专题10 解三角形-三年(2017-2019)高考真题数学(理)分项汇编(原卷版)
- 格式:docx
- 大小:227.99 KB
- 文档页数:7
专题10 解三角形1.【2018年高考全国Ⅱ理数】在ABC △中,5cos25C ,1BC ,5AC ,则ABA .42B .30C .29D .25【答案】A【解析】因为2253cos 2cos121,255C C 所以22232cos 12521532425ABBCACBC AC C AB,则,故选 A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224abc,则CA .π2B .π3C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCabcS ab C△,所以2222sinC a bcab ,由余弦定理2222cos ab c ab C ,得sin cos CC ,因为0,πC,所以π4C,故选 C.【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.3.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A CA C ,则下列等式成立的是A .B .C .2ABD .2BAa b c 2a b2b a【答案】A 【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ,所以2sin cos sin cos 2sin sin 2B C A C B A b a ,故选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.4.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3ba c B,则ABC △的面积为_________.【答案】63【解析】由余弦定理得2222cos bacac B ,所以2221(2)2262c cc c,即212c,解得23,23cc (舍去),所以243a c,113sin 43236 3.222ABCS ac B △【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【2019年高考浙江卷】在ABC △中,90ABC ,4AB ,3BC ,点D 在线段AC 上,若45BDC,则BD___________,cos ABD___________.【答案】1225,7210【解析】如图,在ABD△中,由正弦定理有:sin sinAB BD ADB BAC ,而3π4,4AB ADB ,225AC =AB +BC =,34sin,cos55BC AB BACBACACAC,所以1225BD.ππ72cos cos()cos cos sin sin4410ABD BDC BAC BACBAC.2a b【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若7a ,b =2,A =60°,则sin B =___________,c =___________.【答案】217,3 【解析】由正弦定理得sin sin a A bB,所以2π21sin sin,377B由余弦定理得22222cos ,742,3ab c bc A cc c(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】1510,24【解析】取BC 中点E ,由题意:AEBC ,△ABE 中,1cos 4BE ABCAB,∴1115cos ,sin 14164DBCDBC ,∴115sin 22BCDS BD BC DBC△.∵2ABC BDC ,∴21coscos22cos14ABC BDC BDC ,解得10cos4BDC或10cos4BDC(舍去).综上可得,△BCD面积为152,10cos4BDC.【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【2019年高考全国Ⅰ卷理数】ABC△的内角A,B,C的对边分别为a,b,c,设22(sin sin)sin sin sinB C A B C.(1)求A;(2)若22a b c,求sin C.【答案】(1)60A;(2)62 sin4C.【解析】(1)由已知得222sin sin sin sin sinB C A B C,故由正弦定理得222b c a bc.由余弦定理得2221 cos22b c aAbc.因为0180A,所以60A.(2)由(1)知120B C,由题设及正弦定理得2sin sin1202sinA C C,即631cos sin2sin222C C C,可得2cos602C.由于0120C,所以2sin602C,故sin sin 6060C C sin 60cos60cos 60sin 60C C624.【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A C a b A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2)33(,)82.【解析】(1)由题设及正弦定理得sin sinsin sin 2A C AB A .因为sin A 0,所以sinsin 2A CB .由180A B C,可得sincos 22A CB ,故cos2sin cos 222BB B.因为cos02B ,故1sin22B ,因此B =60°.(2)由题设及(1)知△ABC 的面积34ABCS a △.由正弦定理得sin 120sin 31sin sin 2tan 2Cc AaCCC .由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a ,从而3382ABCS △.因此,△ABC 面积的取值范围是33,82.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.10.【2019年高考北京卷理数】在△ABC 中,a =3,b -c =2,cos B =12.(1)求b ,c 的值;(2)求sin (B –C )的值.【答案】(1)7b ,5c ;(2)437.【解析】(1)由余弦定理2222cos bacac B ,得22213232b c c.因为2b c,所以2221(2)3232ccc.解得5c . 所以7b.(2)由1cos 2B得3sin 2B.由正弦定理得53sin sin 14c CBb.在ABC △中,∠B 是钝角,所以∠C 为锐角. 所以211cos 1sin 14CC.所以43sin()sin cos cos sin 7BC B C B C.【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.11.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2bc a ,3sin 4sin c Ba C .(1)求cosB 的值;(2)求sin 26B的值.【答案】(1)14;(2)35716.【解析】(1)在ABC △中,由正弦定理sin sin b c BC,得sin sin b C c B ,又由3sin 4sin c B a C ,得3sin 4sin b C a C ,即34ba .又因为2b ca ,得到43ba ,23ca .由余弦定理可得222222416199cos 22423aa a ac b Baca a.(2)由(1)可得215sin 1cos 4BB,从而15sin 22sin cos 8BB B,227cos 2cos sin 8B B B,故15371357sin 2sin 2coscos2sin666828216BB B .【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin cos 2A B ab,求sin()2B的值.【答案】(1)33c;(2)255.【解析】(1)因为23,2,cos 3a cb B ,由余弦定理222cos 2acbBac,得2222(3)(2)323c cc c,即213c.所以33c.(2)因为sin cos 2A B a b ,由正弦定理sin sin a bAB,得cos sin 2B B bb,所以cos 2sin B B .从而22cos (2sin )BB ,即22cos 41cos BB ,故24cos 5B.因为sin 0B ,所以cos 2sin 0B B ,从而25cos 5B.因此π25sin cos 25B B. 【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解法一:(1)过A 作AEBD ,垂足为E .由已知条件得,四边形ACDE为矩形,6,8DE BE AC AE CD .'因为PB ⊥AB ,所以84cos sin 105PBDABE .所以12154cos 5BDPBPBD.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210ADAE ED,从而2227cos0225ADABBDBADAD AB,所以∠BAD为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O的半径,点P 符合规划要求. 设1P 为l 上一点,且1PB AB ,由(1)知,1P B =15,此时11113sin cos1595PD PB PBD PB EBA ;当∠OBP >90°时,在1PPB △中,115PB PB .由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,2222156321C Q Q A A C.此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=321时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+ 321.因此,d最小时,P,Q两点间的距离为17+321(百米).解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(-4,-3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43,直线PB的方程为42533y x.所以P(-13,9),22(134)(93)15PB.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(-4,9),又A(4,3),所以线段AD:36(44)4y x x剟.在线段AD上取点M(3,154),因为22221533454OM,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求. 设1P 为l 上一点,且1PB AB ,由(1)知,1P B =15,此时1P (-13,9);当∠OBP >90°时,在1PPB △中,115PB PB .由上可知,d ≥15.再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由22(4)(93)15(4)AQa a,得a =4321,所以Q(4321,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (-13,9),Q (4321,9)时,d 最小,此时P,Q 两点间的距离4321(13)17321PQ .因此,d 最小时,P ,Q 两点间的距离为17321(百米).【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.14.【2018年高考全国Ⅰ理数】在平面四边形ABCD 中,90ADC ,45A ,2AB ,5BD .(1)求cos ADB ;(2)若22DC,求BC .【答案】(1)235;(2)5.【解析】(1)在ABD △中,由正弦定理得sinsin BD AB AADB.由题设知,52sin 45sinADB,所以2sin5ADB.由题设知,90ADB ,所以223cos1255ADB.(2)由题设及(1)知,2cos sin 5BDC ADB.在BCD △中,由余弦定理得2222cos BCBDDCBD DC BDC22582522525.所以5BC .【名师点睛】求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边角;二是注意大边对大角,在解三角形中的应用.15.【2017年高考全国Ⅰ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin aA.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【答案】(1)23;(2)333.【解析】(1)由题设得21sin 23sin aac BA,即1sin 23sin a c BA.由正弦定理得1sin sin sin 23sin AC B A.故2sin sin 3B C.(2)由题设及(1)得1cos cos sin sin 2B C B C,即1cos()2B C .所以2π3BC ,故π3A.由题设得21sin 23sin abc AA,即8bc .由余弦定理得229b cbc ,即2()39b c bc,得33b c .故△ABC 的周长为333.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.16.【2018年高考天津卷理数】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2)A B 的值.【答案】(1)π3;(2)b =7,sin(2)A B =3314.【解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.(1)在△ABC 中,由正弦定理sin sin a b AB,可得sin sin b Aa B ,又由πsin cos()6b A a B,得πsin cos()6a B a B,即πsin cos()6B B,可得tan 3B .又因为(0π)B,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7bacac B,故b =7.由πsin cos()6b A a B,可得3sin 7A .因为a <c ,故2cos 7A .因此43sin 22sin cos 7AA A ,21cos22cos 17AA .所以,sin(2)sin 2cos cos2sin A B A B A B4311333727214.【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17.【2017年高考全国Ⅱ理数】ABC △的内角,,A B C 的对边分别为,,a b c ,已知2sin 8sin2B A C.(1)求cosB ;(2)若6a c,ABC △的面积为2,求b .【答案】(1)15cos 17B ;(2)2b.【解析】(1)由题设及A B C,可得2sin 8sin 2B B,故sin 41cos B B .上式两边平方,整理得217cos 32cos 150BB ,解得cos 1B (舍去),15cos 17B.(2)由15cos 17B得8sin 17B,故14=sin 217△ABC S ac Bac .又=2ABC S △,则172ac .由余弦定理及6a c 得:222217152cos 21cos 362(1)4,217bacac B acac B 所以2b .【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac ac 三者之间的关系,这样的题目小而活,备受命题者的青睐.18.【2018年高考北京卷理数】在△ABC 中,a =7,b =8,cos B =–17.(1)求∠A ;(2)求AC 边上的高.【答案】(1)π3;(2)332.【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos 7B.由正弦定理得sin sin a b AB7sin A=8437,∴sin A =32.∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A =31143()2727=3314.如图所示,在△ABC 中,∵sin C =h BC,∴h =sin BCC =33337142,∴AC 边上的高为332.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,基本步聚是:第一步,定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步,定工具,即根据条件和所求合理选择转化的工具,实施边、角之间的互化;第三步,求结果.19.【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b ,5,6ac ,3sin 5B.(1)求b 和sin A 的值;(2)求πsin(2)4A的值.【答案】(1)b 的值为13,sinA 的值为31313;(2)7226.【解析】(1)在ABC △中,因为ab ,故由3sin 5B,可得4cos 5B.由已知及余弦定理,有2222cos 13bacac B,所以13b.由正弦定理sin sin a b AB,得sin 313sin 13a B Ab.所以,b 的值为13,sinA 的值为31313.(2)由(1)及ac ,得213cos 13A,所以12sin 22sin cos 13A A A ,25cos212sin 13A A .故πππ72sin(2)sin 2cos cos2sin44426AA A .【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.20.【2017年高考全国Ⅲ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 3cos 0AA ,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD AC ,求△ABD 的面积.【答案】(1)4c;(2)3.【解析】(1)由已知可得tan 3A,所以2π3A .在ABC △中,由余弦定理得22π2844cos3cc ,即22240cc .解得6c (舍去),4c .(2)由题设可得π2CAD ,所以π6BAD BACCAD.故ABD △面积与ACD △面积的比值为1πsin26112AB AD AC AD . 又ABC △的面积为142sin 232BAC ,所以ABD △的面积为3.【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.(1)由题意首先求得2π3A,然后利用余弦定理列方程,边长取方程的正实数根可得4c ;(2)利用题意首先求得ABD △的面积与ACD △的面积的比值,然后结合ABC △的面积可求得ABD △的面积为3.21.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为107,40AC AM,所以2240(107)30MC,从而3sin 4MAC∠,记AM 与水面的交点为1P ,过1P 作P1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ ∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG = 14,E 1G 1= 62,所以KG 1=6214242,从而222211243240GG KGGK.设1,,EGG ENG∠∠则114sinsin()cos 25KGG KGG ∠∠.因为2,所以3cos5.在ENG △中,由正弦定理可得4014sin sin,解得7sin25.因为02,所以24cos25.于是42473sin sin()sin()sin co 3s cos sin()5252555NEG ∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH,故P 2Q 2=12,从而EP 2=2220sin P NEGQ ∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.22.【2017年高考北京卷理数】在△ABC 中,A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积. 【答案】(1)3314;(2)63.【解析】(1)在△ABC 中,因为60A ,37ca ,所以由正弦定理得sin 3333sin 7214c A Ca .(2)因为7a ,所以3737c.由余弦定理2222cos a bcbc A 得222173232bb ,解得8b 或5b (舍).所以△ABC 的面积113sin 8363222Sbc A.【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理实现边角互化;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.(1)根据正弦定理sin sin a c AC求sinC 的值;(2)根据条件可知7,3,ac根据余弦定理求出b 的值,最后利用三角形的面积公式1sin 2Sbc A进行求解即可.。
专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2s i n fx x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()s i n s i n 0fx x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C .3D .5【答案】B 【解析】2s i n 2c o αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又s i n 0α>,sin α∴=,故选B . 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-【答案】B【解析】2217cos 212sin 12()39αα=-=-⨯=. 故选B.【名师点睛】本题主要考查三角函数的求值,考查考生的运算求解能力,考查的核心素养是数学运算. 8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π【答案】A【解析】因为()πcos sin 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z , 因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【名师点睛】解答本题时,先确定三角函数单调减区间,再根据集合包含关系确定a 的最大值.函数()sin (0,0)y A x B A =++>>ωϕω的性质:(1)max min =+y A B y A B =-,. (2)周期2.T =πω(3)由()ππ2x k k +=+∈Z ωϕ求对称轴. (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.【名师点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D.【名师点睛】解答本题时,先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可作出判断.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.11.【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 12.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π, 由ϕ<π得12ϕπ=,故选A . 【名师点睛】关于sin()y A x ωϕ=+的问题有以下两种题型:①提供函数图象求解析式或参数的取值范围,一般先根据图象的最高点或最低点确定A ,再根据最小正周期求ω,最后利用最高点或最低点的坐标满足解析式,求出满足条件的ϕ的值;②题目用文字叙述函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己画出大致图象,然后寻求待定的参变量,题型很活,一般是求ω或ϕ的值、函数最值、取值范围等. 14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 24α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】2-【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭,所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时sin 22x x =-=-,所以()min2f x ⎛=⨯= ⎝⎭,故答案是. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________. 【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【名师点睛】由对称轴得2πππππ()326k k k +=+=-+∈Z ,ϕϕ,再根据限制范围求结果.函数()sin y A x B =++ωϕ(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT =ω;(3)由()ππ2x k k +=+∈Z ωϕ求对称轴; (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.20.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是. 【答案】1【解析】化简三角函数的解析式:()222311cos cos cos 144f x x x x x x ⎛=-+-=-+=--+ ⎝⎭, 由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当cos x =时,函数()f x 取得最大值1. 【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1s i n s i n 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【答案】12-【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【名师点睛】本题主要考查三角恒等变换,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算.23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈, 因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.25.【2017年高考浙江卷】已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.【答案】(1)2;(2)()f x 的最小正周期是π;单调递增区间是2[,],63k k k ππ+π+π∈Z .【解析】(1)由2sin 3π=21cos 32π=-,22211()()()322f π=----. 得2()23f π=. (2)由22cos 2cos sin x x x =-与sin 22sin cos x x x =得()cos 22f x x x =-2sin(2)6x π=-+.所以()f x 的最小正周期是π.由正弦函数的性质得3222,262k x k k πππ+π≤+≤+π∈Z , 解得2,63k x k k ππ+π≤≤+π∈Z ,所以,()f x 的单调递增区间是2[,],63k k k ππ+π+π∈Z .【名师点睛】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x 取到最小值-.【解析】(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值-27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=.(2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 【名师点睛】本题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、解决问题的能力,运算求解能力,考查的数学核心素养是数学运算.求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换. (1)首先利用三角函数的定义求得sin α,然后利用诱导公式,计算sin (α+π)的值;(2)根据sin (α+β)的值,结合同角三角函数的基本关系,计算cos()+αβ的值,要注意该值的正负,然后根据()βαβα=+-,利用两角差的余弦公式,通过分类讨论,求得cos β的值.28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()5+=-αβ.(1)求cos2α的值; (2)求tan()-αβ的值.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3=α,sin tan cos =ααα,所以4sin cos 3=αα.因为22sin cos 1+=αα, 所以29cos 25=α, 因此,27cos 22cos 125=-=-αα. (2)因为,αβ为锐角,所以(0,)+∈παβ.又因为cos()+=αβ,所以sin()+==αβ, 因此tan()2+=-αβ. 因为4tan 3=α,所以22tan 24tan 21tan 7==--ααα, 因此,tan 2tan()2tan()tan[2()]1tan 2tan()11-+-=-+==-++ααβαβααβααβ.【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中03ω<<.已知π()06f =.(1)求ω;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数()y g x =的图象,求()g x 在π3π[,]44-上的最小值. 【答案】(1)2ω=;(2)最小值为32-.【解析】(1)因为ππ()sin()sin()62f x x x ωω=-+-,所以1()cos cos 22f x x x x ωωω=--3sin cos 22x x ωω=-13(sin )2x x ωω=-π)3x ω=-.由题设知π()06f =,所以πππ63k -=ω,k ∈Z . 故62k ω=+,k ∈Z , 又03ω<<, 所以2ω=.(2)由(1)得()23f x x π⎛⎫=- ⎪⎝⎭.所以()4312g x x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭. 因为π3π[,]44x ∈-, 所以2,1233x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等.。
【关键字】满足1.【2017山东,理9】在中,角,,的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是(A)(B)(C)(D)【答案】A【解析】试题分析:所以,选A.【考点】1.三角函数的和差角公式2.正弦定理.【名师点睛】本题较为容易,关键是要利用两角和差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有,,的式子,用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.2.【2016高考新课标3理数】在中,,边上的高等于,则()(A)(B)(C)(D)【答案】C【解析】试题分析:设边上的高线为,则,所以,.由余弦定理,知,故选C.考点:余弦定理.3.【2016高考天津理数】在△ABC中,若,BC=3,,则AC= ()(A)1(B)2(C)3(D)4【答案】A【解析】试题分析:由余弦定理得,选A.考点:余弦定理【名师点睛】1.正、余弦定理可以处理四大类解三角形问题,其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.4.【2017浙江,14】已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是______,cos△BDC=_______.【答案】【解析】试题分析:取BC中点E,DC中点F,由题意:,△ABE中,,,.又,,综上可得,△BCD面积为,.【考点】解三角形5.【2015高考北京,理12】在中,,,,则.【答案】1【解析】考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于根底题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.6.【2016高考江苏卷】在锐角三角形中,若,则的最小值是.【答案】8.【解析】,因此,即最小值为8.考点:三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形中恒有,这类同于正余弦定理,是一个关于切的等量关系,平时多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识7.【2015高考新课标1,理16】在平面四边形ABCD中,△A=△B=△C=75°,BC=2,则AB 的取值范围是.【答案】(,)【解析】如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在△BCE中,△B=△C=75°,△E=30°,BC=2,由正弦定理可得,即,解得=,平移AD,当D与C重合时,AB最短,此时与AB交于F,在△BCF中,△B=△BFC=75°,△FCB=30°,由正弦定理知,,即,解得BF=,所以AB的取值范围为(,).【考点定位】正余弦定理;数形结合思想8.【2016高考新课标2理数】的内角的对边分别为,若,,,则.【答案】【解析】试题分析:因为,且为三角形内角,所以,,又因为,所以.考点:三角函数和差公式,正弦定理. 能用到。
专题10 解三角形1.【2018年高考全国Ⅱ理数】在ABC △中,cos 25C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为223cos 2cos 121,25C C =-=⨯-=-⎝⎭所以22232cos 125215325AB BC AC BC AC C AB ⎛⎫=+-⋅=+-⨯⨯⨯-== ⎪⎝⎭,则,故选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3 C .π4D .π6【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=, 由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =,故选C. 【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.3.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=, 故选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形.首先用两角和的正弦公式转化为含有A ,B ,C 的式子,再用正弦定理将角转化为边,得到2a b =.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.4.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==,11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.5.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【答案】5,10【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =.ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.6.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.【答案】7,3【解析】由正弦定理得sinsin a A b B =,所以πsin sin 3B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c .7.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==,∴1sin 2BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos 4BDC ∠=或cos 4BDC ∠=-(舍去).综上可得,△BCD 面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.8.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=, 故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=. (2)由(1)知120B C ︒=-,()sin 1202sin A C C ︒+-=,即1cos sin 2sin 222C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 602C ︒+=,故()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.9.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 【答案】(1)B =60°;(2)()82. 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =, 因此B =60°.(2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2C c A a C C ︒-===.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°, 由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△.因此,△ABC 面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 10.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =.(2)由1cos 2B =-得sin B =.由正弦定理得sin sin 14c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin 7B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.11.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)716+-. 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos 8B B B ==-,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.12.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =;(2)5.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得23=,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.13.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+.【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,1CQ=此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.14.【2018年高考全国Ⅰ理数】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =BC .【答案】(1(2)5. 【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin ADB ∠=.由题设知,90ADB ∠<︒,所以cos ADB ∠==(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.【名师点睛】求解此类问题的突破口:一是观察所给的四边形的特征,正确分析已知图形中的边角关系,判断是用正弦定理,还是用余弦定理,求边角;二是注意大边对大角,在解三角形中的应用.15.【2017年高考全国Ⅰ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.【答案】(1)23;(2)3+. 【解析】(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =. 由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以2π3B C +=,故π3A =. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=.故△ABC 的周长为3【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.16.【2018年高考天津卷理数】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2)A B -的值.【答案】(1)π3;(2)b sin(2)A B -. 【解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cosA =因此sin 22sin cos A A A ==21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-=【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17.【2017年高考全国Ⅱ理数】ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2BA C +=. (1)求cosB ;(2)若6a c +=,ABC △的面积为2,求b . 【答案】(1)15cos 17B =;(2)2b =. 【解析】(1)由题设及A B C ++=π,可得2sin 8sin 2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =. (2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+= 所以2b =.【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.18.【2018年高考北京卷理数】在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【答案】(1)π3;(2 【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B 7=.由正弦定理得sin sin a b A B =⇒7sin A∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2), ∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A 11()72-+.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=,∴AC 边上的高为2.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,基本步聚是:第一步,定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步,定工具,即根据条件和所求合理选择转化的工具,实施边、角之间的互化; 第三步,求结果.19.【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值; (2)求πsin(2)4A +的值.【答案】(1)b sin A 的值为13(2)26. 【解析】(1)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =.由正弦定理sin sin a b A B =,得sin sin a B A b ==.所以,b sin A(2)由(1)及a c <,得cos 13A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.20.【2017年高考全国Ⅲ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A =,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【答案】(1)4c =;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=.解得6c =- (舍去),4c =.(2)由题设可得π2CAD ∠=, 所以π6BAD BAC CAD ∠=∠-∠=. 故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅.又ABC △的面积为142sin 2BAC ⨯⨯∠=所以ABD △【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. (1)由题意首先求得2π3A =,然后利用余弦定理列方程,边长取方程的正实数根可得4c =; (2)利用题意首先求得ABD △的面积与ACD △的面积的比值,然后结合ABC △的面积可求得ABD △.21.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.【答案】(1)16cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而140GG ===. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.22.【2017年高考北京卷理数】在△ABC 中,A ∠=60°,c =37a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.【答案】(1)14;(2)【解析】(1)在△ABC 中,因为60A ∠=︒,37c a =,所以由正弦定理得sin 3sin 7214c A C a ==⨯=. (2)因为7a =,所以3737c =⨯=.由余弦定理2222cos a b c bc A =+-得222173232b b =+-⨯⨯, 解得8b =或5b =-(舍).所以△ABC 的面积11sin 8322S bc A ==⨯⨯=【名师点睛】高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理实现边角互化;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. (1)根据正弦定理sin sin a cA C=求sin C 的值; (2)根据条件可知7,3,a c ==根据余弦定理求出b 的值,最后利用三角形的面积公式1sin 2S bc A =进行求解即可.。
三角函数的概念、诱导公式与三角恒等变换1.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠ 是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β2.(2019全国Ⅱ文11)已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15B CD 3.(2019江苏13)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 4.(2018全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos 23α=,则a b -= A .15B CD .15.(2018全国卷Ⅲ)若1sin 3α=,则cos2α= A .89B .79C .79-D .89-6.(2018北京)在平面坐标系中,»AB ,»CD ,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是A .»AB B .»CDC .»EFD .¼GH7.(2017新课标Ⅲ)已知4sin cos 3αα-=,则sin 2α= A .79- B .29- C .29 D .798.(2017山东)已知3cos 4x =,则cos2x =A .14-B .14C .18-D .189.(2017新课标Ⅰ)已知(0,)2πα∈,tan 2α=,则cos()4πα- =__________.10.(2017北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=_________. 11.(2017江苏)若1tan()46πα-=,则tan α= .12.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --. (1)求sin()απ+的值; (2)若角β满足5sin()13αβ+=,求cos β的值.13.(2018江苏)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos2α的值; (2)求tan()αβ-的值.答案1.解析 由题意和题图可知,当P 为优弧»AB 的中点时,阴影部分的面积取最大值,如图所示,设圆心为O ,2AOB β∠=,()1222BOP AOP ββ∠=∠=π-=π-. 此时阴影部分面积211222222AOP BOPAOB S S S S β=++=⨯⨯+⨯⨯⨯△△扇形()sin 44sin βββπ-=+.故选B.2.解析 由2sin 2cos21αα=+,得24sin cos 2cos ααα=. 因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos 2sin αα=. 由22cos 2sin sin cos 1αααα=⎧⎨+=⎩,得sin α=.故选B. 3.解析 由tan 23tan()4αα=-π+,得tan 23tan tan 41tan tan4ααα=-π+π-, 所以tan (1tan )21tan 3ααα-=-+,解得tan 2α=或1tan 3α=-.当tan 2α=时,22tan 4sin21tan 5ααα==+,221tan 3cos21tan 5ααα-==-+,43sin(2)sin2cos cos2sin 444525210αααπππ+=+=⨯-⨯=.当1tan 3α=-时,22tan 3sin21tan 5ααα==-+,221tan 4cos21tan 5ααα-==+,所以34sin(2)sin2cos cos2sin 444525210αααπππ+=+=-⨯+⨯=. 综上,sin(2)4απ+. 4.B 【解析】由题意知cos 0α>,因为22cos 22cos 13αα=-=,所以cos α=,sin α=|tan |α=|||tan |12a b α-=-,所以||a b -=.故选B .5.B 【解析】2217cos 212cos 12()39αα=-=-⨯=.故选B . 6.C 【解析】设点P 的坐标为(,)x y ,利用三角函数可得yx y x<<,所以0x <,0y >.所以P 所在的圆弧是»EF,故选C . 7.A 【解析】由4sin cos 3αα-=,两边平方得161sin 29α-=,所以7sin 29α=-,选A . 8.D 【解析】由3cos 4x =得2231cos22cos 12()148x x =-=⨯-=,故选D .9.10【解析】由tan 2α=得sin 2cos αα= 又22sin cos 1αα+=,所以21cos 5α=因为(0,)2πα∈,所以cos 55αα== 因为cos()cos cossin sin444πππααα-=+22=+= 10.13【解析】与关于轴对称,则 , 所以. 11.75【解析】tan()tan744tan tan[()]4451tan()tan 44ππαππααππα-+=-+==--⨯.12.【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-, 所以4sin()sin 5απα+=-=. (2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±.αβy 2k αβππ+=+()1sin sin 2sin 3k βππαα=+-==由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 13.【解析】(1)因为,,所以. 因为,所以, 因此,. (2)因为为锐角,所以. 又因为,所以, 因此.因为,所以, 因此,.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈cos()αβ+=sin()αβ+==tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+。
专题10 解三角形1.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A −b sin B =4c sin C ,cos A =14-,则b c= A .6 B .5 C .4D .32.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β3.【2018年高考全国Ⅲ文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224a b c +-,则C =A .2π B .3πC .4πD .6π4.【2018年高考全国Ⅱ文数】在ABC △中,5cos25C =,1BC =,5AC =,则AB = A .2 B 30C 29D .255.【2017年高考全国Ⅰ文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12B .π6C .π4D .π36.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.7.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.8.【2018年高考北京卷文数】若ABC △)222a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________.9.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sin B =___________,c =___________.10.【2018年高考全国Ⅰ文数】ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.11.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .12.【2017年高考全国Ⅱ卷文数】ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .13.【2017年高考全国Ⅲ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =_________.14.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.15.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 16.【2019年高考北京卷文数】在△ABC 中,a =3,–2b c =,cos B =12-. (1)求b ,c 的值; (2)求sin (B +C )的值.17.【2019年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26πB ⎛⎫+⎪⎝⎭的值. 18.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 19.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.20.【2018年高考天津卷文数】在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B –π6). (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A –B )的值.21.【2017年高考天津卷文数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.22.【2017年高考山东卷文数】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,3ABC S △,求A 和a .23.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度; (2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.1.【答案】A【解析】由已知及正弦定理可得2224a b c -=,由余弦定理推论可得2222214131cos ,,,422424b c a c c c A bc bc b +---==∴=-∴=3462b c ∴=⨯=,故选A . 【名师点睛】本题考查正弦定理及余弦定理推论的应用.先利用余弦定理推论得出a ,b ,c 关系,再结合正弦定理边角互换列出方程,解出结果. 2.【答案】B【解析】设圆心为O ,如图1,连接OA ,OB ,AB ,OP ,则22AOB APB ∠=∠=β, 所以22242OABS ⨯==扇形ββ,因为ABP AOB OAB S S S S =+-△△阴影扇形,且AOB OAB S S △扇形,都已确定, 所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示. 3.【答案】C【解析】由题可知2221sin 24ABCa b c S ab C +-==△,所以2222sinC a b c ab +-=,由余弦定理2222cos a b c ab C +-=,得sin cos C C =,因为()0,πC ∈,所以π4C =, 故选C.【名师点睛】本题主要考查余弦定理与三角形的面积公式在解三角形中的应用,考查考生的运算求解能力,考查的核心素养是数学运算.解三角形的题型一般有两类:一是边角关系的转化,考生需对所给的边角关系进行恒等变形;二是有几何背景的题型,难点在于涉及两个或两个以上的三角形,解决此类问题可利用正、余弦定理进行求解,同时要重视三角函数的知识在解三角形中的运用. 4.【答案】A【解析】因为cos25C =,所以cos C =22cos 2C −1=2×25−1=35-.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2−2AC × BC ×cos C =52+12−2×5×1×(35-)=32,所以AB =故选A.【名师点睛】本题主要考查二倍角公式、余弦定理,考查考生的运算求解力,考查的数学核心素养是数学运算.解三角形是近几年高考中的高频者点,将解三角形与其他知识巧妙地融合在一起,既体现了试题设计的亮点,又体现了对所学知识的交汇考查. 5.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin sin 4C =,即1sin 2C =, 因为c <a ,所以C<A , 所以π6C =,故选B . 【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.6.【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角. 7.【答案】1225,7210【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,225AC =AB +BC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以1225BD =. ππ72cos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 8.【答案】60︒,()2,+∞【解析】)22231sin 2ABC S a c b ac B =+-=△, 22223a c b ac +-∴=,即cos 3B =,sin π3,cos 3B B B ∴=∠=,则2π1sin cos sin sin 1132sin sin sin tan 2A A Ac C a A A A A ⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∠为钝角,ππ,036B A ∠=∴<∠<,)1tan 0,,3tan A A ⎛⎫∴∈∈+∞ ⎪ ⎪⎝⎭,故()2,ca∈+∞.故答案为60︒,()2,+∞.【名师点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角πA B C ++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键. 9.【答案】7,3 【解析】由正弦定理得sin sin a A b B =,所以πsin sin ,37B == 由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c . 10.【解析】根据题意,由sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin B C C B +4sin sin sin A B C =,即1sin 2A =, 由2228b c a +-=,结合余弦定理可得2cos 8bc A =,所以A为锐角,且cos A =,从而求得3bc =,所以ABC △的面积为111sin 22323S bc A ==⨯=,.【名师点睛】本题主要考查正、余弦定理的应用与三角形的面积公式,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是数学运算.解答本题时,利用正弦定理,通过sin sin b C c B +=4sin sin a B C ,可以求出1sin 2A =,再利用余弦定理求出bc =,然后利用三角形的面积公式求解即可. 11.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线的性质和三角形的面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,即111a c+=,因此1144(4)()559c a a c a c a c a c +=++=++≥+=,当且仅当23c a ==时取等号,则4a c +的最小值为9.【名师点睛】本题主要考查三角形的面积公式、基本不等式,考查分析问题、解决问题的能力,考查的核心素养是数学运算.应用基本不等式求解最值时,要注意对条件“一正、二定、三相等”进行检验,尤其是等号成立的条件. 12.【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 故答案为π3. 【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果. 13.【答案】75°【解析】由正弦定理sin sin b c B C=,得sin 2sin 32b C Bc ===,结合b c <可得45B =,则18075A B C =--=.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.14.【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 44DBC DBC ∠=-∠==,∴1sin 2△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD 的面积为2,cos 4BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.15.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sin sin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B=.因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积ABC S =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,从而82ABC S <<△. 因此,△ABC面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 16.【答案】(1)7b =,5c =;(2. 【解析】(1)由余弦定理2222cos b a c ac B =+-,得2221323()2b c c =+-⨯⨯⨯-.因为2b c =+,所以2221(2)323()2c c c +=+-⨯⨯⨯-. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin B =.由正弦定理得sin sin a A B b ==在ABC △中,B C A +=π-.所以sin()sin B C A +==【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力. 17.【答案】(1)14-;(2)-【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故717sin 2sin 2cos cos 2sin 666828216B B B πππ⎛⎫+=+=--⨯=-⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. 18.【答案】(1)3c =(2)5. 【解析】(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而25cos 5B =. 因此π25sin cos 25B B ⎛⎫+== ⎪⎝⎭. 【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.19.【答案】(1)15(百米);(2)见解析;(3)17+321(百米).【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=.此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321.因此,d 最小时,P ,Q 两点间的距离为17+321(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-,直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 20.【答案】(1)π3;(2)b;sin(2A –B【解析】(1)在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b.由πsin cos()6b A a B =-,可得sin A =因为a <c,故cos A =.因此sin 22sin cos 7A A A ==,21cos 22cos 17A A =-=. 所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=1127-= 【名师点睛】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围. 21.【答案】(1)2). 【解析】(1)由sin 4sin a A b B =及sin sin a bA B=,得2a b =.由222)ac a b c =--及余弦定理,得2225cos 2acb c aA bcac -+-=== (2)由(1)可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==.由(1)知A 为钝角,所以cos B ==. 于是4sin 22sin cos 5B B B ==,23cos 212sin 5B B =-=,故43sin(2)sin 2cos cos 2sin (55555B A B A B A -=-=⨯--⨯=-. 【名师点睛】利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.解答本题时,(1)首先根据正弦定理sin sin a bA B=得到2a b =,再根据余弦定理即可求得cos A 的值;(2)根据(1)的结论和条件,由cos A 求得sin A ,然后根据sin 4sin a A b B =求得sin B ,再求cos B ,然后由二倍角公式求sin 2,cos 2B B ,最后代入sin(2)B A -的展开式即可.22.【答案】3=π,4A a 【解析】因为6AB AC ⋅=-,所以cos 6bc A =-, 又3ABC S =△,所以sin 6bc A =, 因此tan 1A =-,又0πA <<, 所以3π4A =,又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(2a =+-⨯⨯-,所以a =【名师点睛】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想. 23.【答案】(1)16 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm);(2)20 cm(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm).【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥. 记玻璃棒的另一端落在1CC 上点M 处. 因为107,40AC AM ==,所以2240(107)30MC =-=,从而3sin 4MAC =∠, 记AM 与水面的交点为1P ,过1P 作P 1Q 1⊥AC ,Q 1为垂足, 则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=1116sin P MACQ =∠.答:玻璃棒l 没入水中部分的长度为16cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为24cm)(2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1. 记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1=6214242-=,从而222211 243240GG KG GK =+=+=. 设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠.因为2απ<<π,所以3cos 5α=-.在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是42473sin sin()sin()sin co 3s cos sin ()5252555NEG αβαβαβαβ=π--=+=+=⨯+-⨯=∠.记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH , 故P 2Q 2=12,从而EP 2=2220sin P NEGQ ∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分”理解为“水面以上部分”,则结果为20cm)【名师点睛】解答本题时,(1)转化为直角三角形ACM 中,利用相似性质求解AP 1;(2)转化到三角形EGN 中,先利用直角梯形性质求角1EGG ∠,再利用正弦定理求角ENG ∠,最后根据直角三角形求高,即为l 没入水中部分的长度.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.。
专题03导数及其应用(选择题、填空题)1.【2019年高考全国Ⅲ卷理数】已知曲线y a e x x ln x在点(1,a e)处的切线方程为y=2x+b,则A.a e,b1B.a=e,b=1C.a e 1,b 1D.a e 1,b 1【答案】D【解析】∵y ae x ln x 1,∴切线的斜率k y |a e 12x 1,a e 1,将(1,1)代入y 2x b,得2b 1,b1.故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a,b的等式,从而求解,属于常考题型.2.【2018年高考全国Ⅰ卷理数】设函数f(x)x3(a 1)x2ax.若f(x)为奇函数,则曲线y f(x)在点(0,0)处的切线方程为A.C.y 2xy 2xB.D.y xy x【答案】D【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得.故选D.【名师点睛】该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.3.【2017年高考全国Ⅱ卷理数】若A.1x2是函数f(x)(x2ax 1)e x 132eB.的极值点,则f(x)的极小值为1C.5e 3D.1【答案】A【解析】由题可得f (x)(2x a)e x 1(x2ax 1)e x 1[x2(a 2)x a 1]e x 1,因为f (2)0,所以a1,f(x)(x2x 1)e x1,故f (x)(x2x 2)e x 1,令f (x)0,解得x 2或x 1,所以f(x)在(,2),(1,)上单调递增,在(2,1)上单调递减,所以f(x)的极小值为f(1)(111)e 111.故选A.【名师点睛】(1)可导函数y=f(x)在点x处取得极值的充要条件是f′(x)=0,且在x左侧与右侧f′(x)000的符号不同;(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.4.【2017年高考浙江】函数y=f(x)的导函数y f (x)的图象如图所示,则函数y=f(x)的图象可能是【答案】D【解析】原函数先减再增,再减再增,且x 0位于增区间内,因此选D.【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x轴的交点为x,且图象在x 0两侧附近连续分布于x轴上下方,则x为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数f (x)的正负,得出原函数f(x)的单调区间.5.【2018年高考全国Ⅱ卷理数】函数f x e xex2x的图像大致为2【答案】B【解析】x 0, fx e x e xx2f x ,f x为奇函数,舍去A;f1e e 1,∴舍去D;fx ex e xx 2e x ex2x x4x 2e x x 2ex3x,x 2时,f x,f(x)单调递增,舍去C.因此选B.【名师点睛】有关函数图象识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周期性.6.【2018年高考全国Ⅲ卷理数】函数yx 4x22的图像大致为3【答案】D【解析】函数图象过定点(0,2),排除A,B;令y f(x)x42321),由f (x)0得2x(2x21)0,得x22或0x22,此时函数单调递增,由f (x)0得2x(2x21)0,得x22或22x 0,此时函数单调递减,排除C.故选D.【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单调性是解决本题的关键.7.【2019年高考天津理数】已知a R,设函数f(x)上恒成立,则a的取值范围为在Rx22a x 2a,x 1,x a ln x,x 1.若关于x的不等式f(x)0A.C.0,10,eB.D.0,21,e【答案】C【解析】当x 1时,f(1)12a 2a 10恒成立;当x 1时,f(x)x22a x 2a 02ax2x 1恒成立,令g(x)x2x 1,x2(1x 1)2(1x)22(1x)1则g(x)1x1x1x111x 22(1x)20,1x 1x当1x11x,即x 0时取等号,∴2a g(x)0max,则a 0x 2,则f (x)4x 2x 2x(2x.4当x 1时,f ( x ) x a ln x 0,即ax ln x恒成立,令h ( x )x ln x,则h (x)ln x 1 (ln x )2 ,当 xe 时, h (x) 0,函数h ( x )单调递增,当0 x e时, h(x) 0 ,函数 h ( x )单调递减,则 xe 时,h ( x )取得最小值h (e) e,∴a h ( x ) e min,综上可知, a 的取值范围是[0,e]. 故选 C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后 解决恒成立问题.8.【2019 年高考浙江】已知x, x0 a , b R ,函数 f ( x )1 1x 3 (a 1)x 322ax , x 0.若函数 y f ( x ) ax b恰有 3 个零点,则 A .a <–1,b<0C .a >–1,b<0 【答案】CB .a <–1,b >0D .a >–1,b >0【解析】当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得 x 则 y =f (x )﹣ax ﹣b 最多有一个零点;,当 x ≥0 时,y =f (x )﹣ax ﹣b xyx 2 (a 1)x ,(a +1)x +ax ﹣ax ﹣bx(a+1)x ﹣b ,当 a +1≤0,即 a ≤﹣1 时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则 y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当 a +1>0,即 a >﹣1 时,令 y ′>0 得 x ∈(a+1,+∞),此时函数单调递增,令 y ′<0 得 x ∈[0,a +1),此时函数单调递减,则函数最多有 2 个零点.根据题意,函数 y =f (x )﹣ax ﹣b 恰有 3 个零点⇔函数 y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,5323 2在[0,+∞)上有 2 个零点, 如图:∴< 0 且><,解得 b <0,1﹣a >0,b >(a+1),则 a >–1,b <0.故选 C .【名师点睛】本题考查函数与方程,导数的应用.当 x <0 时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x﹣b 最多有一个零点;当 x ≥0 时,y =f (x )﹣ax ﹣bx3(a +1)x﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.9.【2017 年高考全国Ⅲ卷理数】已知函数f ( x ) x 22 x a (e x 1ex 1 )有唯一零点,则 a =A .12 B .1 3C .1 2D .1【答案】C【解析】函数 f ( x )的零点满足 x22 xae x1ex 1,设gx ex 1ex 1,则gx ex 1e x 1 e x1e1x1e 2 x 1e x 11,当gx 0时,x 1;当x1时,gx 0,函数g x单调递减;当 x 1 时, gx 0,函数g x单调递增,3 26当x 1时,函数g x 取得最小值,为g12.设hxx 22x,当x 1时,函数hx取得最小值,为1,若a 0,函数hx 与函数agx没有交点;若a 0,当ag1h 1时,函数h x 和ag x有一个交点,即a21,解得a12.故选C.【名师点睛】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.10.【2019年高考全国Ⅰ卷理数】曲线3x y 0【答案】y 3(x2x)e x在点(0,0)处的切线方程为____________.【解析】y 3(2x 1)e x 3(x2x)e x 3(x23x 1)e x,所以切线的斜率k y |3x 0,则曲线y 3(x2x)e x在点(0,0)处的切线方程为y 3x,即3x y 0.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.11.【2018年高考全国Ⅱ卷理数】曲线【答案】y 2ln(x 1)在点(0,0)处的切线方程为__________.【解析】,在点()处切线的斜率为,则所求的切线方程为.【名师点睛】求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P 也不一定在已知的曲线上,而在点P处的切线,必以点P为切点.12.【2018年高考全国Ⅲ卷理数】曲线yax 1ex在点 0,1处的切线的斜率为2,则a________.【答案】【解析】 ya exax 1e x,则 y| x 0a 1 2,所以.【名师点睛】本题主要考查导数的计算和导数的几何意义,属于基础题.713.【2019 年高考江苏】在平面直角坐标系 xOy 直线 x y 0 .的距离的最小值是 ▲中,P 是曲线 y x4x( x 0)上的一个动点,则点 P 到【答案】4【解析】由y x44 ( x 0) ,得 y 1x x 2,设斜率为 1的直线与曲线y x 4x( x 0) 切于4 ( x , x ) 0 0 0,由411 x 2得x2 ( x2 0舍去),∴曲线y x4x( x 0) 上,点 P ( 2,3 2) 到直线x y 0的距离最小,最小值为2 3 212 124.故答案为 4 .【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取 导数法,利用数形结合和转化与化归思想解题.14.【2018 年高考全国Ⅰ卷理数】已知函数【答案】【解析】f x2si n x sin2 x ,则 fx的最小值是_____________.,所以当时函数单调递减,当时函数单调递增,从而得到函数的递减区间为2k π5π π , 2k π k Z 3 3,函数的递增区间为2k ππ π, 2k π k Z 3 3,所以当x 2k ππ 3, k Z时,函数取得最小值,此时,所以,故答案是.【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的8x函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.15.【2019年高考江苏】在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点A x,y00,则y ln x00.又当1yxx x,时,y1x,则曲线y ln x在点A处的切线为1y y (x x)x,即xx ln x 1x,将点e,1代入,得e1ln x 1x,即x ln x e00,考察函数H x xl n x,当x 0,1时,H x0,当x 1,时,H x0,且H x ln x 1,当x 1时,H x0,H x单调递增,注意到Hee,故x ln x e00存在唯一的实数根x e,此时y 1000,故点A的坐标为e,1.9【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.16.【2019年高考北京理数】设函数fx e x ae x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是___________.,01【答案】【解析】首先由奇函数的定义得到关于a的恒等式,据此可得a的值,然后利用f (x)0可得a的取值范围.若函数fxe x a e x为奇函数,则fx f x,即ex a e xex a e x,即a 1ex e x 0对任意的x恒成立,则a 10,得a1.若函数fxex a e x是R上的增函数,则f (x)e x a e x 0在R上恒成立,即a e2x在R上恒成立,又e2x 0,则a 0,即实数a的取值范围是,0.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.17.【2018年高考江苏】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】由f x6x 22ax 0得x 0或xa3,因为函数f x 在0,上有且仅有一个零点且f=1,所以a33320,f a,a a因此2a 10,33解得a 3.10从而函数 f x在1,0上单调递增,在0,1上单调递减,所以 fxf max,f xminminf 1,f 1f1,则 fxmaxf x minf0+f 114 3.故答案为3.【名师点睛】对于函数零点的个数问题,可利用函数的单调性、草图确定其中参数的取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向 趋势,分析函数的单调性、周期性等.18.【2017 年高考江苏】已知函数f ( x )x 2 x e1e,其中 e 是自然对数的底数.若f (a 1)f (2 a 2) 0 ,则实数 a 的取值范围是.【答案】1[1, ]2【解析】因为f (x ) x 32 x1 e xe xf ( x ),所以函数f ( x )是奇函数,因为 f '( x )3x 2 2 e xe x3x 2 2 2 e x ex 0 ,所以函数f ( x )在 R 上单调递增,又f (a 1) f (2a 2 ) 0 ,即 f (2a 2 ) f (1a ),所以 2a2 1 a ,即 2a2a 1 0 ,解得1a1 2,故实数 的取值范围为 1 [1, ] 2.【名师点睛】解函数不等式时,首先根据函数的性质把不等式转化为f (g ( x )) f (h ( x ))的形式,然后根据函数f ( x )的单调性去掉“ f ”,转化为具体的不等式(组),此时要注意g ( x ) 与 h ( x )的取值应在函数f ( x )的定义域内.19.【2017 年高考山东理数】若函数e xf ( x )(e2.71828是自然对数的底数)在 f ( x )的定义域上单调递增,则称函数 f ( x )具有 M 性质.下列函数中所有具有 M 性质的函数的序号为.①f ( x )2x②f ( x ) 3x③f ( x ) x3④f ( x ) x22【答案】①④3 xx a11e【解析】①e x f(x)e x 2x ()2x在R上单调递增,故f(x)2x具有性质;②e x f(x)e x 3xe()3x在R上单调递减,故f(x)3x不具有性质;③e x f(x)e x x3,令g(x)e x x3,则g (x)e x x33e x x2x2e x(x 3),当x3时,g (x)0,当x3时,g (x)0,e x f(x)e xx3在(,3)上单调递减,在(3,)上单调递增,故f(x)x3不具有性质;④e x f(x)e x(x22),令g(x ) e x(x22),则g (x)e x(x22)2x e x e x[(x 1)21]0,则e x f(x)e x(x22)在R上单调递增,故f(x)x22具有性质.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的动向,它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.12。
A.π专题10解三角形1.【2019年高考全国Ⅰ卷文数】△ABC的内角A,B,C的对边分别为a,b,c,已知asinA b sinB=4csinC,1bcosA=-,则=4cA.6 C.4B.5 D.32.【2019年高考北京卷文数】如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为A.4β+4cosβC.2β+2cosβB.4β+4sinβD.2β+2sinβ3.【2018年高考全国Ⅲ文数】△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为a2+b2-c24,则C=A.C.π2π4B.D.π3π64.【2018年高考全国Ⅱ文数】在△ABC中,cos C5=25,BC=1,AC=5,则AB=A.42 C.29B.30 D.255.【2017年高考全国Ⅰ文数】△ABC的内角A,B,C的对边分别为a,b,c.已知sin B+sin A(sin C-cos C)=0,a=2,c=2,则C=12B.π6C . π n = a n sC s +s c o A 【 B b c4D . π 3 6.【2019 年高考全国Ⅱ卷文数】 △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 b sinA +acosB =0,则 B=___________.7.【 2019 年高考浙江卷】在 △ABC 中, ∠ABC = 90︒ , AB = 4 , BC = 3 ,点 D 在线段 AC 上,若∠BDC = 45︒ ,则 BD = ___________, cos ∠ABD = ___________.8.【2018 年高考北京卷文数】若△ABC 的面积为3 4 (a 2 + c 2 - b 2 ),且∠C 为钝角,则∠B=_________;c a 的取值范围是_________.9.【2018 年高考浙江卷】在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c .若 a = 7 ,b =2,A =60°,则sin B=___________,c=___________. 10 . 【 2018 年 高 考 全 国 Ⅰ 文 数 】 △ABC 的 内 角 A , B , C 的 对 边 分 别 为 a ,b ,c , 已 知 b s i nC + c s i B4 s iB ,i b 2 + c 2 - a 2 = 8 △,则 ABC 的面积为________.11.【2018 年高考江苏卷】在△ABC 中,角 A, B, C 所对的边分别为 a, b , c , ∠ABC = 120︒ , ∠ABC 的平分线交 AC 于点 D ,且 BD = 1,则 4a + c 的最小值为▲ .12 . 【 2017 年 高 考 全 国 Ⅱ 卷 文 数 】 △ABC 的 内 角 A, B, C 的 对 边 分 别 为 a, b , c , 若 2b c o B = a c o C c ,则B = .13.【2017 年高考全国Ⅲ卷文数】△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c.已知 C =60°,b = 6 ,c =3,则 A=_________.14.【2017 年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点 D 为 AB 延长线上一点,BD =2,连结 CD ,△则 BDC 的面积是______,cos ∠BDC=_______.15. 2019 年高考全国Ⅲ卷文数】△ABC 的内角 A 、 、C 的对边分别为 a 、 、 .已知 a sin(1)求 B ;(2△)若 ABC 为锐角三角形,且 c =1△,求 ABC 面积的取值范围.A + C 2 = b sin A .16.【2019 年高考北京卷文数】在△ABC 中,a =3, b – c = 2 ,cosB = - 1 2.(2)求 sin 2 B + 6 ⎭ ⎫ =(1)求 b ,c 的值;(2)求 sin (B +C )的值.17.【 2019 年高考天津卷文数】在 △ABC 中,内角 A, B, C 所对的边分别为 a, b , c .已知 b + c = 2 a ,3c s in B = 4a sin C .(1)求 cos B 的值;⎛ ⎝ π ⎪ 的值.18.【2019 年高考江苏卷】在△ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c .(1)若 a =3c ,b = 2 ,cosB = 2 3,求 c 的值; sin A cos B π (2)若 ,求 sin(B + ) 的值. a 2b 219.【2019 年高考江苏卷】如图,一个湖的边界是圆心为 O 的圆,湖的一侧有一条直线型公路 l ,湖上有桥 AB (AB 是圆 O 的直径).规划在公路 l 上选两个点 P 、Q ,并修建两段直线型道路 PB 、QA .规划要求:线段 PB 、QA 上的所有点到点 O 的距离均不小于圆 O 的半径.已知点 A 、B 到直线 l 的距离分c ....别为 AC 和 BD (C 、D 为垂足),测得 AB =10,AC =6,BD =12(单位:百米).(1)若道路 PB 与桥 AB 垂直,求道路 PB 的长;(2)在规划要求下,P 和 Q 中能否有一个点选在 D 处?并说明理由;(3)在规划要求下,若道路 PB 和 QA 的长度均为 d (单位:百米).求当 d 最小时,P 、Q 两点间的距离.20.【2018 年高考天津卷文数】在△ABC 中,内角 A ,B ,C 所对的边分别为 a ,b , .已知 b sinA =acos(B – (1)求角 B 的大小;(2)设 a =2,c =3,求 b 和 sin(2A –B)的值.π). 621.【2017 年高考天津卷文数】在 △ABC 中,内角 A, B, C 所对的边分别为 a, b , c .已知 a sin A = 4b s in B ,ac = 5( a 2 - b 2 - c 2 ) .(1)求 cos A 的值;【 B b c 【(2)求 sin(2 B - A) 的值.22. 2017 年高考山东卷文数】在 △ABC 中,角 A , ,C 的对边分别为 a , , ,已知 b =3,AB ⋅ AC = -6 ,△S ABC = 3 ,求 A 和 a.23. 2017 年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为 32cm ,容器Ⅰ的底面对角线 AC 的长为 10 7 cm ,容器Ⅱ的两底面对角线 EG , E 1G 1 的长分别为 14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为 12cm .现有一根玻璃棒 l ,其长度为 40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将 l 放在容器Ⅰ中, l 的一端置于点 A 处,另一端置于侧棱 CC 1上,求 l 没入水中部分的长度; (2)将 l 放在容器Ⅱ中, l 的一端置于点 E 处,另一端置于侧棱 GG 1上,求 l 没入水中部分的长度.。
专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x-+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin cos ++x xx x2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2s i n fx x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()s i n s i n 0fx x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C 3D 5【答案】B 【解析】2sin 2cos21αα=+,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】Dπ【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()yf x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x.若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79 C .79-D .89-【答案】B【解析】2217cos 212sin 12()39αα=-=-⨯=. 故选B.【名师点睛】本题主要考查三角函数的求值,考查考生的运算求解能力,考查的核心素养是数学运算. 8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .π4 B .π2C .3π4D .π【答案】A【解析】因为()πcos sin 4f x x x x ⎛⎫=-=+ ⎪⎝⎭,所以由π02ππ2π()4k x k k +≤+≤+∈Z 得π3π2π2π()44k x k k -+≤≤+∈Z , 因此[]π3ππ3ππ,,,,,,044444a a a a a a a ⎡⎤-⊂-∴-<-≥-≤∴<≤⎢⎥⎣⎦,从而a 的最大值为π4,故选A.【名师点睛】解答本题时,先确定三角函数单调减区间,再根据集合包含关系确定a 的最大值.函数()sin (0,0)y A x B A =++>>ωϕω的性质:(1)max min =+y A B y A B =-,. (2)周期2.T =πω(3)由 ()ππ2x k k +=+∈Z ωϕ求对称轴. (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦. 函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.【名师点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .【答案】D【解析】令()2sin2xf x x =,因为()()(),2sin22sin2xxx f x x x f x -∈-=-=-=-R ,所以()2sin2xf x x =为奇函数,排除选项A ,B ;因为π,π2x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以排除选项C , 故选D.【名师点睛】解答本题时,先研究函数的奇偶性,再研究函数在π,π2⎛⎫⎪⎝⎭上的符号,即可作出判断.有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.11.【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言. 12.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x = D .()f x 在(π2,π)单调递减 【答案】D【解析】函数()f x 的最小正周期为2π2π1T ==,则函数()f x 的周期为()2πT k k =∈Z ,取1k =-,可得函数()f x 的一个周期为2π-,选项A 正确; 函数()f x 图象的对称轴为()ππ3x k k +=∈Z ,即()ππ3x k k =-∈Z ,取3k =,可得y =f (x )的图象关于直线8π3x =对称,选项B 正确; ()πππcos πcos 33f x x x ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数()f x 的零点满足()πππ32x k k +=+∈Z ,即()ππ6x k k =+∈Z ,取0k =,可得(π)f x +的一个零点为π6x =,选项C 正确; 当π,π2x ⎛⎫∈⎪⎝⎭时,π5π4π,363x ⎛⎫+∈ ⎪⎝⎭,函数()f x 在该区间内不单调,选项D 错误.故选D.【名师点睛】(1)求最小正周期时可先把所给三角函数式化为(n )si y A x ωϕ=+或(s )co y A x ωϕ=+的形式,则最小正周期为2πT ω=;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x bω=+的形式.(2)求()()sin 0()f x A x ωϕω+≠=的对称轴,只需令()ππ2x k k ωϕ+=+∈Z ,求x ;求f (x )的对称中心的横坐标,只需令π()x k k ωϕ+=∈Z 即可.13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ= B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π, 由ϕ<π得12ϕπ=,故选A . 【名师点睛】关于sin()y A x ωϕ=+的问题有以下两种题型:①提供函数图象求解析式或参数的取值范围,一般先根据图象的最高点或最低点确定A ,再根据最小正周期求ω,最后利用最高点或最低点的坐标满足解析式,求出满足条件的ϕ的值;②题目用文字叙述函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己画出大致图象,然后寻求待定的参变量,题型很活,一般是求ω或ϕ的值、函数最值、取值范围等. 14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可. 15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+---+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】 【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+- ⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x取得最小值,此时sin x x == 所以()min 2f x ⎛=⨯= ⎝⎭,故答案是. 【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3 【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________. 【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ 【名师点睛】由对称轴得2πππππ()326k k k +=+=-+∈Z ,ϕϕ,再根据限制范围求结果.函数()sin y A x B =++ωϕ(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT =ω;(3)由()ππ2x k k +=+∈Z ωϕ求对称轴; (4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.20.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【答案】1【解析】化简三角函数的解析式:()222311cos cos cos 1442f x x x x x x ⎛⎫=-+-=-+=--+ ⎪ ⎪⎝⎭, 由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当cos 2x =时,函数()f x 取得最大值1. 【名师点睛】本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【答案】12-【解析】因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα 所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【名师点睛】本题主要考查三角恒等变换,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算.23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[1-. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈, 因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.25.【2017年高考浙江卷】已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.【答案】(1)2;(2)()f x 的最小正周期是π;单调递增区间是2[,],63k k k ππ+π+π∈Z . 【解析】(1)由2sin 32π=,21cos 32π=-,22211()(()()32222f π=----. 得2()23f π=. (2)由22cos 2cos sin x x x =-与sin 22sin cos x x x =得()cos 22f x x x=-2sin(2)6x π=-+.所以()f x 的最小正周期是π.由正弦函数的性质得3222,262k x k k πππ+π≤+≤+π∈Z , 解得2,63k x k k ππ+π≤≤+π∈Z ,所以,()f x 的单调递增区间是2[,],63k k k ππ+π+π∈Z . 【名师点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-. 【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-. 又[]0πx ∈,,所以5π6x =. (2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值;()ϕω+=x A y sin ()ϕω+=x A y sin u A y sin =(2)若角β满足sin (α+β)=513,求cos β的值. 【答案】(1)45;(2)56cos 65β=-或16cos 65β=-. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-,所以4sin(π)sin 5αα+=-=.(2)由角α的终边过点34(,)55P --得3cos 5α=-,由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++,所以56cos 65β=-或16cos 65β=-. 【名师点睛】本题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、解决问题的能力,运算求解能力,考查的数学核心素养是数学运算.求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换. (1)首先利用三角函数的定义求得sin α,然后利用诱导公式,计算sin (α+π)的值;(2)根据sin (α+β)的值,结合同角三角函数的基本关系,计算cos()+αβ的值,要注意该值的正负,然后根据()βαβα=+-,利用两角差的余弦公式,通过分类讨论,求得cos β的值.28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()+=αβ.(1)求cos2α的值; (2)求tan()-αβ的值.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3=α,sin tan cos =ααα,所以4sin cos 3=αα.因为22sin cos 1+=αα, 所以29cos 25=α, 因此,27cos 22cos 125=-=-αα. (2)因为,αβ为锐角,所以(0,)+∈παβ.又因为cos()5+=-αβ,所以sin()+==αβ, 因此tan()2+=-αβ. 因为4tan 3=α,所以22tan 24tan 21tan 7==--ααα, 因此,tan 2tan()2tan()tan[2()]1tan 2tan()11-+-=-+==-++ααβαβααβααβ.【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中.已知π()06f =.(1)求;(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数的图象,求在π3π[,]44-上的最小值. 【答案】(1);(2)最小值为. 【解析】(1)因为ππ()sin()sin()62f x x x ωω=-+-,所以03ω<<ω()y f x =()y g x =()g x 2ω=32-1()sin cos cos 22f x x x x ωωω=--3cos 2x x ωω=-1sin )2x x ωω=-π)3xω=-.由题设知π()06f=,所以πππ63k-=ω,k∈Z.故,k∈Z,又,所以.(2)由(1)得()23f x xπ⎛⎫=-⎪⎝⎭.所以()4312g x x xπππ⎛⎫⎛⎫=+-=-⎪ ⎪⎝⎭⎝⎭.因为π3π[,]44x∈-,所以2,1233xπππ⎡⎤-∈-⎢⎥⎣⎦,所以当123xππ-=-,即4xπ=-时,取得最小值.【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等.62kω=+03ω<<2ω=()g x32-。
专题09 三角函数1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为A .B .C .D .2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B.5C.3D.55.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点2sin cos ++x xx x③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .CD .27.【2018年高考全国Ⅲ卷理数】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-8.【2018年高考全国卷II 理数】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是 A .π4 B .π2C .3π4D .π9.【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间35[,]44ππ上单调递增 B .在区间3[,]4ππ上单调递减 C .在区间53[,]42ππ上单调递增 D .在区间3[,2]2ππ上单调递减 10.【2018年高考浙江卷】函数y =2xsin2x 的图象可能是A .B .C .D .11.【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 212.【2017年高考全国Ⅲ理数】设函数()π(3cos )f x x =+,则下列结论错误的是A .()f x 的一个周期为2π-B .()y f x =的图象关于直线8π3x =对称 C .(π)f x +的一个零点为π6x =D .()f x 在(π2,π)单调递减13.【2017年高考天津卷理数】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=- C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=14.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 15.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 16.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 17.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.18.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.19.【2018年高考江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.20.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 21.【2017年高考北京卷理数】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 22.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 23.【2017年高考江苏卷】若π1tan(),46α-=则tan α= ▲ .24.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.25.【2017年高考浙江卷】已知函数22sin cos cos ()()x x x f x x x =--∈R .(1)求2()3f π的值. (2)求()f x 的最小正周期及单调递增区间.26.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.27.【2018年高考浙江卷】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455-,-).(1)求sin (α+π)的值; (2)若角β满足sin (α+β)=513,求cos β的值.28.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()+=αβ.(1)求cos2α的值;(2)求tan()-αβ的值.29.【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中.已知π()06f =.(1)求;(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数的图象,求在π3π[,]44-上的最小值.03ω<<ω()y f x =()y g x =()g x。
专题10 解三角形
1.【2018年高考全国Ⅱ理数】在ABC △
中,cos 2C =
,1BC =,5AC =,则AB = A
. B
C
D
.2.【2018年高考全国Ⅲ理数】ABC △的内角A B C ,,
的对边分别为a ,b ,c ,若ABC △的面积为222
4a b c +-,则C =
A .
π2 B .
π3 C .π4
D .π6
3.【2017年高考山东卷理数】在ABC △中,角A ,B ,C 的对边分别为,,.若ABC △为锐角三
角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A . B . C .2A B =
D .2B A =
4.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π
6,2,3
b a
c B ===
,则ABC △的面积为_________.
5.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若
45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.
6.【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c
.若a =b =2,A =60°
,则sin B =___________,c =___________.
7.【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,
则△BDC 的面积是______,cos ∠BDC =_______.
8.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设
22(sin sin )sin sin sin B C A B C -=-.
(1)求A ;
(2
2b c +=,求sin C .
a b c 2a b =2b a =
9.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin
sin 2
A C
a b A +=. (1)求B ;
(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.
10.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12
-
. (1)求b ,c 的值; (2)求sin (B –C )的值.
11.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,
3sin 4sin c B a C =.
(1)求cos B 的值; (2)求sin 26B π⎛⎫
+ ⎪⎝⎭
的值.
12.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .
(1)若a =3c ,b ,cos B =
2
3
,求c 的值; (2)若sin cos 2A B a b =,求sin()2
B π
+的值.
13.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有
桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长;
(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;
(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.
14.【2018年高考全国Ⅰ理数】在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.
(1)求cos ADB ∠;
(2)若DC =BC .
15.【2017年高考全国Ⅰ理数】ABC △的内角A ,
B ,
C 的对边分别为a ,b ,c ,已知ABC △的面积为2
3sin a A
. (1)求sin B sin C ;
(2)若6cos B cos C =1,a =3,求ABC △的周长.
16.【2018年高考天津卷理数】在ABC △中,内角A ,
B ,
C 所对的边分别为a ,b ,c.已知sin cos()6
b A a B π
=-. (1)求角B 的大小;
(2)设a =2,c =3,求b 和sin(2)A B -的值.
17.【2017年高考全国Ⅱ理数】ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2
sin 8sin
2
B A
C +=. (1)求cos B ;
(2)若6a c +=,ABC △的面积为2,求b .
18.【2018年高考北京卷理数】在△ABC 中,a =7,b =8,cos B =–17
. (1)求∠A ;
(2)求AC 边上的高.
19.【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,
5,6a c ==,3
sin 5
B =
. (1)求b 和sin A 的值; (2)求π
sin(2)4
A +的值.
20.【2017年高考全国Ⅲ理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A =,
a ,
b =2.
(1)求c;
(2)设D为BC边上一点,且AD AC,求△ABD的面积.
21.【2017年高考江苏卷】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,
E G的长分别为14cm和
62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
CC上,求l没入水中部分的长度;
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱1
GG上,求l没入水中部分的长度.(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱1
22.【2017年高考北京卷理数】在△ABC 中,A =60°,c =
3
7
a . (1)求sin C 的值;
(2)若a =7,求△ABC 的面积.。