基于灰度共生矩阵纹理特征的SAR影像变化检测方法研究
- 格式:pdf
- 大小:921.01 KB
- 文档页数:5
基于灰度共生矩阵(GLCM)的图像纹理分析与提取重磅干货,第一时间送达灰度共生矩阵灰度共生矩阵(Gray Level CO-Occurrence Matrix-GLCM)是图像特征分析与提取的重要方法之一,在纹理分析、特征分类、图像质量评价灯方面都有很重要的应用,其基本原理图示如下:左侧是一个图像,可以看出最小的灰度级别是1,最大的灰度级别是8,共有8个灰度级别。
右侧对应的灰度共生矩阵,左上角第一行与第一列的坐标(1, 1)包含值1,原因在于水平方向上,相距一个像素值,当前像素跟水平右侧相邻像素只有一个是1、1相邻的像素值(灰度级别)对;右侧共生矩阵的原始(1, 2) = 2 说明在像素矩阵中有两个像素值1,2相邻的像素点对、以此类推得到完整的右侧灰度共生矩阵。
根据当前像素跟相邻像素位置不同,可以计算得到不同的共生矩阵,同时根据像素之间的距离不同会输出不同灰度共生矩阵。
总结来说,有如下四种不同角度的灰度共生矩阵:•0度水平方向GLCM•45度方向GLCM•90度垂直方向GLCM•135度方向GLCM根据相邻像素点之间距离参数D不同可以得到不同距离的GLCM。
此外对正常的灰度图像来说,最小灰度值为0,最大的灰度值为255,共计256个灰度级别,所以GLCM的大小为256x256,但是我们可以对灰度级别进行降维操作,比如可以每8个灰度值表示一个level这样,这样原来256x256大小的共生矩阵就可以改成256/8 * 256 /8 = 32x32的共生矩阵。
所以最终影响灰度共生矩阵生成有三个关键参数:•角度 (支持0、45、90、135)•距离(大于等于1个像素单位)•灰度级别(最大GLCM=256 x 56)GLCM实现纹理特征计算灰度共生矩阵支持如下纹理特征计算,它们是:•能量•熵值•对比度•相关性•逆分差这些纹理特征计算公式如下:上述5个是常见的GLCM的纹理特征,GLCM总计由14个特征值输出,这里就不再赘述了!感兴趣的可以自己搜索关键字GLCM。
基于灰度共生矩阵灰度共生矩阵是一种用于描述图像纹理特征的统计方法,它能够揭示图像中不同灰度级之间的空间关系。
本文将以人类的视角,通过描述灰度共生矩阵的原理和应用,使读者能够深入了解这一技术的意义和价值。
在图像处理领域,灰度共生矩阵是一种重要的特征提取方法。
它通过统计图像中灰度级之间的空间关系,捕捉图像中的纹理特征。
通过计算灰度共生矩阵,我们可以得到一系列统计特征,如对比度、均匀度、相关度和能量等,这些特征可以用于图像分类、目标检测和图像识别等应用中。
灰度共生矩阵的计算过程相对简单,首先将图像转换为灰度图像,然后选择一定的灰度级和距离,计算每对像素的共生概率。
共生概率是指某个灰度级在给定距离和方向上与另一个灰度级同时出现的概率。
通过对所有像素对的共生概率进行统计,我们可以得到一个灰度共生矩阵。
灰度共生矩阵可以用于描述图像的纹理特征。
例如,对于一张草地的图像,灰度共生矩阵可以反映出草地纹理的均匀性和统一性。
而对于一张石头的图像,灰度共生矩阵则可以反映出石头表面的粗糙度和不规则性。
基于灰度共生矩阵的应用非常广泛。
在医学影像领域,灰度共生矩阵可以用于肿瘤的早期检测和诊断;在农业领域,灰度共生矩阵可以用于农作物的生长监测和病虫害的识别;在工业领域,灰度共生矩阵可以用于缺陷检测和质量控制。
灰度共生矩阵是一种重要的图像纹理特征提取方法,它可以揭示图像中不同灰度级之间的空间关系。
通过计算灰度共生矩阵,我们可以得到一系列统计特征,用于图像分类、目标检测和图像识别等应用中。
灰度共生矩阵的应用范围非常广泛,包括医学影像、农业和工业等领域。
通过深入了解和应用灰度共生矩阵,我们可以更好地理解和分析图像中的纹理特征,为各个领域的研究和应用提供支持。
希望本文的描述能够使读者更好地理解灰度共生矩阵的原理和应用,并对其在图像处理领域的意义和价值有所了解。
通过引发读者的兴趣,我们可以进一步深入研究和探索灰度共生矩阵的更多应用和发展方向。
灰度共生矩阵法灰度共生矩阵法是一种常用的图像纹理特征分析方法,它通过统计图像中不同灰度值之间出现的空间关系来描述图像的纹理特征。
本文将从以下几个方面详细介绍灰度共生矩阵法。
一、灰度共生矩阵法的基本原理灰度共生矩阵法是一种基于灰度级别的统计方法,它通过计算同一图像区域内不同位置处两个像素之间的灰度值关系,得出各种方向上不同距离处两个像素之间某些特定关系的概率分布。
具体而言,对于给定的图像I(x,y),以及距离d和角度θ,可以定义一个二元组(x,y)和另一个二元组(x+d*cosθ,y+d*sinθ)之间的关系,通常称为共生对。
然后可以通过统计所有这些共生对在整个图像中出现的频率来生成一个称为灰度共生矩阵(GLCM)的矩阵。
二、灰度共生矩阵法的主要步骤1. 灰度化:将彩色图像转换为灰度图像。
2. 分块:将整幅图像分割成若干个小块,每个小块的大小可以根据实际需求来确定。
3. 计算灰度共生矩阵:对于每个小块,计算其灰度共生矩阵。
具体而言,对于每个像素点,统计它周围距离为d、方向为θ的所有像素点的灰度值,并将这些灰度值作为共生对出现的频率填入GLCM中。
4. 特征提取:从GLCM中提取出各种特征参数。
常用的特征参数包括能量、熵、对比度、相关性等。
5. 分类识别:将提取出来的特征参数输入到分类器中进行分类识别。
三、灰度共生矩阵法的常用特征参数1. 能量(Energy):能量是指GLCM中所有元素平方和的开方,它反映了图像纹理的粗细程度。
能量越大,表示图像纹理越粗糙。
2. 熵(Entropy):熵是指GLCM中所有元素对数之和的相反数,它反映了图像纹理的复杂程度。
熵越大,表示图像纹理越复杂。
3. 对比度(Contrast):对比度是指GLCM中元素值之差与元素位置之间距离的加权和,它反映了图像纹理的明暗程度。
对比度越大,表示图像纹理越明暗分明。
4. 相关性(Correlation):相关性是指GLCM中元素值之间的线性关系程度,它反映了图像纹理的方向性。
SAR图像处理的若干关键技术SAR图像处理的若干关键技术合成孔径雷达(Synthetic Aperture Radar,SAR)是一种利用合成孔径波束形成技术获得高分辨率航天或地面观测图像的雷达。
相比于光学遥感,SAR具有天气无关性、全天候观测能力以及对地表遥感的穿透能力等优势。
然而,由于SAR的脉冲压缩、多普勒频率模糊、地形效应等因素,使得SAR图像的处理变得复杂而具有挑战性。
本文将探讨SAR图像处理的若干关键技术。
1. SAR图像去斑点和去噪技术SAR图像中存在着斑点和噪声,这会影响图像的可视化和后续处理。
去斑点和去噪技术旨在提高SAR图像的质量。
常见的方法包括小波去斑、中值滤波、自适应滤波以及基于稀疏表示的降噪方法等。
这些技术可以有效减少斑点和噪音,提高图像质量。
2. SAR图像去焦模糊技术合成孔径雷达通过接收连续多个雷达回波并对它们进行累积处理,以获得高分辨率图像。
然而,这种累积处理可能会导致图像模糊。
因此,需要进行去焦模糊处理。
常见的方法包括波前解扩、逆滤波和最大熵方法等。
这些方法可以有效去除图像的焦模糊现象,提高图像的分辨率。
3. SAR图像多普勒参数估计技术由于合成孔径雷达平台的运动,SAR图像中存在多普勒频率模糊现象。
为了恢复真实的地物信息,需要准确估计多普勒参数。
常见的多普勒参数估计方法包括基于最大熵准则的参数估计、基于相位解缠的参数估计和基于谱分析的参数估计等。
这些方法可以精确估计多普勒参数,降低图像的多普勒模糊程度。
4. SAR图像纹理特征提取技术纹理特征对于地物分类和目标检测具有重要意义。
SAR图像的纹理特征提取是指提取图像中的空间变化特征,并通过这些特征进行分类和检测。
常用的纹理特征提取方法包括灰度共生矩阵(GLCM)、小波变换和局部二值模式(LBP)等。
这些方法可以提取出图像中的纹理特征,为后续的分类和检测提供有效的数据支持。
5. SAR图像目标检测技术SAR图像中的目标检测是指在图像中准确地找出感兴趣的地物目标。
基于灰度共生矩阵的纹理特征提取概述及解释说明1. 引言1.1 概述纹理特征是一种用于描述图像或物体表面细节的重要特征。
在许多领域中,如计算机视觉、图像处理和模式识别等,纹理特征的提取对于实现自动分析和识别具有重要作用。
然而,由于图像数据量庞大且复杂多样,如何从中提取出有效的纹理特征一直是一个具有挑战性的问题。
1.2 文章结构本文将着重介绍一种基于灰度共生矩阵(Gray Level Co-occurrence Matrix, GLCM)的纹理特征提取方法。
为了更好地说明该方法的原理和优势,文章将依次介绍灰度共生矩阵概念、纹理特征提取方法、应用案例与实验结果分析,并最后对整个研究工作进行总结和展望。
1.3 目的本文旨在通过对基于灰度共生矩阵的纹理特征提取方法进行概述及解释说明,帮助读者深入了解该方法的原理和应用领域。
同时,通过应用案例与实验结果分析部分的介绍,使读者更好地理解该方法在模式识别中的应用价值。
最后,本文将对研究工作进行总结和展望,为未来的应用和发展提供参考。
2. 灰度共生矩阵概念2.1 灰度共生矩阵定义灰度共生矩阵(Gray-Level Co-occurrence Matrix,简称GLCM)是一种常用的纹理分析方法,用于描述图像中像素间的灰度值关系。
其基本思想是统计图像中不同位置像素对之间的灰度值相关特征,从而表征图像纹理的统计信息。
2.2 灰度共生矩阵计算方法灰度共生矩阵的计算主要包括以下步骤:首先,选择一个特定的灰度距离和方向,根据距离和方向确定相邻像素对;然后,统计这些相邻像素对在指定灰度级别上出现次数,并构建灰度级别之间的共生矩阵;最后,根据所得到的共生矩阵可以计算出一系列反映图像纹理特征的统计量。
2.3 灰度共生矩阵特性分析通过分析灰度共生矩阵可以得到多项有关图像纹理特征的统计参数。
常见的参数包括:(1) 对比度(Contrast):反映了不同灰度级别对之间强度变化的对比程度;(2) 同质性(Homogeneity):反映了不同灰度级别对之间相邻像素对灰度值接近程度的均匀性;(3) 能量(Energy):反映了图像中不同灰度级别出现的频率或概率,即图像的复杂程度;(4) 相关性(Correlation):反映了图像中不同灰度级别对之间线性相关关系的强弱;(5) 熵(Entropy):反映了图像中不确定性和复杂性,越大表示纹理越复杂。
灰度共生矩阵在医学图像处理中的应用灰度共生矩阵(Grey Level Co-occurrence Matrix,GLCM)是一种用于图像分析的统计方法。
它可以提取图像中的纹理特征,广泛应用于医学图像处理中,例如分割、诊断和治疗等方面。
GLCM是用来衡量图像灰度级之间相互出现的位置关系和统计特征的,即灰度级在不同方向和距离内出现的概率密度情况。
在医学图像处理中,GLCM可以用来计算肿瘤、血管、骨头等特征的纹理特征值,并根据这些特征值进行分类或诊断等操作。
下面将详细介绍GLCM的应用。
1、肿瘤识别肿瘤的良恶性诊断是临床医学中的一项重要任务。
利用肿瘤的灰度纹理特征诊断是一种非常有效的方法。
在肿瘤图像中,肿瘤因组织疏松性和小灶间隙大的特点,与周围组织的灰度差异可能比较大。
因此,GLCM可以用来评估肿瘤和周围组织的灰度分布特征,从而实现对肿瘤的诊断。
第一步是对肿瘤图像进行分割,将肿瘤区域和非肿瘤区域分开。
这里通常采用基于阈值分割、分水岭分割等方法。
接下来,利用GLCM计算各像素相邻灰度级之间的共生矩阵,可以得到多个统计特征,例如对比度、能量、熵等。
这些特征值可以用来判定肿瘤的良性和恶性程度。
例如,典型的恶性肿瘤通常伴随着高对比度、高能量、低熵等特征。
2、骨质疏松骨质疏松是一种常见疾病,也是导致自发性骨折的主要原因之一。
利用X线、CT等影像学方法对骨质疏松进行诊断是一项重要的任务。
在骨质疏松图像中,由于骨质的疏松程度不同,灰度级分布也会存在差异。
因此,GLCM可以用来评估骨密度的纹理特征。
比如,可以利用GLCM来计算骨头内部不同灰度值之间的共生矩阵,然后得到统计特征值,例如对比度、能量、熵等。
这些特征值可以用来反映骨密度的变化。
3、血管分割血管分割是医学图像处理中的一个重要应用场景。
血管图像一般存在一些特征,例如血管的形状、长度、弯曲度等。
同时,血管周围的组织灰度分布和血管内部的灰度分布也有明显差别。
利用GLCM可以对血管内部的纹理特征进行测量。
基于模式识别的图像对比度增强算法的研究与应用随着计算机视觉技术的不断发展,图像处理成为了一个热门领域。
在图像处理过程中,对比度增强是一项非常重要的任务。
对比度指的是图像中不同灰度级别之间的差异程度。
当图像对比度低时,图像中的物体边缘和细节可能会很难识别,从而影响图像识别和分析的准确性。
因此,对比度增强是提高图像质量和准确性的重要手段。
本文基于模式识别技术,研究并应用了一种高效的图像对比度增强算法。
该算法主要采用了两种模式识别技术:灰度共生矩阵(GLCM)和分类器。
我们先来了解一下这些技术。
灰度共生矩阵是一种用于图像分析的工具,通过对图像中灰度级别的相关性进行度量,可以提取出图像的纹理特征。
灰度共生矩阵描述了在给定距离和方向上出现的不同灰度值情况的统计概率。
从而可以利用图像的局部信息,对图像进行特定的变换和处理。
分类器是一种模式识别技术,它通过一系列对图像或数据的特征进行解析和分类的方法,实现对不同类别的图像进行自动区分。
常见的分类器有支持向量机、k 近邻算法、神经网络等。
本文的图像对比度增强算法将这两种技术有效结合,以实现高效的图像质量提升。
首先,我们利用灰度共生矩阵技术对图像中的纹理特征进行提取。
具体来说,我们将图像分成若干个小区域,计算每个区域内不同灰度级别出现的概率,然后得到每个区域的灰度共生矩阵。
得到多个灰度共生矩阵后,我们就可以进一步利用分类器来进行图像增强处理。
在分类器的选取上,我们采用了支持向量机(SVM)算法。
SVM是一种基于最大间隔分类的分类器,具有较好的分类性能和鲁棒性。
我们将灰度共生矩阵作为特征向量,利用SVM分类器对图像进行增强。
具体来说,我们将训练样本进行特定的训练和学习,建立分类模型,然后对未知图像进行分类并进行增强。
在实际应用中,我们将该算法应用于乳腺癌影像的对比度增强任务中。
由于乳腺癌影像中存在大量的纹理和细节信息,因此对比度增强尤为关键。
我们利用公开数据集进行实验,对比了本算法与传统的直方图均衡化算法以及基于小波变换的图像增强算法。