2.3.4平面向量共线的坐标表示
- 格式:doc
- 大小:280.00 KB
- 文档页数:7
2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。
2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示 ●温故知新1.(1)式子12(2)如果基底的两个向量1e 、2e ________,则这个基底为正交基底.2.在直角坐标系中建立一个________{},i j ,对于平面内任一向量a 可分解为x y =+a i j ,则有序 实数对______叫做向量a 的坐标,记作_________.3.设OA x y =+i j ,则向量OA 的坐标______就是_________的坐标;反过来,_________的坐标______也就是向量OA 的坐标.4.向量的加法法则:两向量首尾相接,则和向量为首向量的______指向末向量的______. ●课题引入在直角坐标平面中,(1)画出()2,4OA =,如何画()2,4=a ?(2)若()2,4=a ,()3,1=b ,画出+a b ,如何求+a b 的坐标?●教材新知1.2.(1)若向量的起点是坐标原点,则向量的坐标等于___________; (2)设()11,A x y ,()22,B x y ,则AB =_________.即一个向量的坐标等于表示此有向线段的___________减去___________.3.将一个向量的始点平移到坐标原点,则向量的坐标和平移后向量的______是相同的.4.设()11,x y =a ,()22,x y =b ,其中≠0b ,则a ‖b ⇔________1212,x x y y λλ=⎧⇔⇔⎨=⎩___________. 5.设()11,A x y ,()22,B x y ,()33,C x y ,只要证明________,便可证得A、B 、C 三点共线. 6.设()111,P x y ,()222,P x y ,(),P x y ,()121PP PP λλ=≠-时,x =_______,y =_______. (1)当1λ=,即点P 为12P P 的______,此时x =_______,y =_______.(2)ABC ∆中,()11,A x y ,()22,B x y ,()33,C x y ,重心(),G x y ,则x =_______,y =_______.●题组集训(1)若点P 的坐标为()11,x y ,向量PQ 的坐标为()22,x y ,则点Q 的坐标为( )A.()1212,x x y y --B.()2121,x x y y --C.()1212,x x y y ++D.()1212,x x y y -+ (2)()3,2=a ,()0,1=-b ,则向量2-b a 的坐标是( )A.()3,4-B.()3,4-C.()3,4D.()3,4-- (3)设()2,3AB =,(),BC m n =,()1,4CD =-,则DA =( )A.()1,7m n ++B.()1,7m n ----C.()1,7m n --D.()1,7m n -+-+ (4)若()0,0O ,()1,1A 且'2OA OA =,则点'A 的坐标为_______.(5)已知点()3,2M -,()5,1N --,若12MP MN =,则点P 的坐标是_______.●课堂精讲【例1】已知点A 、B 、C 的坐标分别为()2,4A -、()0,6B 、()8,10C -.求向量122AB BC AC +-的坐标.【例2】已知()1,2=a ,()3,2=-b ,当k 为何值时,k +a b 与3-a b 平行?平行时它们是同向还是反向?【变式训练】已知点()4,0A ,()5,5B ,()2,6C ,O 为坐标原点,求直线AC 与OB 的交点P 的坐 标.【例3】已知点()6,3A ,O 为坐标原点,点P 在直线OA 上,且12OP PA =,若P 是线段OB 的中点,求点B 的坐标.【变式训练1】在ABC ∆中,已知点()3,7A 、()2,5B -.若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.【变式训练2】如图,已知三点()0,8A ,()4,0B -,()5,3C -,D 点在线段AB 上,且13AD DB=, E 点在线段BC 上,若BDE ∆的面积是ABC ∆面积的一半,求向量AE 的坐标.●课后反馈(1)若三点()1,1P ,()2,4A -,(),9B x -共线,则( )A.1x =-B.3x =C.92x =D.51x = (2)在平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则BD =( )A.()2,4--B.()3,5--C.()3,5D.()2,4 (3)已知两点()2,1A -,()3,1B ,与AB 平行且方向相反的向量a 是( )A.()1,2=-aB.()9,3=aC.()1,2=-aD.()4,8=--a (4)已知()5,2=-a ,()4,3=--b ,(),x y =c ,若23-+=0a b c ,则c 等于( ) A.81,3⎛⎫ ⎪⎝⎭ B.138,33⎛⎫ ⎪⎝⎭ C.134,33⎛⎫ ⎪⎝⎭ D.134,33⎛⎫-- ⎪⎝⎭(5)设1,tan 3α⎛⎫= ⎪⎝⎭a ,3cos ,2α⎛⎫= ⎪⎝⎭b ,且a 与b 共线,则锐角α的值为( )A.12πB.6πC.4πD.3π(6)若ABC ∆的三条边得中点分别为()2,1和()3,4-,()1,1--,则ABC ∆的重心坐标为______.(7)设向量()1,2=a ,()2,3=b ,若向量λ+a b 与向量()4,7=--c 共线,则λ=______. (8)若()3,4=a ,b ‖a 且b 的起点为()1,2,终点为(),3x x ,则=b ________. (9)若()4,3=-a ,(),5x =b ,()1,y =-c ,若+=a b c ,则(),x y =_______.(10)已知()5,1A ,()1,3B ,113OA OA =,113OB OB =,求11A B .(11)设向量()1,3=-a ,()2,4=-b ,()1,2=--c .若表示向量4a 、42-b c 、()2-a c 、d 的有向线段首尾相接能构成四边形,求向量d .(12)已知O 是坐标原点,()2,1A -,()4,8B -,且3AB BC +=0,求OC 的坐标.(13)平面内给定三个向量()3,2=a ,()1,2=-b ,()4,1=c ,回答下列问题: ①求32+-a b c ;②求满足m n =+a b c 的实数m ,n ; ③若()k +a c ‖()2-b a ,求实数k .(14)如图所示,已知()4,5A ,()1,2B ,()12,1C ,()11,6D ,AC 与BD 相交于点P ,求BP 的坐 标及点P 的坐标.(15)已知平行四边形ABCD 的一个顶点坐标为()2,1A -,一组对边AB 、 CD 的中点分别为()3,0M 、()1,2N --,求平行四边形的各个顶点的坐标.。
平面向量的坐标运算平面向量共线的坐标表示一、教学分析1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的.二、教学目标1、知识与技能:掌握平面向量的坐标运算;会根据向量的坐标,判断向量是否共线。
2、过程与方法:通过对共线向量坐标关系的探究,提高分析问题、解决问题的能力。
3情感态度与价值观:学会用坐标进行向量的相关运算,理解数学内容之间的内在联系。
三、教学重点与难点教学重点:平面向量的坐标运算。
教学难点:向量的坐标表示的理解及运算的准确.四、教学设想(一)导入新课思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B 不同时为零)何时所体现的两条直线平行向量的共线用代数运算如何体现思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢(二)推进新课、新知探究、提出问题①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗②如图1,已知A(x1,y1),B(x2,y2),怎样表示的坐标你能在图中标出坐标为(x2-x1,y2-y1)的P点吗标出点P 后,你能总结出什么结论活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:图1a +b =(x 1i+y 1j )+(x 2i+y 2j )=(x 1+x 2)i+(y 1+y 2)j ,即a +b =(x 1+x 2,y 1+y 2).同理a -b =(x 1-x 2,y 1-y 2).又λa =λ(x 1i+y 1j )=λx 1i+λy 1j .∴λa =(λx 1,λy 1).教师和学生一起总结,把上述结论用文字叙述分别为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量平移,使得点A 与坐标原点O 重合,则平移后的B 点位置就是P 点.向量AB 的坐标与以原点为始点,点P 为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量的模与向量OP 的模是相等的.由此,我们可以得出平面内两点间的距离公式:|AB |=|OP |=221221)()(y y x x -+-.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能.②=-=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.提出问题①如何用坐标表示两个共线向量②若a =(x 1,y 1),b =(x 2,y 2),那么2211x y x y =是向量a 、b 共线的什么条件 活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.我们知道,a 、b 共线,当且仅当存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),即⎪⎩⎪⎨⎧==.,2121y y x x λλ消去λ后得x 1y 2-x 2y 1=0. 这就是说,当且仅当x 1y 2-x 2y 1=0时向量a 、b (b ≠0)共线.又我们知道x 1y 2-x 2y 1=0与x 1y 2=x 2y 1是等价的,但这与2211x y x y =是不等价的.因为当x 1=x 2=0时,x 1y 2-x 2y 1=0成立,但2211x y x y =均无意义.因此2211x y x y =是向量a 、b 共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.讨论结果:①x 1y 2-x 2y 1=0时,向量a 、b (b ≠0)共线.②充分不必要条件.提出问题a 与非零向量b 为共线向量的充要条件是有且只有一个实数λ使得a =λb ,那么这个充要条件如何用坐标来表示呢活动:教师引导推证:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠a ,由a =λb ,(x 1,y 1)=λ(x 2,y 2)⎪⎩⎪⎨⎧==⇒.,2121y y x x λλ消去λ,得x 1y 2-x 2y 1=0. 讨论结果:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0.教师应向学生特别提醒感悟:1°消去λ时不能两式相除,∵y 1、y 2有可能为0,而b ≠0,∴x 2、y 2中至少有一个不为0.2°充要条件不能写成2211x y x y =(∵x 1、x 2有可能为0). 3°从而向量共线的充要条件有两种形式:a ∥b (b ≠0)⎩⎨⎧===⇔.01221y x y x ba λ(三)应用示例思路1例1 已知a =(2,1),b =(-3,4),求a +b ,a -b ,3a +4b 的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出的结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a +b =(2,1)+(-3,4)=(-1,5);a -b =(2,1)-(-3,4)=(5,-3);3a +4b =3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.变式训练1.(2007海南高考,4) 已知平面向量a =(1,1),b =(1,-1),则向量21a 23-b 等于( ) A.(-2,-1) B.(-2,1) C.(-1,0) D.(-1,2)答案:D2.(2007全国高考,3) 已知向量a =(-5,6),b =(6,5),则a 与b …( )A.垂直B.不垂直也不平行C.平行且同向D.平行且反向答案:A图2 例2 如图2,已知ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D 的坐标.活动:本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量OD 的坐标,进而得到点D 的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D 的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D 的坐标为(x,y).∵AB =(-1-(-2),3-1)=(1,2),DC =(3-x,4-y).由AB =DC ,得(1,2)=(3-x,4-y).∴⎩⎨⎧-=-=.42,31x x ∴⎩⎨⎧==.2,2y x ∴顶点D 的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知BC BA AD BA BD +=+==(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1),而OD =OB +BD =(-1,3)+(3,-1)=(2,2),∴顶点D 的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.变式训练图3如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D 的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD 时,仿例二得:D 1=(2,2);当平行四边形为ACDB 时,仿例二得:D 2=(4,6);当平行四边形为DACB 时,仿上得:D 3=(-6,0).例3 已知A(-1,-1),B(1,3),C(2,5),试判断A 、B 、C 三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A 、B 、C 三点,观察图形,我们猜想A 、B 、C 三点共线.下面给出证明.∵AB =(1-(-1),3-(-1))=(2,4), AC =(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,∴∥,且直线AB 、直线AC 有公共点A,∴A 、B 、C 三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.变式训练已知a=(4,2),b=(6,y),且a∥b,求y.解:∵a∥b,∴4y-2×6=0.∴y=3.思路2例2 设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1)、(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗即当21PPPP=λ时,点P的坐标是什么师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法:由PP1=λ2PP,知(x-x1,y-y1)=λ(x2-x,y2-y),即⎪⎪⎩⎪⎪⎨⎧++=++=⇒⎪⎩⎪⎨⎧-=--=-.1,1)()(21212121λλλλλλyyyxxxyyyyxxxx这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P点位置的影响,也可鼓励学生课后探索.图4解:(1)如图4,由向量的线性运算可知OP=21(OP1+OP2)=(.2,22121yyxx++).所以点P的坐标是(.2,22121yyxx++)(2)如图5,当点P是线段P1P2的一个三等分点时,有两种情况,即21PPPP=21或21PPPP=2.如果21PPPP=21,那么图5=1+P P 1=1+3121P P =1+31(2OP -1) =321OP +312OP =(32,322121y y x x ++). 即点P 的坐标是(32,322121y y x x ++). 同理,如果21PP P P =2,那么点P 的坐标是.32,322121y y x x ++ 点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.变式训练在△ABC 中,已知点A(3,7)、B(-2,5).若线段AC 、BC 的中点都在坐标轴上,求点C 的坐标.解:(1)若AC 的中点在y 轴上,则BC 的中点在x 轴上,设点C 的坐标为(x,y),由中点坐标公式,得,025,023=+=+y x ∴x=-3,y=-5,即C 点坐标为(-3,-5).(2)若AC 的中点在x 轴上,则BC 的中点在y 轴上,则同理可得C 点坐标为(2,-7).综合(1)(2),知C 点坐标为(-3,-5)或(2,-7).例2 已知点A(1,2),B(4,5),O 为坐标原点,=+t .若点P 在第二象限,求实数t 的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给与提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是,将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知=(4,5)-(1,2)=(3,3).∴=(1,2)+t(3,3)=(3t+1,3t+2).若点P 在第二象限,则3132023013-<<-⇒⎩⎨⎧>+<+t t t 故t 的取值范围是(32-,31-). 点评:此题通过向量的坐标运算,将点P 的坐标用t 表示,由点P 在第二象限可得到一个关于t 的不等式组,这个不等式组的解集就是t 的取值范围.变式训练已知=(cosθ,sinθ),=(1+sinθ,1+cosθ),其中0≤θ≤π,求||的取值范围.解:∵=-=(1+sinθ,1+cosθ)-(cosθ,sinθ)=(1+sinθ-cosθ,1+cosθ-sinθ).∴|AB|2=(1+sinθ-cosθ)2+(1+cosθ-sinθ)2=[1+(sinθ-cosθ)]2+[1-(sinθ-cosθ)]2=2+2(sinθ-cosθ)2=2+2(1-2sinθcosθ)=4-4sinθcosθ=4-2sin2θ.∵0≤θ≤π,∴0≤2θ≤2π.从而-1≤sin2θ≤1.∴4-2sin2θ∈[2,6].故|AB|的取值范围是[2,6].(四)课堂小结1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.(五)作业。