,使得设计者能够在实际工作中得到很好的应用。
此外,该标准还强调了环保和可持续发展的理念,鼓励设计师在保证结构安全的同时,也要尽可能地节约资源,减少对环境的影响。
四、欧洲结构设计标准在中国的应用前景随着中国建筑业的不断发展,欧洲结构设计标准在中国的应用前景非常广阔。
首先,它可以为中国的建筑师和工程师提供一种新的设计思路和方法,帮助他们提升设计水平。
其次,通过学习和应用这个标准,我们还可以借鉴欧洲先进的设计理念和技术,促进我国建筑行业的创新和发展。
1 欧洲结构规范EuroCodes• 欧洲规范是由欧洲经济共同体委员会(EEC)1975年决定由欧洲标准化委员会(CEN)在建筑和土木工程领域编制的一套适用于欧洲的工程结构协调设计规范,1992年欧共体进一步发展为欧洲联盟(EU)后,这个联合行动计划得以积极实施。
• 经过欧洲各国的共同努力,这套欧洲规范已逐步形成包括10卷58分册的完整配套的工程结构规范体系,成为在工程建设领域中极具影响力的一套区域性国际标准。
• 目前,全套欧洲规范已陆续发布,并已在欧盟27个成员国取得应用地位。
随着欧洲规范的完善和应用,CEN规定,各成员国最迟在2010年3月全面实施欧洲规范和相应的国家附件,并废止与欧洲规范相抵触的本国国家标准。
• 我院2009年批准立项了《欧洲规范系统研究》项目,着重研究其中与公路勘察、设计和施工有关的部分及相应的英国附件和法国附件,并分专题编写设计手册和设计指南。
1.1 欧洲规范0:结构设计基础1.2 欧洲规范1:结构上的作用1.3 欧洲规范2:混凝土结构设计1.4 欧洲规范3:钢结构设计1.5 欧洲规范4:钢与混凝土组合结构设计1.6 欧洲规范5:木结构设计1.7 欧洲规范6:砌体结构设计1.8 欧洲规范7:土工设计1.9 欧洲规范8:结构抗震设计1.10 欧洲规范9:铝结构设计2 其它欧洲规范3 法国规范序号名称1SETRA土建技术指南汇编——护栏2SETRA土建技术指南汇编——挑檐3SETRA支挡构造物通用设计指南4SETRA防撞设施的构造5SETRA拦阻轻型汽车的安全护栏6SETRA针对重型卡车的安全护栏7SETRA道路排水技术指南8SETRA路桥排水治理工程——排水、护坡、疏浚、边沟、水沟9SETRA理解公路主要几何设计参数10SETRA关于高速公路规划的技术条件说明(几何设计终稿)11SETRA公路设计指南12SETRA道路结构的设计构思与尺寸测量技术指南13SETRA城市间主要公路交叉口设计14SETRA桥梁支撑——桥墩模型15SETRA桥面支座——车辆对桥墩的撞击16SETRA板桥设计指南17SETRA框架桥设计指南18SETRA先张预应力预制梁式公路桥设计指南序号名称19SETRA抗震区桥梁设计指南20SETRA桥头搭板的技术与施工21SETRA公路桥梁伸缩缝22SETRA弹性支座使用环境23SETRA桥面支座——工程钢筋类型24SETRA套箍弹性橡胶支座装置25SETRA盆式橡胶支座26SETRA国家道路网络-新型路面结构类型的分类1-附录27SETRA国家道路网络-新型路面结构类型的分类2-理想数据与计算数据28SETRA国家道路网络-新型路面结构类型的分类3-使用注意事项29SETRA国有公路网新型路面结构类型分类30SETRA路面基层国有道路系统标准应用指南31SETRA国家公路网新路面标准结构样本32SETRA支撑结构物通用设计指南33SETRA并列的铁路、公路(或高速公路)路基34教材:极限状态下的预应力混凝土35建筑工程结构设计指南——桥梁36极限状态下钢筋混凝土法国规范BAEL 83使用指南——桥梁工程实施范例4 英国规范4.1 英国结构规范BS5400BS5400是英国标准化协会桥梁技术委员会编制的适用于钢桥、混凝土桥和组合桥的设计、施工、荷载、材料及工艺规范的一套国家标准,在国际上具有相当广泛的影响力。
铁路钢筋混凝土框架桥中欧设计规范的差异性分析铁路钢筋混凝土框架桥中欧设计规范的差异性分析引言:随着铁路交通的发展与国际合作的加强,中欧之间的铁路连接越来越重要。
在铁路建设中,桥梁作为重要的交通枢纽,起到了连接路线的关键作用。
铁路钢筋混凝土框架桥作为一种常见的桥梁结构形式,其设计规范在不同地区可能存在一定的差异。
本文将对中欧地区铁路钢筋混凝土框架桥的设计规范进行比较和分析,并探讨其差异性的原因。
一、设计荷载标准的差异在设计桥梁结构时,荷载标准是非常重要的一项内容。
中欧地区的设计规范在荷载标准上存在一定的差异。
以铁路荷载为例,中欧地区的铁路线路密度、列车类型和荷载标准等因素不尽相同,导致所采用的设计荷载标准也不同。
其中,欧洲地区通常采用的设计荷载标准为Eurocode标准,而中国则采用了GB标准。
这两种标准对于桥梁荷载的计算方法、荷载系数等方面存在较大的差异,因此在设计桥梁结构时需要考虑这些差异。
二、抗震设计参数的不同抗震设计是桥梁结构设计中非常重要的一项内容。
中欧地区由于地震带的差异,对于抗震设计的要求也存在一定的差异。
欧洲地区由于地震活动相对较少,对于抗震设计要求相对较低。
而中国位于地震带上,对于抗震设计有着较为严格的要求。
因此,在设计桥梁结构时,中国的设计规范中通常会对抗震设计进行更加详细和严格的要求,而欧洲地区的设计规范对抗震设计的要求相对较少。
三、材料选取的差异桥梁结构的材料选取直接影响到桥梁的承载能力和使用寿命。
在中欧地区,由于材料的供应链和生产工艺的差异,对于钢筋混凝土桥梁的材料选取也存在一定的差异。
其中,混凝土强度等级、钢材的抗拉强度等指标可能存在一定的差异。
这些差异直接影响到桥梁结构的承载能力和耐久性,在设计桥梁时需要根据所采用的材料性能进行相应的参数调整,以确保设计的合理性。
四、桥梁审查与验收的差异在建设过程中,桥梁的审查与验收是确保桥梁质量的重要环节。
中欧地区在桥梁审查与验收的要求方面也存在一定的差异。
箱涵结构尺寸顶板厚度δ1=0.50m 底板厚度δ2=0.41m 左右侧墙厚度 t=1.19m 竖直方向倒角宽c1=0.20m 水平方向倒角宽c2=0.20m 箱涵净跨lo=3.80m 计算跨径lp=4.99m 箱涵净高ho=2.28m计算高度hp=2.78m箱涵全高h=3.28m填料容重r1=25KN/m3钢筋砼容重r2=25KN/m3填土厚度H=1.41m 土的摩擦角φ=30°一、荷载计算(一)恒载1、恒载竖直压力P=r1.H+r2.δ1=2、恒载水平压力顶板处ep1=r1.H.TAN 2(45°-φ/2)=钢筋混凝土箱涵结构计算47.75KN/m211.75KN/m2底板处ep2=r1(H+h)TAN2(45°-φ/2)=(二)活载1、活载竖直压力q活=2、活载水平压力e活=q活TAN2(45°-φ/2)=二、框架内力1、构件刚度比b=1mK=I1.hp/I2.lp=0.042、节点弯矩与杆件轴向力计算(1)a种荷载作用下恒载p=MaA=MaB=MaC=MaD=Na1=Na2=Na3=Na4=活载p=MaA=MaB=MaC=MaD=Na1=Na2=Na3=Na4=(2)b种荷载作用下0.00KN119.14KN229.42KN/m2-457.74KN.m0.00KN572.40KN-95.27KN.m229.42KN/m276.47KN/m2 47.75KN/m239.08KN/m2恒载e=ep1=MaA=MaB=M aC=MaD=Nb1=Nb2=Nb3=Nb4=(3)c种荷载作用下恒载e'=ep2-ep1=McA=McD=McB=McC=Nc1=Nc2=Nc3=Nc4=(4)d种荷载作用下e"=e正=MdA=MdB=MdC=MdD=Nd1=Nd2=Nd3=-Nd4=内力汇三、荷11.75KN/m2-0.29KN.m 16.33KN 0.00KN27.33KN/m20.00KN76.47KN/m2-64.27KN.m 83.48KN.m -0.36KN.m -0.32KN.m 12.65KN 25.34KN -85.37KN.m 62.37KN.m 53.14KN 159.44KN -33.84KN五、构件内力1、顶板(B-C)恒载p=MB=MC=N1=N3=N4=跨中截面NL/2=ML/2=QL/2=活载p=MB=MC=N1=N3=N4=跨中截面NL/2=ML/2=QL/2=2、底板(A-D)恒载w1=p=47.75w2=p=47.75N2=41.67N3=119.14119.14KN -95.88KN.m 28.98KN 47.75KN/m2119.14KN28.98KN 52.75KN.m 0.00KN-95.88KN.m 538.56KN 606.24KN53.14KN 255.37KN.m 229.42KN/m2-374.26KN.m -543.11KN.m 53.14KN 33.84KNMA=-95.92MD=-95.92NL/2=41.67ML/2=52.71QL/2=0.00活载w1=158.22w2=300.62N2=159.44N3=538.56N4=606.24MA=-522.01MD=-395.37NL/2=159.44ML/2=255.37QL/2=-54.983、左侧墙(B-A)恒载w1=w2=N3=N1=N2=MB=MA=NL/2=ML/2=QL/2=活载w1=w2=N3=N1=N2=MB=NL/2=ML/2=QL/2=76.47KN/m2-374.26KN.m11.75KN/m2119.14KN 28.98KN 41.67KN -95.88KN.m -95.92KN.m119.14KN 538.56KN -374.27KN.m 53.15KN39.08KN/m276.47KN/m2538.56KN 53.14KN -71.35KN.m -3.15KN159.44KN 内力4、右侧墙(C-D)恒载w1=w2=N1=N2=N4=MC=NL/2=ML/2=QL/2=活载w1=w2=N1=N2=N4=MC=NL/2=ML/2=QL/2=各构件计算内五、截面设计41.67KN 119.14KN 39.08KN/m20.00KN/m20.00KN/m253.14KN -95.88KN.m119.14KN -71.35KN.m -3.15KN11.75KN/m228.98KN -469.25KN.m -53.14KN159.44KN 606.24KN -543.11KN.m606.24KN混凝土标号R=混凝土抗压强度Ra=砼抗拉设计强度R1=混凝土弹性模量Eh=选用的主筋为II级Φ28其单截面积:钢筋抗拉设计强度受拉钢筋弹性模量混凝土安全系数rc=钢筋安全系数rs=构件工作条件系数混凝土保护层厚度计算宽度取 b=1000mm当需要设置箍筋以满足斜截面抗剪强度时,采用的箍筋型号及相关参数如下:箍筋型号φ12单肢筋截面积:131.1mm2ft=1.43MPa 见《混凝土结构设计规范》P17 表4.1.4fyv=210MPa 见《混凝土结构设计规范》P20 表4.2.3-1沿长度方向间距 s=150mm1、顶板(B-C)跨中δ1=Mj=Nj=Ih=Eh=lp/h=9.98>8eo=Mj/Nj=eo/h=Mj/Nj.h=7.80≥1,取αe=0.2200.50m459.75KN.m117.92KN50mm340MPa30MPa17.50MPa1.75MPa30000MPa1.04E+10mm43899mm1.251.250.95615.7mm2 30000MPa210000MPa偏心距增大系数η=1.0057e=4121mm ho=450mm计算钢筋面积A=13300B=450C=4.86E+08X1=810mm X=90mm ξ=0.20≤ ζjg =0.55340MPaAg=7根钢筋。
1、孔径及净空净跨径L 0 = 4.00m 净高h 0 =4.00m2、设计安全等级一级结构重要性系数r 0 = 1.13、汽车荷载荷载等级公路 —Ⅰ级4、填土情况涵顶填土高度H =7.2m 土的内摩擦角Φ =35°填土容重γ1 =19kN/m 3地基容许承载力[σ0] =260kPa5、建筑材料普通钢筋种类HRB335主钢筋直径25mm 钢筋抗拉强度设计值f sd =280MPa涵身混凝土强度等级C40涵身混凝土抗压强度设计值f cd =18.4MPa 涵身混凝土抗拉强度设计值f td = 1.65MPa 钢筋混凝土重力密度γ2 =25kN/m 3基础混凝土强度等级C10混凝土重力密度γ3 =24kN/m 3(一)截面尺寸拟定 (见图L-01)顶板、底板厚度δ =0.4m C 1 =0.05m 侧墙厚度t =0.4m C 2 =0.05m 横梁计算跨径L P = L 0+t = 4.4m L = L 0+2t = 4.8m 侧墙计算高度h P = h 0+δ =4.4m钢 筋 混 凝 土 箱 涵 结 构 设一 、 设 计 资 料二 、 设 计 计 算h = h 0+2δ =4.8m 基础襟边 c =0.2m 基础高度 d =0.2m 基础宽度 B =5.2m(二)荷载计算1、恒载恒载竖向压力p 恒 = γ1H+γ2δ =146.80kN/m 2恒载水平压力顶板处e P1 = γ1Htan 2(45°-φ/2) =37.07kN/m 2底板处e P2 = γ1(H+h)tan 2(45°-φ/2) =61.79kN/m 22、活载汽车后轮着地宽度0.6m,由《公路桥涵设计通用规范》(JTG D60—2004)第4.3.4条规定,按30°角向一个汽车后轮横向分布宽> 1.3/2 m > 1.8/2 m故车轮压力扩散线相重叠,应按如下计算横向分布宽度a = (0.6/2+Htan30°)×2+1.3 =3.100m同理,纵向,汽车后轮着地长度0.2m0.2/2+Htan30°= 4.257 m > 1.4/2 m故b = (0.2/2+Htan30°)×2 =1.400m ∑G =140kN 车辆荷载垂直压力q 车 = ∑G /(a×b) =32.26kN/m 2车辆荷载水平压力e 车 = q 车tan 2(45°-φ/2) =8.74kN/m 2(三)内力计算1、构件刚度比K = (I 1/I 2)×(h P /L P ) =1.002、节点弯矩和轴向力计算(1)a种荷载作用下 (图L-02)涵洞四角节点弯矩M aA = M aB = M aC = M aD =-1/(K+1)·pL P 2/12横梁内法向力N a1 = N a2 =0侧墙内法向力N a3 = N a4 =pL P /2恒载p = p 恒 =146.80kN/m 2M aA = M aB = M aC = M aD =-118.42kN ·m N a3 = N a4 =322.96kN 车辆荷载p = q 车 =32.26kN/m 20.6/2+Htan30°=4.46 mM aA = M aB = M aC = M aD =-26.02kN·mN a3 = N a4 =70.97kN(2)b种荷载作用下 (图L-03)M bA = M bB = M bC = M bD =-K/(K+1)·ph P2/12N b1 = N b2 =ph P/2N b3 = N b4 =0恒载p = e P1 =37.07kN/m2M bA = M bB = M bC = M bD =-29.90kN·mN b1 = N b2 =81.56kN(3)c种荷载作用下 (图L-04)M cA = M cD =-K(3K+8)/[(K+1)(K+3)]·ph P2/60M cB = M cC =-K(2K+7)/[(K+1)(K+3)]·ph P2/60N c1 =ph P/6+(M cA-M cB)/h PN c2 =ph P/3-(M cA-M cB)/h PN c3 = N c4 =0恒载p = e P2-e P1 =24.71kN/m2M cA = M cD =-10.96kN·mM cB = M cC =-8.97kN·mN c1 =17.67kNN c2 =36.70kN(4)d种荷载作用下 (图L-05)M dA =-[K(K+3)/[6(K2+4K+3)]+(10K+2)/(15K+5)]·ph P2/4M dB =-[K(K+3)/[6(K2+4K+3)]-(5K+3)/(15K+5)]·ph P2/4M dC =-[K(K+3)/[6(K2+4K+3)]+(5K+3)/(15K+5)]·ph P2/4M dD =-[K(K+3)/[6(K2+4K+3)]-(10K+2)/(15K+5)]·ph P2/4N d1 =(M dD-M dC)/h PN d2 =ph P-(M dD-M dC)/h PN d3 = N d4 =-(M dB-M dC)/L P车辆荷载p = e车 =8.74kN/m2M dA =-28.91kN·mM dB =13.40kN·mM dC =-20.45kN·mM dD =21.86kN·mN d1 =9.62kNN d2 =28.85kNN d3 = N d4 =-7.69kN(5)节点弯矩、轴力计算及荷载效应组合汇总表按《公路桥涵设计通用规范》(JTG D60—2004)第4.1.6条进行承载能力极限状态效应组3、构件内力计算(跨中截面内力)(1)顶板 (图L-06)x =L P/2P = p恒+0.7q车 =169.38kNN x = N1 =105.96kNM x = M B+N3x-Px2/2 =231.92kN·mV x = Px-N3 = 5.38kN(2)底板 (图L-07)ω1 =p恒+0.7(q车-3e车H P2/L P2)=151.02kN/m2ω2 =p恒+0.7(q车+3e车H P2/L P2)=187.74kN/m2x =L P/2N x = N2 =138.45kNM x =M A+N3x-ω1·x2/2-x3(ω2-ω1)/6L P=229.93kN·mV x =ω1x+x2(ω2-ω1)/2L P-N3=-14.81kN(3)左侧墙 (图L-08)ω1 =0.7e P1+0.7e车=32.07kN/m2ω2 =0.7e P2+0.7e车49.37kN/m2x =h P/2N x = N3 =367.25kNM x =M B+N1x-ω1·x2/2-x3(ω2-ω1)/6h P=-17.61kN·mV x =ω1x+x2(ω2-ω1)/2h P-N1=-25.89kN(4)右侧墙 (图L-09)ω1 = 0.7e P1 =25.95kN/m2ω2 = 0.7e P2 =43.25kN/m2x =h P/2N x = N4 =367.25kNM x =M C+N1x-ω1·x2/2-x3(ω2-ω1)/6h P=-26.49kN·mV x =ω1x+x2(ω2-ω1)/2h P-N1=-39.35kN(5)短期组合下构件内力汇总表(四)截面设计1、顶板 (B-C)钢筋按左、右对称,用最不利荷载计算。
中欧混凝土结构设计规范的差异蒋国栋;张建鑫【摘要】Aiming at the similarities and differences between Chinese code and Eurocode of concrete structure design, we contrast and discuss the strength grade of concrete, the thickness of concrete cover and the concrete exposure levels, and analyze the carrying capacity of the target of reinforcement and the crack width calculation principle. Based on an actual project as an example, we analyze qualitatively carrying capacity, reinforcing bars and the crack width of flexural member. The results show that in the same situation the crack calculated by Chinese code is larger than that by Eurocode, also the crack controlling by Chinese code is stricter. The results can provide reference to the overseas project structure design.%针对中欧混凝土结构设计规范的异同点,在混凝土强度等级、保护层厚度、环境暴露等级等方面进行对比论述,并分析欧洲规范的承载能力计算、裂缝开展宽度计算原理.以实际项目为例,对受弯构件的承载能力、配筋和裂缝宽度等进行定性分析,得出同等条件下中国规范较欧洲规范的裂缝计算值更大但裂缝控制更为严格等结论,为海外项目结构设计提供参考.【期刊名称】《水运工程》【年(卷),期】2017(000)009【总页数】5页(P53-57)【关键词】混凝土结构;异同点;欧洲规范;保护层厚度;裂缝开展宽度;海外项目【作者】蒋国栋;张建鑫【作者单位】中交四航局港湾工程设计院有限公司, 广东广州510290;中交四航局港湾工程设计院有限公司, 广东广州510290【正文语种】中文【中图分类】TU37;U652.7+1欧洲标准(EN)是国际工程领域具有较大影响力的一套区域性国际标准,由欧洲标准化委员会CEN颁发,在欧盟及前殖民地国家具有权威性,并在海外项目设计中具有较广的运用。
钢筋混凝土箱涵结构设计摘要:钢筋混凝土箱涵是涵洞构造里一种常用的结构形式,多用于软土地基时,其整体性强。
本文作者结合实际工程实例,就钢筋混凝土箱涵的结构设计做一个简单清晰的演算,为设计者提供设计依据。
关键词:钢筋混凝土箱涵;车辆荷载;截面设计;基底应力中图分类号:TU37 文献标识码:A 文章编号:Abstract: the reinforced concrete box culverts is culvert structures a common structure form, more for soft soil foundation, its integrity is strong. This paper based on an engineering example, reinforced concrete box of han structure design of a simple, clean calculations, to provide design basis for designers.Keywords: reinforced concrete box culverts; Vehicle load; Section design; Basal stress本算例作者以参与的某项目箱涵设计为背景,给出设计所需要的基础资料。
在其他的计算过程中,设计人员可根据项目具体情况更换设计基础资料,代入公式中,逐步验算。
本算例详细介绍箱涵的设计过程。
设计资料计算荷载:公路-Ⅰ级;净跨径:;净高:;填土厚度:;建筑材料:涵身混凝土为C30,;钢筋为HRB335级钢筋,;涵身基础混凝土为C20;材料容重:填土;钢筋混凝土;混凝土;土的内摩擦角基底置于中密砂土上,结构重要性系数,查看《公路涵洞设计细则》(JTG/T D65-04-2007)截面尺寸拟定(见图1)顶板、底板厚度侧墙厚度故;图13、荷载计算1)恒载恒载竖直压力(取1m为计算单元)恒载水平压力顶板处底板处2)活载公路-Ⅰ级车辆荷载由《公路桥涵设计通用规范》(JTG D60-2004)第 4.3.4条计算一个汽车后轮横向分布宽:内力计算钢筋混凝土箱涵按照矩形框架计算,框架的轴线以构件混凝土断面的重心轴线为准。