梯形钢屋架课程设计
- 格式:doc
- 大小:855.00 KB
- 文档页数:28
梯形钢屋架课程设计计算书目录一、设计资料 (3)二、屋架几何尺寸及檩条布置................................................................ . . . . . . . . (3)1、屋架几何尺寸 (3)2、檩条布置 (4)三、支撑布置 (5)1、上弦横向水平支撑 (5)2、下弦横向和纵向水平支撑...................................................................................... (5)3、垂直支撑 (5)4、系杆 (5)四、荷载与内力计算 (6)1、荷载计算 (6)2、荷载组合 (6)3、内力计算 (7)五、杆件截面设计 (7)1、节点板厚度 (7)2、杆件计算长度系数及截面形式 (9)3、上弦杆 (9)4、下弦杆 (9)5、再分式腹杆Ig-gf (10)6、竖腹杆Ie (10)六、节点设计 (13)1、下弦节点“b” (13)2.上弦节点“B” (16)3.有工地拼接的下弦节点“f”.................................................................................. . (18)4.屋脊节点“K” ........................................................................................................ . (19)5.支座节点“a”..................................................................................................... . (16)七、填板设计................................................................................................................... .. (21)一、设计资料:1. 车间平面尺寸为144m×30m,柱距9m,跨度为30m,柱网采用封闭结合。
梯形屋架课程设计计算书一、课程目标知识目标:1. 理解梯形屋架的结构特点及其在工程中的应用。
2. 掌握梯形屋架的几何参数计算方法和力学原理。
3. 学会运用相关公式进行梯形屋架的荷载分析和内力计算。
技能目标:1. 能够运用梯形屋架的计算方法,独立完成简单梯形屋架的设计计算。
2. 培养学生运用几何知识和力学原理解决实际问题的能力。
3. 提高学生的团队协作能力和动手操作能力,通过小组讨论和实验,深化对梯形屋架计算方法的理解。
情感态度价值观目标:1. 培养学生对建筑结构工程的兴趣,激发学生学习相关知识的热情。
2. 培养学生的创新意识,鼓励学生在设计计算过程中提出自己的观点和解决方案。
3. 增强学生的安全意识,了解建筑结构在设计过程中的重要性,培养学生的责任感。
课程性质分析:本课程为八年级数学与科学跨学科综合实践课程,结合数学几何知识和物理力学原理,帮助学生掌握梯形屋架的设计计算方法。
学生特点分析:八年级学生对数学几何和物理力学有一定的了解,具备基本的运算能力和解决问题的能力,但缺乏将理论知识应用于实际问题的经验。
教学要求:1. 注重理论知识与实践操作的结合,提高学生的应用能力。
2. 采用小组合作学习方式,培养学生的团队协作能力。
3. 通过案例分析、实验演示等多种教学方法,激发学生的学习兴趣,提高教学效果。
二、教学内容1. 梯形屋架结构概述:介绍梯形屋架的结构特点、应用场景及其在建筑行业中的重要性。
相关教材章节:数学课本第四章“几何图形及应用”,科学课本第六章“简单力学原理”。
2. 梯形屋架的几何参数计算:讲解梯形屋架的边长、角度、面积等几何参数的计算方法。
相关教材章节:数学课本第四章“梯形的性质和计算”。
3. 梯形屋架的力学原理:阐述梯形屋架在受力时的内力分布,以及如何运用力学原理进行计算。
相关教材章节:科学课本第六章“受力分析及应用”。
4. 梯形屋架的荷载分析:介绍梯形屋架所承受的荷载类型,以及如何将这些荷载转化为计算参数。
梯形钢屋架课程设计一、 设计资料(1)题号72,屋面坡度1:10,跨度30m ,长度102m ,,地点:哈尔滨,基本雪压:0.45 kN/m 2,基本风压:0.45kN/m 2。
该车间内设有两台200/50kN 中级工作制吊车,轨顶标高为8.5m 。
采用1.5m ×6m 预应力混凝土大型屋面板,80mm 厚泡沫混凝土保护层,卷材屋面,屋面坡度i=1/10。
屋面活荷载标准值0.7kPa ,血荷载标准值为0.1 kN/m 2,积灰荷载标准值为0.6 kN/m 2。
屋架绞支在钢筋混凝土柱上,上柱截面为400mm ×400mm 。
混凝土采用C20,,钢筋采用Q235B 级,焊条采用 E43型。
(2)屋架计算跨度:l 0=30m-2×0.15m=29.7m 。
(3)跨中及端部高度:采用无檩无盖方案。
平坡梯形屋架,取屋架在30m 轴线处的端部高度m h 005.20='。
屋架跨中起拱按500/0l 考虑,取60mm 。
二、结构形式与布置屋架形式及几何尺寸如下图:根据厂房长度(102>60)、跨度及荷载情况,设置三道上、下弦横向水平支撑。
因柱网采用封闭结合,厂房两端的横向水平支撑设在第一柱间,该水平支撑的规格与中间柱间的支撑规则有所不同。
梯形钢屋架支撑布置如下图:三、荷载计算1、荷载计算屋面荷载与雪荷载不会同时出现,计算时取较大值进行计算,故取屋面活荷载0.7 kN/m 2进行计算。
屋架沿水平投影面积分布的自重(包括支撑)按经验公式2/)11.012.0(m kN l g k +=计算,跨度单位为米(m )。
荷载计算表如下:荷载名称标准值(kN/m 2)设计值(kN/m 2) 预应力混凝土大型屋面板 1.41.4×1.35=1.89三毡四油防水层 0.4 0.4×1.35=0.54 找平层(厚20mm) 0.2×20=0.4 0.4×1.35=0.54 80厚泡沫混凝土保护层 0.08×6=0.480.48×1.35=0.648 屋架和支撑自重 0.12+0.011×030=0.450.45×1.35=0.608 管道荷载 0.1 0.1×1.35=0.135永久荷载总和 3.23 4.361 屋面活荷载 0.7 0.7×1.4=0.98 积灰荷载 0.6 0.6×1.4=0.84可变荷载总和 0.31.82设计屋架时,应考虑以下三种荷载组合 (1) 全跨永久荷载+全跨可变荷载: 全跨节点永久荷载及可变荷载:kN F 629.5565.1)82.1361.4(=⨯⨯+=(2) 全跨永久荷载+半跨可变荷载 全跨节点永久荷载:kN F 249.3965.1361.41=⨯⨯=半跨节点可变荷载:kN F 38.1665.182.12=⨯⨯=(3)全跨屋架(包括支撑)自重+半跨屋面板自重+半跨屋面活荷载 全跨节点屋架自重:kN F 47.565.1608.03=⨯⨯=半跨接点屋面板自重及活荷载:kN F 31.2365.1)7.089.1(4=⨯⨯+=(1)、(2)为使用节点荷载情况,(3)为施工阶段荷载情况。
钢屋盖设计任务书(梯形屋架)一、设计资料某车间(或厂房)跨度L,长度96m,柱距6m,屋盖采用梯形钢屋架,屋面材料为压型钢板复合板,檩条间距1.5m,屋面坡度i = 1/10,屋面活荷载标准值为0.5kN/m2,当地基本风压为0.55kN/m2,屋架简支于钢筋混凝土柱上,混凝土强度等级C30,柱截面400mm ×400mm。
其他设计资料如下:A.跨度B.永久荷载C.雪荷载D各班学生在题目分配表中找到自己学号所对应的设计资料并结合各自班级的D组合进行设计。
三、设计要求计算书:内容应详尽,主要内容应包括:设计任务书,材料选择,屋架形式、几何尺寸,支撑布置,荷载汇集,杆件内力计算及组合,杆件截面选择,典型节点设计(屋脊、跨中拼接节点,上下弦节点)等。
图纸:应符合制图规范及要求,表达应完整;绘制要求:主要图面应绘制正面图、上下弦平面图,必要的侧面图、剖面图,以及某些安装节点或特殊零件的大样图;在图的左上角绘制屋架简图,并注明杆件几何长度(左半跨)及杆件内力设计值(右半跨),图面右侧应绘制材料表及编写有关文字说明,如钢材型号、附加说明、焊条型号、焊接方法、质量要求等。
(注:采用A1图纸594mm×841mm)四、主要参考资料1. 戴国欣主编.钢结构(第三版).武汉:武汉理工大学出版社,20072. 夏志斌,姚谏.钢结构—原理与设计.北京:中国建筑工业出版社,20043. 张耀春主编.钢结构设计原理.北京:高等教育出版社,20044. 汪一骏等.钢结构设计手册(第三版).北京:中国建筑工业出版社,20045. 建筑结构荷载规范(GB50009—2001 )6. 钢结构设计规范(GB50017—2003)7. 建筑结构制图标准(GB/T50105—2001)目录1、设计资料 (1)2、屋架形式、几何尺寸及支撑布置 (1)3、荷载和内力计算 (1)3.1荷载计算 (1)3.2荷载组合 (2)3.3内力计算 (3)4、杆件截面计算 (3)4.1上弦 (3)4.2下弦 (4)4.3斜腹杆B-a (4)4.4斜腹杆B-b (5)4.5斜腹杆C-b (5)5、节点设计 (6)5.1下弦节点 (6)5.2上弦节点 (6)5.3屋脊节点 (9)5.4支座节点 (10)6、参考资料 (12)1. 设计资料某车间跨度21m ,长度96m ,柱距6m ,采用梯形钢屋架,屋面材料为压型钢板复合板,檩条间距1.5m ,屋面坡度i 1/10=,屋面活荷载标准值为20.5kN/m ,当地雪荷载20.65kN/m ,基本风压20.55kN/m ,屋架简支于钢筋混凝土柱上,上柱截面400mm ⨯400mm ,混凝土标号为C30。
梯形钢屋架课程设计一、设计资料(1) 题号80,屋面坡度1:16,跨度30m ,长度96m ,柱距6m ,地点:哈尔滨,基本风压:0.45kN/m 2,基本雪压:0.45 kN/m 2(2) 采用1.5m ×6m 预应力混凝土大型屋面板,80mm 厚泡沫混凝土保护层,卷材屋面,屋面坡度i=1/16。
屋面活荷载标准值0.7kPa ,雪荷载标准值为0.45 kN/m 2,积灰荷载标准值为0.6 kN/m 2。
(3) 混凝土采用C20,,钢筋采用Q235B 级,焊条采用E43型。
(4) 屋架计算跨度:l 0=30m-2×0.15m=29.7m(5) 跨中及端部高度:采用无檩体系屋盖方案,缓坡梯形屋架。
取屋架在29.7m 轴线处的高度m h 972.10=取屋架在30m 轴线处的端部高度m h 963.10=' 屋架的中间高度m il h h 900.227.29161972.12/00=⨯+=+= 屋架跨中起拱按500/0l 考虑,取60mm 。
二、结构形式与布置屋架形式及几何尺寸如下图:梯形钢屋架支撑布置如下图:1、荷载计算屋面荷载与雪荷载不会同时出现,计算时取较大值进行计算,故取屋面活荷载0.7 kN/m 2进行计算。
屋架沿水平投影面积分布的自重(包括支撑)按经验公式2(0.120.011)/k g l kN m =+计算,跨度单位为米(m )。
荷载计算表如下:荷载名称标准值(kN/m 2) 设计值(kN/m 2) 预应力混凝土大型屋面板1.4 1.4×1.35=1.89 三毡四油防水层 0.40.4×1.35=0.54 找平层(厚20mm) 0.2×20=0.4 0.4×1.35=0.54 80厚泡沫混凝土保护层0.08×6=0.48 0.48×1.35=0.648 屋架和支撑自重0.12+0.011×030=0.450.45×1.35=0.608 管道荷载 0.1 0.1×1.35=0.135永久荷载总和 3.23 4.361 屋面活荷载 0.7 0.7×1.4=0.98 积灰荷载 0.6 0.6×1.4=0.84可变荷载总和0.31.82设计屋架时,应考虑以下三种荷载组合 (1) 全跨永久荷载+全跨可变荷载:kN F 629.5565.1)82.1361.4(=⨯⨯+=(2) 全跨永久荷载+半跨可变荷载 全跨节点永久荷载:kN F 249.3965.1361.41=⨯⨯=半跨节点可变荷载:kN F 38.1665.182.12=⨯⨯=(3)全跨屋架(包括支撑)自重+半跨屋面板自重+半跨屋面活荷载 全跨节点屋架自重:kN F 47.565.1608.03=⨯⨯=半跨接点屋面板自重及活荷载:kN F 83.2565.1)98.089.1(4=⨯⨯+=(1)、(2)为使用节点荷载情况,(3)为施工阶段荷载情况。
梯形钢屋架课程设计计算1.设计资料:1、车间柱网布置:长度90m ;柱距6m ;跨度24m2、屋面坡度:1:103、屋面材料:预应力大型屋面板4、荷载1)静载:屋架及支撑自重0.45KN/m²;屋面防水层0.4KN/m²;找平层0.4KN/m²;大型屋面板自重(包括灌缝)1.4KN/m²。
2)活载:屋面雪荷载0.3KN/m²;屋面检修荷载0.5KN/m²5、材质Q235B钢,焊条E43XX系列,手工焊。
2 . 结构形式与选型屋架形式及几何尺寸如图所示根据厂房长度(90m>60m)、跨度及荷载情况,设置上弦横向水平支撑3道,下弦由于跨度为18m故不设下弦支撑。
梯形钢屋架支撑布置如图所示:3 . 荷载计算屋面活荷载0.7KN/m²进行计算。
荷载计算表1、全跨永久荷载1F +全跨可变荷载2F2、全跨永久荷载1F +半跨可变荷载2F3、全跨屋架(包括支撑)自重3F +半跨屋面板自重4F +半跨屋面活荷载2F4. 内力计算计算简图如下(c)(b)(a)2F /223//3F 22/F 42F /F 1/2/221//22/F 45. 杆件设计 1、 上弦杆整个上弦采用等截面,按FG 杆件的最大设计内力设计,即N=-210.32KN 上弦杆计算长度:在屋架平面内:0x 0l l 1.508m ==,0y l 2 1.508 3.016m ==×上弦截面选用两个不等肢角钢,短肢相并。
腹杆最大内力N=-115.16 KN ,中间节点板厚度选用6mm ,支座节点板厚度选用8mm设λ=60,φ=0.807,截面积为32N 210.3210A 1327.4mm f 0.807215=××==φ需要回转半径:0x x 0y y l 1.508i m 25.1mm 60l 3.016i m 50.3mm60====λ==λ查表选用2┐ ┌ 110×70×6上弦截面110×70×6xxyy验算0x x x 0yy y l 1508m 75.0mm i 20.1l 3016m 85.2mmi 35.4==λ==λ==满足长细比要求,y x >λλ查表y 3y 0.655N 210.3210a a A 0.6552120××φ===151.5M P <215M P φ满足要求其余计算结果见下表 屋架杆件截面选择表6、 节点设计1. 下弦节点用E43型焊条角焊缝的抗拉和抗压、抗剪强度设计值w f f =160MPa 。
梯形钢屋架教案教案标题:梯形钢屋架教案教案目标:1. 了解梯形钢屋架的定义、结构和特点。
2. 理解梯形钢屋架在建筑工程中的应用。
3. 掌握梯形钢屋架的设计原则和计算方法。
4. 培养学生的团队合作和解决问题的能力。
教案步骤:引入活动:1. 引导学生思考并讨论他们对梯形钢屋架的了解程度。
2. 提问:你认为梯形钢屋架在建筑工程中有什么作用?知识讲解:3. 介绍梯形钢屋架的定义、结构和特点,包括其由钢材构成、具有梯形形状的特点以及其在建筑工程中的应用领域。
案例分析:4. 分发一些实际的梯形钢屋架案例给学生,要求他们分析并讨论每个案例中的设计原则和计算方法。
5. 学生分组讨论,并汇报各自小组的分析结果。
设计挑战:6. 将学生分为小组,每个小组需要设计一个具有特定要求的梯形钢屋架。
7. 要求学生根据给定的建筑参数和负荷要求,进行梯形钢屋架的设计计算。
8. 学生小组之间进行展示和评估,评估标准包括结构稳定性、负荷承载能力和美观度等。
总结与评价:9. 回顾整个教案内容,让学生总结所学的知识和技能。
10. 学生对本次教案进行评价,包括对教学内容的理解程度和对教学方法的评价。
教学资源:- PowerPoint演示文稿- 梯形钢屋架案例- 设计计算工具和软件- 小组分工表格教学评估:- 学生在案例分析和设计挑战中的表现和成果。
- 学生对教学内容的理解和应用能力的评估。
- 学生对教学方法和教案的评价。
教案延伸:- 邀请专业人士或工程师来讲解梯形钢屋架的实际应用案例。
- 组织学生进行实地考察,观察和分析梯形钢屋架在实际建筑工程中的应用情况。
注意事项:- 在讲解梯形钢屋架的定义、结构和特点时,使用简明扼要的语言,避免过多的专业术语。
- 在设计挑战环节,确保学生小组之间的合作和交流,鼓励他们互相帮助和解决问题。
- 在评估学生的表现时,注重对学生的思考过程和解决问题的能力进行评价。
钢结构课程设计21m梯形屋架
钢结构课程设计21m梯形屋架
设计概述:
本设计为一座21m梯形屋架的钢结构课程设计。
屋架采用梯形结构形式,主要由主梁、次梁、剪力墙和支撑系统组成。
设计要求满足屋顶承受风、雪、自重等荷载的要求,并确保结构的稳定性和安全性。
设计步骤:
1. 确定屋架结构形式:本设计采用梯形结构形式,其中主梁跨度为21m,次梁根据需求进行设置。
2. 计算屋架荷载:根据工程要求和设计标准,计算风、雪和自重等荷载,并确定设计荷载。
3. 选取钢材和连接方式:根据荷载计算结果,选取适当的钢材规格和连接方式,保证结构的强度和刚度。
4. 进行结构模型分析:利用结构分析软件,建立屋架的三维模型,并进行荷载分析、刚度分析和稳定分析,确保结构的安全性和稳定性。
5. 进行结构设计:根据分析结果,进行结构设计,包括确定材料尺寸、梁柱截面尺寸、连接件尺寸和布置等。
6. 绘制结构施工图:根据设计结果,绘制结构施工图,包括平面布置图、节点图和详图等,用于施工实施。
7. 进行结构检验:对设计结果进行结构检验,确认设计的合理性和安全性。
8. 编写设计报告:整理设计过程和结果,编写设计报告,包括设计说明、结构计算和绘图等内容。
以上为钢结构课程设计21m梯形屋架的主要步骤,具体的设
计过程需要根据实际条件和要求进行调整和细化。
在设计过程中,需要合理应用结构分析软件、设计规范和工程经验,保证设计的科学性和合理性。
同时,还要注意施工工艺和质量控制,确保设计方案的顺利实施和结构的安全可靠。
《钢结构》课程设计题目:武汉某车间钢结构屋架设计院(系):城市建设学院专业班级:土木090学生姓名:学号:指导教师:**2012年6月11日至2012年6月15日华中科技大学武昌分校制《钢结构》课程设计任务书目录一、设计资料 (5)二、屋架几何尺寸及檩条布置 (5)1、屋架几何尺寸 (5)2、檩条布置 (6)三、支撑布置 (6)1、上弦横向水平支撑 (6)2、下弦横向和纵向水平支撑 (6)3、垂直支.撑 (7)4、系杆 (7)四、荷载与内力计算 (7)1、荷载计算 (7)2、荷载组合 (7)3、内力计算 (8)一、设计资料:1、某车间跨度为18m,厂房总长度90m,柱距6m。
2、采用1.5m×6m,预应力钢筋混凝土大型屋面板,Ⅱ级防水,卷材屋面桁架,板厚100mm,檩距不大于1800mm。
檩条采用冷弯薄壁斜卷边 C 形钢C220×75×20×2.5,屋面坡度i=l/10。
3、钢屋架简支在钢筋混凝土柱顶上,柱顶标高18.000m,柱上端设有钢筋混凝土连系梁。
上柱截面为450mm×450mm,所用混凝土强度等级为C30,轴心抗压强度设计值f=14.3N/mm2。
抗风柱的柱距为6m,上端与屋架上弦用板铰连接。
c4、钢材用Q235,焊条用E43 系列型。
5、屋架采用平坡梯形屋架,无天窗,外形尺寸(取一半)如图1 所示。
图1二、屋架几何尺寸及檩条布置1、屋架几何尺寸屋面采用1.5m×6m的钢筋混凝土大型屋面板和卷材屋面,采用梯形屋架;屋架上弦节点用大写字母A, B, C…连续编号,下弦节点以及再分式腹杆节点用小写字母a, b, c…连续编号。
由于梯形屋架跨度L = 30m > 24m ,为避免影响使用和外观,制造时应起拱f = L / 500 = 60mm 。
屋架计算跨度l0= L - 2 ⨯ 0.15 = 30 - 2 ⨯ 0.15 = 29.7m 。
=h0+i⨯ l0/2=3585mm。
跨中高度H为使屋架上弦节点受荷,腹杆采用人字式,下弦节点的水平间距取1.5m,起拱后屋架杆件几何尺寸和节点编号如图 2 所示(其中虚线为原屋架,实线为起拱后屋架)。
图2运输单元的最大尺寸为长度15m,高度4m。
此屋架跨度30m,高度 3.3m,所以可将屋架从屋脊处断开,取一半屋架作为运输单元,长度为15m,高为3.3m。
两个运输单元分别在工厂里面制作完成后,再运输至施工现场进行拼接。
2、檩条布置采用长尺复合屋面板,单坡内不需要搭接,在屋架上弦节点设置檩条,水平檩距为1.5m。
檩条跨度l 6 ,在跨中三分点处设置两道拉条,为檩条提供两个侧向支撑点。
由于风荷载较大,故在屋檐和屋脊处都设置斜拉条和刚性撑杆,以将拉条的拉力直接传递给屋架。
檩条、拉条和撑杆的设置如图 3 所示。
三、支撑布置1、上弦横向水平支撑上弦横向水平支撑应设置在厂房两端的第一个柱间,且间距不宜超过60m。
本车间长度为96m, 因此需要布置四道横向水平支撑,如图4所示。
图 42、下弦横向和纵向水平支撑屋架跨度L = 30m > 16m ,故应设置下弦横向和纵向水平支撑。
下弦横向水平支撑与上弦横向水平支撑布置在同一柱间,如图5所示图53、垂直支撑垂直支撑必须设置。
对于本屋架结构,在跨度中央设置一道中间垂直支撑,在屋架两端各设置一道垂直支撑。
垂直支撑只设置在有横向水平支撑的同一柱间的屋架上,如图6 所示。
图64、系杆没有设置横向水平支撑的屋架,其上下弦的侧向支撑点由系杆来充当。
上弦平面内,屋脊和屋檐处需要设置刚性系杆,其它支撑点处设置柔性系杆。
本屋盖结构中,檩条长细比λ= 194.6 < 200 ,故可兼充上弦平面的刚性和柔性系杆。
下弦平面设置两道柔性系杆(图5),可采用∠45 ⨯ 5 的单角钢。
四、荷载与内力计算1、荷载计算1)永久荷载(1)永久荷载预应力混凝土大型屋面板 1.4kN/m2檩条自重 0.07kN/m2屋架及支撑自重 0.45kN/m2永久荷载总和: 1,92kN/m2(2)可变荷载(a)活荷载:屋面活荷载0.5kN/m 2活荷载计算信息: 考虑活荷载不利布置风荷载计算信息: 不计算风荷载2、荷载组合设计屋架时,应考虑以下四种组合:(1)组合一:全跨永久荷载+全跨活荷载永久荷载与活荷载大小接近,活荷载起控制作用,荷载设计值为q = 1.2 ⨯1.92 + 1.4 ⨯ 0.5 = 3.0kN/m2屋架上弦节点荷载为P = qA = 3.0 ⨯1.5 ⨯ 6 =27kN(2)组合二:全跨永久荷载+半跨活荷载全跨永久荷载:q1= 1.2 ⨯1.92 = 2.304kN/m2P = q1A = 2.304 ⨯1.5 ⨯ 6 = 20.74kN半跨活荷载:q2= 1.4 ⨯ 0.5 = 0.7kN/m 2P2= q2A = 0.7 ⨯1.5 ⨯ 6 = 6.3kN(3)组合三:全跨屋架及支撑自重+半跨屋面板重+半跨施工荷载全跨屋架及支撑自重:q3= 1.0 ⨯ 0.45 = 0.45kN/m 2P3= q3A = 0.45 ⨯1.5 ⨯ 6 = 4.05kN半跨屋面板重+半跨屋面活荷载:q4= 1.2 ⨯ ( 0.30 + 0.07 ) + 1.4 ⨯ 0.5 = 1.144kN/m2P4= q4A = 1.1444 ⨯1.5 ⨯ 6 = 10.30kN上述各组合中,端部节点荷载取跨中节点荷载值的一半。
3、内力计算本设计采用数值法计算杆件在单位节点力作用下各杆件的内力系数(单位节点三、杆件截面设计 1、节点板厚度对于梯形屋架,节点板厚度由腹杆最大内力(一般在支座处)按下表取用: 板厚取10mm 。
2、杆件计算长度系数及截面形式 (1)上弦杆面内计算长度系数x μ= 1.0 。
根据上弦横向水平支撑的布置方案(图 4),面外计算长度系数y μ= 4.0 。
y μ= 4x μ,根据等稳定原则,采用两不等边角钢短肢相并组成的T 形截面。
(2)下弦杆与上弦杆类似,面内计算长度系数x μ= 1.0 ,由图 5 可知,面外计算长度0Y l = 6m 。
下弦杆受拉,不需要考虑稳定性,因此下弦杆采用两等肢角钢组成的 T 形截面。
(3)支座腹杆(Aa 、aB )面内和面外计算长度系数都为 1.0,采用两等肢角钢组成的 T 形截面。
(4)再分式腹杆(ij 、jK )面内计算长度系数x μ= 1.0 ,面外计算长度2011122.70.750.2546640.750.2539440.5233259.4Y N l l l N ⎛⎫-⎛⎫=+=⨯+⨯=>⨯= ⎪ ⎪-⎝⎭⎝⎭采用两不等边角钢短肢相并组成的 T 形截面。
(5)跨中竖腹杆(Kk )采用两个等肢角钢组成的十字形截面,斜平面内计算长度系数为 0.9。
(6)其它腹杆面内计算长度系数x μ= 0.8 ,面外计算长度系数y μ= 1.0 ,根据等稳定原则,采用两等肢角钢组成的 T 形截面。
3、上弦杆上弦杆需要贯通,各杆截面相同,按 、 杆的最大内力设计,即 N =-591.3kN 。
计算长度0X l = l = 1507mm ,0Y l = 4l =6028mm 。
截面选用 2∠110 ⨯ 70 ⨯ 10 ,短肢相并,肢背间距 a=6mm ,所提供的截面几何特性为: A = 39.4cm 2 , i x = 2.26cm , i y = 6.11cm 。
(1)刚度验算[][]0x 0y 150.766.681502.2630.1449.31506.11X X yyl i l i λλλλ===<====<= ,满足 (2)整体稳定验算b t /t=125/10=12.5<0.56×l oy /b t =27,因此绕 y 轴弯扭屈曲的换算长细比λy =49.3,λmax =66.7,上弦杆绕 x 轴弯扭屈曲,按 b 类截面查得稳定系数ϕ= 0.77 ,则322233210201.03/215/0.48134.33410N N mm f N mm A ϕ⨯==<=⨯⨯,满足 4、下弦杆下弦杆需要贯通,各杆截面相同,按 gi 杆的最大内力设计,即 N = 572.4kN 。
计算长度l 0x = l = 3000mm , l 0y = 6000mm 。
截面选用 2∠80⨯ 10 ,肢背间距 a=6mm ,所提供的截面几何特性为: A = 30.35cm 2 , i x = 2.42cm , i y =3.59cm 。
.(1)刚度验算[][]0x 0y 300.0123.973502.42600167.133503.59X X y yl i l i λλλλ===<====<=,满足(2)强度验算3222321.410106.2/215/30.2510N N mm f N mm A ⨯==<=⨯,满足 5、再分式腹杆 ij-jK再分式腹杆在 j 节点处不断开,采用通长杆件。
最大拉力 N jk =72.7kN , N ij = 42.1kN ;最大压力 N jK = -59.4kN , N ij = -40.5kN 。
可见,该杆截面由 jK 杆的最大拉力确定,即N = 72.7kN 。
计算长度 l 0x = l = 2332mm , l 0y = 4290mm 。
截面选用 2∠45x4 ,肢背间距 a=6mm ,所提供的截面几何特性为: A = 6.972cm 2 ,i x = 1.38cm ,i y = 2.16cm 。
(1)刚度验算[][]0x 0y 233.2166.573501.38429200.473502.16X X y y l i l i λλλλ===<====<=,满足(2)强度验算322253.21076.30/215/6.97210N N mm f N mm A ⨯==<=⨯,满足 6、竖腹杆 Ii杆件轴力为 N = -40.5kN ,计算长度l 0u = l 0v = 0.9l = 0.9 ⨯ 3585= 3226mm 。
截面选用2∠56 ⨯ 3 ,十字形截面,肢背间距 a=6mm ,所提供的截面几何特性为: A = 6.686cm 2 ,i u = 2.74cm , i v = 2.18cm 。
(1)刚度验算[][]0x 0y 322.6117.741502.74322.6147.981502.18u u v v l i l i λλλλ===<====<=,满足(2)整体稳定验算401y 22100.4755618.70.5632.26(1)155.36147.363y yz y yl bb t b l tλλλ==<⨯==+=>=,上弦杆绕 y 轴弯扭屈曲,按 b 类截面查得稳定系数 ϕ= 0.317 ,则322222.710107.10/215/0.317 6.68610N N mm f N mm A ϕ⨯==<=⨯⨯,满足 其余杆件的截面设计过程不再一一列出,详见表 2 所示。