不等式的证明方法待定系数放缩与估值
- 格式:doc
- 大小:44.00 KB
- 文档页数:8
《证明不等式的基本方法反证法与放缩法》证明不等式的基本方法包括反证法和放缩法。
反证法是一种常用的证明不等式的方法,它的思路是假设不等式不成立,然后通过推理推出一个矛盾的结论,从而证明原不等式的成立。
放缩法是通过对不等式进行变形、放缩,将原不等式转化为一个更易证明的形式。
首先介绍反证法。
对于一个要证明的不等式,我们可以假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。
然后通过对这个假设的推理,得出一个与已知条件相矛盾的结论,从而证明假设是错误的,进而证明原不等式的成立。
具体步骤如下:1.假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。
2.根据已知条件和假设,对变量进行推理,得出结论。
3.利用这个结论推出与已知条件矛盾的结论。
4.由此可以得出假设是错误的,从而证明原不等式的成立。
举个例子来说明反证法的应用:对于不等式x+y>0,假设不等式不成立,即存在一些满足条件的x和y使得x+y≤0。
然后我们通过推理可以得到y≤-x,即y的取值范围在x的左侧。
然而,根据已知条件,对于任意的x和y,x+y的和都大于0,与假设矛盾。
因此,假设错误,原不等式成立。
接下来介绍放缩法。
放缩法是通过对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。
放缩法的关键在于找到合适的放缩因子和放缩方法。
具体步骤如下:1.根据不等式的特点,选择合适的放缩因子和放缩方法。
2.对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。
3.对新形式的不等式进行证明。
4.如果新形式的不等式成立,根据不等式的等价性,原不等式也成立。
举个例子来说明放缩法的应用:对于不等式(x + y)(y + z)(z + x) ≥ 8xyz,我们可以使用放缩法进行证明。
我们选择放缩因子2和放缩方法(x + y) ≥ 2√xy,可以得到(2√xy)(2√yz)(2√xz) ≥ 8xyz。
化简后得到(√xy)(√yz)(√xz) ≥ xyz,即x·y·z ≥ xyz,显然成立。
昭通学院学生毕业论文论文题目证明不等式的几种方法姓名学号 201103010128学院数学与统计学院专业数学教育指导教师2014年3月6日证明不等式的几种方法摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。
本文主要归纳了几种不等式证明的常用方法。
关键词:不等式; 证明; 方法 1.引言在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。
证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。
主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。
2.不等式证明的常用方法2.1 比较法比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。
具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式BA与1比较大小[]1。
差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则b a ≤.”其一般步骤为:1.作差:观察不等式左右两边构成的差式,将其看成一个整体。
2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。
其中变形是求差法的关键,配方和因式分解是经常使用的方法。
3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。
应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。
商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若ba1≤则b a ≤.”其一 般步骤为:1.作商:将左右两端作商。
2.变形:化简商式到最简形式。
3.判断:商与1的大小关系,就是判定商大于1还是小于1。
应用范围:当被证的不等式两端含有幂指数式时,一般使用商值比较法。
高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
我就来总结一下不等式的证明方法。
01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
02分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。
04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
放缩法的目的性强,必须恰到好处,。
同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。
不等式证明放缩法下面以一些常见的不等式为例,介绍不等式证明的放缩法。
1.形式:对于给定的不等式,我们希望通过放缩法证明其成立。
假设不等式是要证明的命题P,即P成立。
我们可以找到一个等价命题Q,使得Q更容易证明,即P等价于Q。
2.推论:通过利用已知的数学性质和常见的数学不等关系,我们可以推出不等式的一些性质和结构。
这些推论可以是基本的数学定理、常见的不等式性质或者已知的不等关系。
3.放缩:利用推论中得到的性质,我们可以对给定的不等式进行放缩处理。
放缩的目的是使得式子更容易处理,并且逼近或者确切地表示给定的不等式。
常见的放缩方法包括乘法放缩、加法放缩以及函数放缩等。
4.确定条件:在放缩过程中,我们需要确定一些条件以保证放缩后的不等式仍然成立。
这些条件可以是已知的数学性质、函数的性质以及数学不等式的性质等。
5.证明:最后,我们通过利用放缩后的不等式和确定的条件,进行形式上的证明。
证明可以是直接的运算、利用已知不等式或者使用归纳法等。
下面我们以一些例子来具体说明不等式证明的放缩法。
例一:证明对于任意的正实数a,b,c成立(a+b)(b+c)(c+a) ≥8abc。
解:假设P为要证明的不等式,即P:(a+b)(b+c)(c+a) ≥ 8abc。
针对P进行放缩如下:(a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) - abc≥ 3√(abc) * 3√(a²b²c²) - abc (根据均值不等式)= 3√(abc * a²b²c²) - abc≥ 3√(8a⁻²b⁻²c⁻²abc * a²b²c²) - abc (由调和-几何均值不等式得到)= 6abc - abc= 5abc.所以P成立。
例二:证明对于任意的正实数x。
解:假设P为要证明的不等式。
针对P进行放缩如下:1/x+1/(1-x)=(1-x+x)/x(1-x)=1/x(1-x)≥1/(1/4)所以P成立。
不等式证明使用技巧不等式证明是高中数学中的一个重要内容,掌握不等式证明的技巧对于解题和提升数学水平都有很大的帮助。
下面我将介绍一些常用的不等式证明技巧。
一、代入法代入法是一种常用的证明不等式的方法。
我们可以先假设不等式成立,然后进行推导得出结论。
如果得到的结论与原不等式一致,就证明了不等式的成立。
例如,我们要证明对于任意正实数a、b和c,有$(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\ge q 9$。
我们可以假设$a\leq b\leq c$,然后代入得到:$a^2+b^2+c^2=2a^2+(b^2-a^2+c^2)\geq 2a^2=2(a\cdot a)\geq2(ab)$,$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\fra c{1}{b^2}+\frac{1}{c^2}\geq 3(\frac{1}{ab})=\frac{3}{ab}$。
然后,将两个不等式代入原不等式得到:$(2ab)(\frac{3}{ab})=6\geq 9$。
由此可见,原不等式成立。
二、放缩法放缩法是另一种常用的证明不等式的方法。
我们可以通过放缩不等式的各个部分来改变不等式的形式,从而得到更容易证明的形式。
例如,我们要证明对于任意正实数a、b和c,有$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$。
我们可以通过放缩的方法,将不等式的各个部分放缩至一个更容易证明的形式。
我们注意到,$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ca}$。
然后,我们可以通过平方展开和放缩的方法,得到:$\frac{(a+b+c)^2}{ab+bc+ca}\geq 3$。
不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。
这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。
这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。
就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。
这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。
证明不等式的定积分放缩法定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过对不等式两边进行积分,利用积分的性质来证明不等式的正确性。
具体来说,我们可以通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
下面我们以一个简单的例子来说明定积分放缩法的具体应用。
假设我们要证明如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{3}$$我们可以通过放缩被积函数$x^2$ 的大小来证明该不等式。
具体来说,我们可以将 $x^2$ 放缩为 $x$,即:$$x^2 \leq x, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \int_0^1 x dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 x dx = \frac{1}{2}$$因此,我们可以得到如下结论:$$\int_0^1 x^2 dx \leq \frac{1}{2}$$但是,这个结论并不能证明原不等式的正确性。
为了进一步放缩被积函数的大小,我们可以将 $x$ 放缩为 $1$,即:$$x \leq 1, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x dx \leq \int_0^1 1 dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 1 dx = 1$$因此,我们可以得到如下结论:$$\int_0^1 x dx \leq 1$$综合以上两个结论,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{2} \leq \frac{1}{3}$$因此,原不等式得证。
可以看出,通过定积分放缩法,我们成功地证明了该不等式的正确性。
总的来说,定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
证明不等式几种的方法1.1比较法(作差法)[1]在比较两个实数a 和b 的大小时,可借助b a -的符号来判断.步骤一般为:作差——变形——判断(正号、负号、零).变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等.例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 证明 02)(2222≥-=-+=-+b a ab b a ab b a , 故得ab b a ≥+2. 1.2作商法在证题时,一般在a ,b 均为正数时,借助1>b a 或1<b a 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1).例2 设0>>b a ,求证:a b b a b a b a >.证明 因为 0>>b a ,所以 1>ba ,0>-b a . 而 1>⎪⎭⎫ ⎝⎛=-b a a b b a b a b a b a , 故 a b b a b a b a >.1.3分析法(逆推法)从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆.例3 求证:15175+>+.证明 要证15175+>+,即证1521635212+>+,即15235+>,1541935+>,16154<,415<,1615<.由此逆推即得 15175+>+.1.4放缩法[5]在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的.值得注意的是“放”、“缩”得当,不要过头.常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法.例4 求证:01.0100009999654321<⨯⨯⨯⨯ . 证明 令,100009999654321⨯⨯⨯⨯= p 则 ,10000110001111000099991431211000099996543212222222222222<=-⨯⨯-⨯-<⨯⨯⨯⨯= p所以 01.0<p .1.5函数极值法通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的.例5 设R x ∈,求证:812sin 32cos 4≤+≤-x x . 证明 81243sin 2sin 3sin 21sin 32cos )(22+⎪⎭⎫ ⎝⎛--=+-=+=x x x x x x f 当43sin =x 时, ;812)(m ax =x f 当1sin -=x 时, .4)(m in -=x f故 812sin 32cos 4≤+≤-x x . 1.6单调函数法当x 属于某区间,有0)(≥'x f ,则)(x f 单调上升;若0)(≤'x f ,则)(x f 单调下降.推广之,若证)()(x g x f ≤,只须证)()(a g a f =及)),((),()(b a x x g x f ∈'≤'即可. 例 6 证明不等式x e x +>1,.0≠x证明 设,1)(x e x f x --=则.1)(-='xe xf 故当0>x 时,f x f ,0)(>'严格递增;当f x f x ,0)(,0<'<严格递减.又因为f 在0=x 处连续,则当0≠x 时, ,0)0()(=>f x f从而证得.0,1≠+>x x e x 1.7中值定理法利用中值定理:)(x f 是在区间],[b a 上有定义的连续函数,且可导,则存在ξ,b a <<ξ,满足))(()()(a b f a f b f -'=-ξ来证明某些不等式,达到简便的目的.例7 求证:y x y x -≤-sin sin .证明 设 x x f sin )(=,则ξξcos )(n si )(sin sin y x y x y x -='-=-故 y x y x y x -≤-≤-ξcos )(sin sin .1.8利用拉格朗日函数例 8 证明不等式,)111(331abc cb a ≤++- 其中c b a ,,为任意正实数. 证明 设拉格朗日函数为对).1111(),,,(rz y x xyz z y x L -+++=λλ 对L 求偏导数并令它们都等于0,则有02=-=x yz L x λ, 02=-=y zx L y λ, 02=-=x xy L z λ, .01111=-++=rz y x L λ由方程组的前三式,易的.111μλ====xyz z y x 把它代入第四式,求出.31r =μ从而函数L 的稳定点为.)3(,34r r z y x ====λ 为了判断3)3()3,3,3(r r r r f =是否为所求条件极小值,我们可把条件rz y x 1111=++看作隐函数),(y x z z =(满足隐函数定理条件),并把目标函数),(),(),,(y x F y x xyz z y x f ==看作f 与),(y x z z =的复合函数.这样,就可应用极值充分条件来做出判断.为此计算如下:,22xz z x -=,22y z z y -= ,2xyz yz F x -=,2y xz xz F y -= ,2,232233xy z x z y z z F xyz F xy xx +--== .233yxz F yy = 当r z y x 3===时,,3,6r F F r F xy yy xx ===.02722>=-r F F F xy yy xx由此可见,所求得的稳定点为极小值点,而且可以验证是最小值点.这样就有不等式).1111,0,0,0()3(3rz y x z y x r xyz =++>>>≥ 令,,,c z b y a x ===则,)111(1-++=cb a r 代入不等式有 31])111(3[-++≥cb a abc 或 ).0,0,0()111(331>>>≤++-c b a abc c b a。
证明不等式的常用技巧证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。
作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。
换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。
1不等式证明方法比较法①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a<b。
综合法由因导果。
证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
分析法执果索因。
证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
放缩法将不等式一侧适当的放大或缩小以达到证题目的。
数学归纳法证明与自然数n有关的不等式时,可用数学归纳法证之。
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
换元法换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
构造法通过构造函数、图形、方程、数列、向量等来证明不等式。
2基本不等式基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。
高考数学复习考点题型专题讲解专题12 数列中的不等式证明及放缩问题数列中的不等式证明问题的常用放缩技巧(1)对1n2的放缩,根据不同的要求,大致有三种情况(下列n∈N*):1 n2<1n2-n=1n-1-1n(n≥2);1 n2<1n2-1=12⎝⎛⎭⎪⎫1n-1-1n+1(n≥2);1 n2=44n2<44n2-1=2⎝⎛⎭⎪⎫12n-1-12n+1(n≥1).(2)对12n的放缩,根据不同的要求,大致有两种情况(下列n∈N*):1 2n >1n+n+1=n+1-n(n≥1);1 2n <1n+n-1=n-n-1(n≥1).类型一关于数列项的不等式证明(1)结合“累加”“累乘”“迭代”放缩;(2)利用二项式定理放缩;(3)利用基本不等式或不等式的性质;(4)转化为求最值、值域问题.例1 设正项数列{a n }满足a 1=1,a n +1=a n +1a n(n ∈N *).求证:(1)2<a 2n +1-a 2n ≤3;(2)3n -13n -2≤a n +1a n ≤2n2n -1. 证明 (1)因为a 1=1及a n +1=a n +1a n(n ≥1),所以a n ≥1,所以0<1a 2n≤1.因为a 2n +1=⎝ ⎛⎭⎪⎫a n +1a n 2=a 2n+1a 2n +2, 所以a 2n +1-a 2n =1a 2n+2∈(2,3],即2<a 2n +1-a 2n ≤3.(2)由(1)得2<a 22-a 21≤3,2<a 23-a 22≤3,2<a 24-a 23≤3,⋮2<a 2n +1-a 2n ≤3,故2n <a 2n +1-a 21≤3n ,所以2n +1<a 2n +1≤3n +1, 即2n -1<a 2n ≤3n -2(n ≥2),而n =1时,也满足2n -1≤a 2n ≤3n -2, 所以2n -1≤a 2n ≤3n -2, 所以a n +1a n =1+1a 2n ∈⎣⎢⎡⎦⎥⎤3n -13n -2,2n 2n -1.即3n -13n -2≤a n +1a n ≤2n 2n -1. 训练1(2022·天津模拟)已知数列{a n }满足a n =n n -1a n -1-13n ·⎝ ⎛⎭⎪⎫23n(n ≥2,n ∈N *),a 1=49.(1)求数列{a n }的通项公式;(2)设数列{c n }满足c 1=12,c n +1=⎝ ⎛⎭⎪⎫23k +1a k·c 2n +c n ,其中k 为一个给定的正整数,求证:当n ≤k 时,恒有c n <1. (1)解 由已知可得:a n n =a n -1n -1-13⎝ ⎛⎭⎪⎫23n(n ≥2),即a n n -a n -1n -1=-13⎝ ⎛⎭⎪⎫23n, 由累加法可求得a n n =⎝ ⎛⎭⎪⎫a n n -a n -1n -1+⎝ ⎛⎭⎪⎫a n -1n -1-a n -2n -2+…+⎝ ⎛⎭⎪⎫a 22-a 11+a 11 =-13⎝ ⎛⎭⎪⎫23n-13⎝ ⎛⎭⎪⎫23n -1-…-13⎝ ⎛⎭⎪⎫232+49=⎝ ⎛⎭⎪⎫23n +1,即a n =n ⎝ ⎛⎭⎪⎫23n +1(n ≥2),又n =1时也成立,故a n =n ⎝ ⎛⎭⎪⎫23n +1(n ∈N *).(2)证明 由题意知c n +1=1kc 2n +c n ,∴{c n }为递增数列, ∴只需证c k <1即可. 当k =1时,c 1=12<1成立,当k ≥2时,c n +1=1k c 2n +c n<1kc n c n +1+c n ,即1c n +1-1c n>-1k,因此1c k =⎝ ⎛⎭⎪⎫1c k -1c k -1+…+⎝ ⎛⎭⎪⎫1c 2-1c 1+1c 1>-k -1k +2=k +1k ,∴c k <k k +1<1,∴当n ≤k 时,恒有c n <1. 类型二 对求和结论进行放缩对于含有数列和的不等式,若数列的和易于求出,则一般采用先求和再放缩的策略证明不等式.例2 已知数列{a n }满足a 1=2,(n +1)a n +1=2(n +2)a n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设S n 是数列{a n }的前n 项和,求证:S n <2a n . (1)解 法一 由题意得a n +1n +2=2·a nn +1, 又a 11+1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1是首项为1,公比为2的等比数列,所以a n n +1=2n -1,所以a n =(n +1)·2n -1(n ∈N *). 法二 由题意得a n +1a n =2(n +2)n +1, 所以a n a 1=a n a n -1·a n -1a n -2·…·a 2a 1=2(n +1)n ·2n n -1·2(n -1)n -2·…·2×32=(n +1)·2n -2.因为a 1=2,所以a n =(n +1)·2n -1(n ∈N *).(2)证明 因为a n =(n +1)·2n -1,所以S n =2×20+3×21+4×22+…+n ·2n -2+(n +1)·2n -1,① 2S n =2×21+3×22+…+(n -1)×2n -2+n ×2n -1+(n +1)×2n ,② ②-①得S n =-2×20-(21+22+…+2n -1)+(n +1)×2n =n ·2n . 因为S n -2a n =n ·2n -(n +1)2n =-2n <0, ∴S n <2a n .训练2(2022·广州模拟)在各项均为正数的等比数列{a n }中,a 1=2,-a n +1,a n ,a n +2成等差数列.等差数列{b n }满足b 1=a 2+1,2b 5-3b 2=a 3-3. (1)求数列{a n },{b n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1(2n +1)b n 的前n 项和为T n ,证明:T n <16.(1)解 设等比数列{a n }的公比为q (q >0), 因为-a n +1,a n ,a n +2成等差数列, 所以2a n =a n +2-a n +1, 所以2a n =a n ·q 2-a n ·q . 因为a n >0,所以q 2-q -2=0, 解得q =2或q =-1(舍去), 又a 1=2,所以a n =2n (n ∈N *). 设等差数列{b n }的公差为d , 由题意,得b 1=a 2+1=5, 由2b 5-3b 2=a 3-3=5,得2(b 1+4d )-3(b 1+d )=-b 1+5d =-5+5d =5,解得d =2, 所以b n =b 1+(n -1)d =5+2(n -1)=2n +3(n ∈N *).(2)证明1(2n +1)b n =1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, 则T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17⎦⎥⎤+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3=16-12(2n +3).因为n ∈N *,所以12(2n +3)>0,所以T n <16.类型三 对通项公式放缩后求和在解决与数列的和有关的不等式证明问题时,若不易求和,可根据项的结构特征进行放缩,转化为易求和数列来证明.例3(2022·济南模拟)在数列{a n }中,a 1=2,2na n +1=(n +1)·a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =a 2n16n 2-a 2n ,若数列{b n }的前n 项和是T n ,求证:T n <12.(1)解 由题知2na n +1=(n +1)a n , 所以a n +1n +1=12×a n n ,a 11=2, 故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,所以a n=n·22-n(n∈N*).(2)证明由(1)可知a n=n·22-n,所以b n=a2n16n2-a2n=14n-1=12n+1×12n-1,根据指数增长的特征知,对任意n∈N*,2n≥2n恒成立,所以22n≥(2n)2,即4n≥4n2.所以14n-1≤14n2-1=12⎝⎛⎭⎪⎫12n-1-12n+1,所以b n≤12⎝⎛⎭⎪⎫12n-1-12n+1,所以数列{b n}的前n项和T n ≤12⎝⎛⎭⎪⎫1-13+13-15+…+12n-1-12n+1=12⎝⎛⎭⎪⎫1-12n+1<12.训练3 已知数列{a n}的前n项和为S n,3a n=2S n+2n(n∈N*). (1)证明:数列{a n+1}为等比数列,并求数列{a n}的前n项和S n,(2)设b n=log3(a n+1+1),证明:1b21+1b22+…+1b2n<1.证明(1)∵3a n=2S n+2n,n∈N*,∴当n=1时,3a1=2S1+2,解得a1=2;当n≥2时,3a n-1=2S n-1+2(n-1),两式相减得a n=3a n-1+2,∴a n+1=3(a n-1+1),即an+1an-1+1=3,a1+1=3,∴数列{a n+1}是以3为首项,3为公比的等比数列,∴a n+1=3n,则a n=3n-1,∴S n=3+32+…+3n-n=3(1-3n)1-3-n=3n+12-n-32.(2)b n=log3(a n+1+1)=log33n+1=n+1,∵1b2n=1(n+1)2<1n(n+1)=1n-1n+1,∴1b21+1b22+…+1b2n<⎝⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n-1n+1=1-1n+1<1.类型四求和后利用函数的单调性证明数列不等式若所证的数列不等式中有等号,常考虑利用数列的单调性来证明. 例4 已知数列{a n}的前n项和为S n,且满足2a n-S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=an+1(a n+1-1)(a n+2-1),数列{b n}的前n项和为T n,求证:23≤T n<1.(1)解已知2a n-S n=1,令n=1,解得a1=1,当n≥2时,2a n-1-S n-1=1(n∈N*),两式相减得a n=2a n-1,∴数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n-1(n∈N*).(2)证明由(1)可得b n =an+1(a n+1-1)(a n+2-1)=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,∴T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=1-12n +1-1. ∵⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1-12n +1-1是单调递增的数列, ∴1-12n +1-1∈⎣⎢⎡⎭⎪⎫23,1.∴23≤T n <1. 训练4 已知等差数列{a n }的公差d ≠0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求使不等式a n ≥0成立的最大自然数n ;(2)记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为T n ,求证:-1325≤T n ≤1225.(1)解 由题意,可知a 211=a 1·a 13, 即(a 1+10d )2=a 1·(a 1+12d ), ∴d (2a 1+25d )=0. 又a 1=25,d ≠0,∴d =-2,∴a n =-2n +27, ∴-2n +27≥0,∴n ≤13.5, 故满足题意的最大自然数为n =13. (2)证明1a n a n +1=1(-2n +27)(-2n +25)=-12⎝⎛⎭⎪⎫1-2n +27-1-2n +25, ∴T n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=-12⎣⎢⎡⎝ ⎛⎭⎪⎫125-123+⎝ ⎛⎭⎪⎫123-121+…⎦⎥⎤+⎝⎛⎭⎪⎫1-2n +27-1-2n +25 =-12⎝ ⎛⎭⎪⎫125-1-2n +25 =-150+150-4n .从而当n ≤12时,T n =-150+150-4n单调递增,且T n >0; 当n ≥13时,T n =-150+150-4n单调递增,且T n <0, ∴T 13≤T n ≤T 12,由T 12=1225,T 13=-1325,∴-1325≤T n ≤1225.一、基本技能练1.已知数列{a n }是等差数列,且a 2=3,a 4=7,数列{b n }的前n 项和为S n ,且S n =1-12b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记c n =a n b n ,数列{c n }的前n 项和为T n ,求证:T n <2. (1)解 因为数列{a n }是等差数列,a 2=3,a 4=7, 设数列{a n } 的公差为d , 则⎩⎨⎧a 1+d =3,a 1+3d =7,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1(n ∈N *).对于数列{b n },S n =1-12b n (n ∈N *),当n =1时,b 1=1-12b 1,解得b 1=23;当n ≥2时,b n =S n -S n -1=⎝ ⎛⎭⎪⎫1-12b n -⎝ ⎛⎭⎪⎫1-12b n -1,整理得b n =13b n -1,所以数列{b n }是首项为23,公比为13的等比数列,所以b n =23×⎝ ⎛⎭⎪⎫13n -1=23n (n ∈N *). (2)证明 由题意得c n =a n b n =2(2n -1)3n =4n -23n , 所以数列{c n }的前n 项和T n =23+632+1033+…+4(n -1)-23n -1+4n -23n ,则3T n =2+63+1032+…+4n -23n -1,两式相减可得2T n =2+43+432+…+43n -1-4n -23n =2+4×13⎝ ⎛⎭⎪⎫1-13n -11-13-4n -23n=4-4n +43n ,所以T n =2-2n +23n .所以T n <2.2.(2022·石家庄模拟)已知数列{a n }的前n 项和为S n ,a 1=3,a 2=4,S n +1+2S n -1=3S n -2(n ≥2).(1)证明:数列{a n-2}是等比数列,并求数列{a n}的通项公式;(2)记b n=2n-1anan+1,数列{b n}的前n项和为T n,证明:112≤T n<13.证明(1)当n≥2时,由S n+1+2S n-1=3S n-2可变形为S n+1-S n=2(S n-S n-1)-2,即a n+1=2a n-2,即a n+1-2=2(a n-2),所以an+1-2an-2=2(n≥2),又因为a1=3,a2=4,可得a1-2=1,a2-2=2,所以a2-2a1-2=2,所以数列{a n-2}是以1为首项,2为公比的等比数列,所以a n-2=2n-1,所以数列{a n}的通项公式为a n=2+2n-1(n∈N*).(2)由a n=2+2n-1,可得b n=2n-1anan+1=2n-1(2+2n-1)(2+2n)=12+2n-1-12+2n,所以T n=b1+b2+b3+…+b n=13-14+14-16+16-110+…+12+2n-1-12+2n=13-12+2n,因为12+2n>0,所以13-12+2n<13,即T n<13,又因为f(n)=13-12+2n,n∈N*,单调递增,所以T n≥b1=1(2+1)(2+2)=112,所以112≤T n <13.3.已知数列{a n }的前n 项和S n =n 2+n 2.(1)求{a n }的通项公式;(2)若数列{b n }满足对任意的正整数n ,b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2恒成立,求证:b n ≥4.(1)解 因为S n =n 2+n 2,所以当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n ,当n =1时,a 1=S 1=1满足a n =n , 所以{a n }的通项公式为a n =n (n ∈N *). (2)证明 因为b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2,所以当n ≥2时,b 1a 1·b 2a 2·b 3a 3·…·b n -1a n -1=n 2, 所以b n a n =(n +1)2n 2(n ≥2),又n =1时,b 1a 1=22=4,满足b n a n =(n +1)2n 2,所以对任意正整数n ,b n a n =(n +1)2n 2,由(1)得,a n =n , 所以b n =(n +1)2n=n 2+2n +1n=n +1n+2≥2n ·1n+2=4, 当且仅当n =1时,等号成立. 二、创新拓展练4.(2022·湖州质检)已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n a n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n 的前n 项和为T n ,求证:n4n +4<T n <12. (1)解∵4S n =a n a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2, ∴a 2=4,当n ≥2时,4S n -1=a n -1a n ,得4a n =a n a n +1-a n -1a n . 由题意知a n ≠0,∴a n +1-a n -1=4,∴数列{a n }的奇数项与偶数项分别为等差数列,公差都为4, ∴a 2k -1=2+4(k -1)=2(2k -1),a 2k =4+4(k -1)=2·2k ,∴该数列是等差数列,首项为2,公差为2. 综上可知,a n =2n ,n ∈N *.(2)证明∵1a 2n =14n 2>14n (n +1)=14⎝⎛⎭⎪⎫1n -1n +1, ∴T n =1a 21+1a 22+…+1a 2n >14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎪⎫1-1n +1=n4n +4.又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =1a 21+1a 22+…+1a 2n<12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.即得n4n +4<T n <12.。
初中数学不等式证明方法总结通常不等式中的数是实数,字母也代表实数。
初中数学不等式证明方法总结,希望可以帮助到大家,我们来看看。
初中数学不等式证明方法总结1知识要点:不等式两边乘或除以同一个负数,不等号的方向改变。
(÷或×1个负数的时候要变号)。
不等式的证明1、比较法包括比差和比商两种方法。
2、综合法证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。
3、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
知识要领总结:证明不等式要注意不等式两边都乘以或除以一个负数,要改变不等号的方向。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
本科毕业论文(设计)题目:证明不等式的几种常用方法___学生:王云学号: 200940510438 学院:数学与计算科学学院__专业:数学与应用数学入学时间: 2009 年 9 月 15 日指导教师:黄瑞老师职称:讲师完成日期: 2013 年 3 月 9 日证明不等式的几种常用方法摘要: 本文首先对不等式的证明进行了总结,证明不等式的常用方法有比较法,反证法,放缩法,数学归纳法等等,并且比较了这些方法中的优点和缺点,对不同的题更适合采用哪种方法也进行了详细的解说。
其次针对不同的方法都举出了相应的例题,用来加强对方法的理解。
最后强调了这些方法在高考中的应用。
关键词:证明;不等式;方法On the Common Use Method of Proofing InequalityAbstract : This paper prove the inequality proof methods are summarized, inequality has comparative method, reduction to absurdity, scaling, mathematical induction and so on, and these methods are compared and the advantages and disadvantages of the different questions, more suitable to adopt what kind of method is given a detailed explanation. Secondly, different methods are corresponding examples was put forward, to strengthen the methods of understanding. Finally emphasized the application of these methods in the national college entrance examination.Key words: proof;inequality;method目录引言 (4)1比较法 (4)1.1作差法 (4)1.2作商法 (5)2综合法与分析法 (5)3反证法 (6)4重要不等式公式法 (7)5放缩法 (8)6数学归纳法 (9)7巧妙运用“1”证明不等式 (11)8结束语 (11)9参考文献 (13)10致谢 (14)引言:在高中数学中,证明不等式的方法是多种多样的,不同的方法具有不同的特点,并且在一个题目中,可能不止使用一种方法,往往需要两种或者更多种方法才能证明出来,或者针对相同的题目,证明的方法也可能不止一种,这就需要我们比较这些方法,采用最合适,最简便的方法来证明不等式。
不等式证明常用方法不等式是中学数学最基本内容之一,它有着丰富的实际背景,与生产实践联系十分密切;因此,无论普通高考,还是对口高考,不等式,历年都是考试的重点、热点,甚至难点。
下面就不等式的证明,介绍几种常见方法,如有不对,敬请同行、同学们斧正. 一、作差法例1、对于任意实数x ,求证:x x 232>+.证明:∵x x 232-+=2)1(2+-x 0> ∴x x 232>+.评注:1.作差法步骤:作差—变形—判断与0的关系—结论.2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选用.二、作商法例2、设a ,b 均是正实数,求证:a b b a b a b a ≥.证明:首先,由条件0>bab a ,0>abb a , 其次, b a a b b a b aba b a -=)(,⑴当0>≥b a 时,1≥ba,0≥-b a ,∴1)(≥-b a b a .⑵当0>>a b 时,10<<b a ,0<-b a ,∴1)(>-b a ba.综合⑴、⑵:1)(≥-b a ba,∴a b b a b a b a ≥.评注:1.作商法步骤:作商—变形—判断与1的关系—结论.2.作差法是通法,运用较广;作商法,要注意条件,不等式两边必须是正数。
作商法常用于证幂、指数形式的不等式。
三、综合法例3、设a ,b ,c 均是正实数,求证:c b a c ab b ca a bc ++≥++ 证明:∵a ,b ,c 均是正实数,∴a bc ,b ca ,cab也均是正实数.∴2,2,2bc ca ca ab ab bc c a b a b b c c a+≥+≥+≥∴2(bc a +)(2c b a c abb ca ++≥+, ∴c b a cab b ca a bc ++≥++ 评注:1.利用某些已经证明过的不等式(例如正数的算术均值不小于几何均数等)和不等式的性质(例如||||||||||b a b a b a +≤+≤-等)推导出所要证明的不等式成立,这种证明方法通常叫做综合法.2.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法.3.运用综合法证明不等式,必须发现式子的结构特征,结合重要不等式和常用不等式,找到解题的方法。
数学所有不等式放缩技巧及证明方法第一篇:数学所有不等式放缩技巧及证明方法高考数学所有不等式放缩技巧及证明方法一、裂项放缩例1.(1)求例2.(1)求证:1+(2)求证:/ 7 ∑4kk=1n22-1的值;(2)求证:∑k=1n15<3k2.11171++Λ+>-(n≥2)22262(2n-1)35(2n-1)111111+++Λ+2<-4163624n4n(3)求证: 11⋅31⋅3⋅51⋅3⋅5⋅Λ⋅(2n-1)+++Λ+<2n+1-1 22⋅42⋅4⋅62⋅4⋅6⋅Λ⋅2n(4)求证:2(n+1-1)<1+1+1+Λ+1<2(2n+1-1)23n例3.求证:例4.(2008年全国一卷)设函数6n1115≤1+++Λ+2<(n+1)(2n+1)49n3a-bf(x)=x-xlnx.数列{a}满足0<a1<1.an+1=f(an).设b∈(a1,1),整数k≥1.证na1lnb明:ak+1>b.mmmmm+1m+1n,m∈N,x>-1,S=1+2+3+Λ+nn<(m+1)S<(n+ 1)-1.例5.已知,求证: +mn例6.已知n例7.已知x1=1,xna=4-2nn32nT+T+T+Λ+T<,Tn=,求证:1.23n2a1+a2+Λ+an111⎧n(n=2k-1,k∈Z)++Λ+>2(n+1-1)(n∈N*)=⎨,求证:4x⋅x4x⋅x4xxn-1(n=2k,k∈Z)⎩23452n2n+1ln2ln3ln4ln3n5n+6二、函数放缩例8.求证:+++Λ+n<3n-(n∈N*).23436ln2αln3αlnnα2n2-n-1(n≥2)例9.求证:(1)α≥2,α+α+Λ+α<2(n+1)23n 例10.求证:例11.求证:(1+2n-3(1+1⨯2)⋅(1+2⨯3)⋅Λ⋅[1+n(n+1)]>e例12.求证:/ 7 11111++Λ+<ln(n+1)<1++Λ+23n+12n111111)(1+)⋅Λ⋅(1+)<e 和(1+)(1+)⋅Λ⋅(1+2n)<e.2!3!n!9813例14.已知a1=1,an+1=(1+例16.(2008年福州市质检)已知函数三、分式放缩例19.姐妹不等式:(1+1)(1+)(1+)Λ(1+11an)a+.n2n证明n+n2<e2.f(x)=xlnx.若a>0,b>0,证明:f(a)+(a+b)ln2≥f(a+b)-f(b).13151)>2n+1和(1-1)(1-1)(1-1)Λ(1+1)<1也可以表示成为2n-12462n2n+112n+1 1⋅3⋅5⋅Λ⋅(2n-1)2⋅4⋅6Λ⋅2n<>2n+1和2⋅4⋅6⋅Λ⋅2n1⋅3⋅5⋅Λ⋅(2n-1) 例20.证明:(1+1)(1+)(1+)Λ(1+四、分类放缩例21.求证:1+例23.(2007年泉州市高三质检)已知函数1,0].若数列{bn}满足bn=14171)>33n+1.3n-2111n++Λ+n>232-12f(x)=x2+bx+c(b≥1,c∈R),若f(x)的定义域为[-1,0],值域也为[-f(n)*(n∈N),记数列{bn}的前n项和为Tn,问是否存在正常数A,使得对于任意正3n整数n都有Tn<A?并证明你的结论。
不等式的证明方法的分类不等式在数学学科中,与函数、几何在数学中一样重要,不等式的占有着重要的地位,及其的应用也 ,不等式不管在国内竞赛或在国际数学奥林匹克中都占有一部分的分量。
不等式的证明方法更重要,只要掌握其各种的证明方法,就可以解决许多有关不等式的题目。
不等式的证明方法分类:一、 比较法证明不等式 (1)作差法在比较两个实数a 和b 的大小时,可借助b a -的符号来判断。
步骤一般为:作差——变形——判断(正号、负号、零)。
变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。
例1:求证:234221x x x +≥+ 证明:)2()21(234x x x +-+23422223332210]21)21(2[)1()122()1()122)(1()12)(1()1)(1()1(2x x x x x x x x x x x x x x x x x x x +≥+∴≥++-=++-=-+--=---=-+--=(2)作商法在证题时,一般在a ,b 均为正数时,借助1>b a 或1<ba来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1)。
例2、设0>>b a ,求证:a b b a b a b a >。
证明:因为0>>b a ,所以1>b a ,0>-b a 。
而1>⎪⎭⎫⎝⎛=-ba ab b a b a b a b a ,故a b b a b a b a >。
二、反证法证明不等式反证法是数学证明的一种重要方法。
因为命题“P ”与它的否定“非P ”的真假相反,所以要证一个命题为真,只要证它的否定为假即可。
这种从证明矛盾命题(即命题的否定)为假进而证明命题为真的证明方法叫做反证法。
例2 对实数a ,b ,c ,A ,B ,C ,有20aC bB cA -+=.且20ac b ->. 求证: 20AC B -≤. 分析: 假设1a ,2a ,,n a 中有正数且20aAC B ->, 则20AC B >≥,由题设,有 20ac b >≥, 相乘得 22aAcC b B >,因为2aC cA bB +=.所以 222()44aC cA b B aAcC +=<, 整理得 2()0aC cA -< ,这与“任何实数的平方非负”矛盾. 三、放缩法证明不等式例3 已知,0b a >>求证:.b a b a -<-证明:因为⇒>>0b a.b a b a b a )b a (b a ),(b a b a ,0b a ,b a 2-<-⇒-<-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-+<->->两边同乘放大四、综合法证明不等式利用某些证明过的不等式作为基础,再运用不等式的性质,推导出所求证的不等式,这种证明方法叫做综合法,综合法的思考路线是“由因导果”。
不等式的证明方法:待定系数放缩与估值
不等式证明方法:
待定系数放缩与估值
前几天无聊时突发奇想能不能从图像隔离的角度来证明一类较紧的不等式,动笔试了一下,感觉是个不一定简便但是挺有意思的办法。
这个办法还不成熟,之后可能会请教些大神来完善~
(方法是无限多个的~)
做一下解释:先来看看这两个函数吧~
从图上可以清晰的看到两个函数图像的位置关系,直观感受下应该是可以找到一条直线来隔离两个函数图像的,如果找到了这么一条直线,也就解决了问题,下面我们做一个尝试:
考虑在两个函数之间插入直线即有
先考察函数这个函数的极值点是唯一但是不可求的,因此可以采取隐零点的办法,但是这不是今天的主题。
简单估算下极值点在0.5左右,那不妨就取0.5,令,
我们有:然而我们知道对于有
这时取可以知道而这种世界共识就不说了,所以通过这两个松松垮垮的估值,我们可以找到这个中间值。
接下来直接看一下更为简单的右半边;构造有
直接令有了这一组很好的数值之后,我们来检验一下左半边的构造有发现这个函数的极大值点正好是则没问题。
待证不等式移项之后一加一减就是我们的过程:
通过图像来验证一下我们的猜想:
Emmm,还是比较成功的 ! 在这里澄清一个问题:如果我们向上面那样断章取义算出一组数值带入左边不对怎么办?事实上这个问题有办法直接避免:直接分析左边得到:,这时我们可以分离出参数再弱化范围最后带入右边检验(右边函数很简单可以随意调整~)。
因为之前我们有两个参数和的关系,所以分离是可行的。
就不在这里给出具体过程了,想了解的话注意看一下下面一题就好。
再来看法二:法二干了啥事呢,看这张图就明白啦~
看到这里相信大家都明白了,说白了就是这个方法的好处在于把以x轴为核心的讨论转移到了y轴。
(这个思想在历史上有过:德国数学家率先提出将对x轴的划分改为对y轴的划分,这样修补了经典积分的缺陷。
积分的思想也奠定了现代分析学的基础)
比较和,法二的过程背后就是这样的。
那么是怎么得到的呢?
直接考虑一般情况:我们希望
常规分析就好:左侧函数求导得最小值
右侧函数求导得最大值
只要 > (不管他取不取等了)即取 .
反过来写一遍就是法二的过程。
当然考试的话也是要体现求两边最值的过程的,这个时候就不需要再算了,直接带到你草稿纸上的式子里反过来抄一遍就可以。
韶两句:
1.插值方法不唯一,你比如法一取也可以;法二你取也可以,就是不一定好看。
2.这是2018年杭州高级中学期中考试题,适不适合考场的问题自己把握,觉得待定插值的办法小题大做的欢迎
Ctrl+W.
证明:
这是两条看似有交点但是永远分离的曲线,那么我们来当一回西王母,用玉簪划出一道“天河”把“牛郎”和“织女”分开吧!(Emmm)上道题介绍了直线隔离,这道题就采用一个曲线隔离好了。
我们考虑在这两个凹凸性相反的曲线间插入一个二次函数
同样的我们有:那么考虑到函数的极值点在1附近,就
取 .有
先介绍个对数双边不等式:
提高精度的话可以将对数值进行拆分,具体不展开了~带知道而
那么尝试下(A)
右侧不等式:有: (B).
由A,B两个式子消去b,c再回带左侧不等式:
单独讨论后采取参分,在时我们有:令右侧函数为Emmm,按道理应该求的下界了,我懒了233……
稍微放一下算了:(因为极值点是大于零,只要考虑的情形就好)
尝试下得到没问题。
即找到
进而: ,
这样就找到了"天河”二次函数
通过图像验证一下:
当然还有更多的二次函数可以选择,刚才我是找了个很模糊的,事实上的下界是可以精确一些的:
所以我们可以取,即:
或者在弱化些,比如取 :
也可以再弱点,比如取 :
可以看到当我们分析到这里,寻找在“夹缝中生存”的“天河”二次函数其实很简单!
待定插值的办法可能计算量比较大,毕竟是带参运算嘛,然而大多数情况下我们不一定要算的那么精确,看出近似的极值点之后取好算的值验证就可以了;另外是对函数的走势判断要清晰,这个的话考试中出现的都应该比较简单,求导就可以搞定大部分;最后就是对估值的要求比较高,海明哥哥写过一篇文章非常的好:
对于估值的一点小心得
函数不等式这几年发展的有点快,印象中高中刚毕业那会还没有这么多人玩,对估值更是没什么概念. 从16年年中决定写本放缩的书到现在已经收集了3900多道涉及到放缩的题目,其中接近四成是函数不等式的证明(另一个大块头是数列不等式).
很多题目,如果出题者只是用软件画个图看了下函数上下界比较接近哪个数字,就取了这个结果,但是却极大地失去了
可做性(也因此我把手里的很多题目直接改为了估计函数的上下界),比如说很著名的一个题目:
事实上利用可以迅速得到一个精度相当不错的结果. 但是为了找回剩下的那精度,却要使用大型分数,这让题目变得非常不好看.
当然话说回来,如果考试遇到了这样的教研员出模考题(或者再来那么一次2014国II压轴题),总不能不要分吧,谁知道教研员用的啥数值出的题,所以还是需要掌握一点估值的小技巧的.
正常来讲,估值都是通过先证明一个函数不等式,再对不等式内的变量赋值,得到两个数值的大小关系. 这里只讲对数的估值(指数的可以转化为对数,三角的以后再作讲解)例如对的估计:
当然,我省略了不等式的证明过程,作差直接求导就可以了,这不是重点. 重点是,这个结果非常的水啊,下界误差,上界误差接近(事实上在的附近用这两个不等式赋值得到的误差基本都是,一会会说到),这在高精度的函数不等式中一点用处都没有,我们得考虑下如何提高精度.
一般的,有两种办法可以提高估值的精度:
1、将对数进行拆分
看起来有很少的人会注意到这一点,我们是可以进行拆分的,比如说,简单的,我们有
而在前面的不等式中分别令可以得到
精度有了明显的提高,如果继续拆分,可以得到更好的结果. 当然,对数的拆分是自由度很大的事情,比方说对于,很
容易得到不同的拆分方法:
实际代入一下会发现,前一种拆分得到的上下界(和)结果要好于后一种(和),很自然的可以引出这样一个问题:如何拆分才能在计算量相近的情况下得到更好的结果?对于这个问题,我在16年底证明了如下结论:
将分数作阶拆分,意即拆分成个分数的乘积:,
称为在此拆分下的均匀度,如果,其中,则若越接近于,在同阶拆分、同不等式赋值下,精度越好.
那么很明显,把拆成会得到拆分成两个对数的情况下最好的估计结果,但是由于根号会导致二次估值等问题,很多时候我们并不会使用,而是使用较为相近的两个体积较小的分数. 哎呀,其实都是空话,这个手段自由度太大了,如何平衡“精度”和“计算量”,是需要大量练习去感悟的.
2、换用精度更高的不等式
刚刚提到,在这个不等式中,上下界的误差之比约为,那如果,两倍的下界不等式,加上一倍上上界不等式,是不是可能精度会有提高呢?恩的确如此,因为
所以按的权重相加,可以直接得到附近的五阶精度的结果,直接赋值可以得到,若是辅以拆分的手段,可以迅速得到四位精度以上的结果(因为大于的部分越小,次方之后就越微不足道). 例如前面的例子,将拆分成,就有,便具有了四位精度.
另外再附几个精度不错的不等式:
恩...最后一个是郑小彬老师给出的,证明事实上非常容易,直接求导就可以了,别怕,求导有惊喜. 最后一个不等式中令可以直接得到六位精度的结果.。