高中物理圆周运动与动量综合问题题型总结精讲精练
- 格式:doc
- 大小:1.74 MB
- 文档页数:12
高中物理 必修2 圆周运动的运动学问题1、描述圆周运动的物理量描述圆周运动的基本参量有:半径、线速度、角速度、周期、频率、转速、向心加速度等。
(1)v =∆l∆t =2πr T =2πrf(2)ω=∆θ∆t =2πT(3)T =1f =2πr v3、圆周运动中的运动学分析 (1)对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比。
(2)对a =v 2r=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比。
在分析传动装置中的各物理量时,要抓住不等量和想等量的关系,具体有: (1)同一转轴的轮上各点角速度ω相同,而线速度v=ωr 与半径r 成正比。
(2)当皮带(或链条、齿轮)不打滑时,传动皮带上各点以及用皮带连接的两轮边沿上的各点线速度大小相等,而角速度ω=vr 与半径r 成反比。
(3)齿轮传动时,两轮的齿数与半径成正比,角速度与齿数成反比。
1、如图所示装置中,A、B、C三个轮的半径分别为r、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比,周期之比,转速之比,频率之比。
答案:①2:1:2:4;②2:1:1:1;③4:1:2:4;④1:2:2:2;⑤2:1:1:1;⑥2:1:1:12、一个环绕中心线AB以一定的角速度转动,P、Q为环上两点,位置如图所示,下列说法正确的是(A)A.P、Q两点的角速度相等B.P、Q两点的线速度相等C.P、Q两点的角速度之比为3∶1D.P、Q两点的线速度之比为3∶13、自行车的小齿轮A、大齿轮B、后轮C是相互关联的三个转动部分,且半径R B=4R A、R C=8R A,如图所示.正常骑行时三轮边缘的向心加速度之比a A∶a B∶a C等于(C)A.1∶1∶8 B.4∶1∶4C.4∶1∶32 D.1∶2∶44、如图所示,传动轮A、B、C的半径之比为2︰1︰2,A、B两轮用皮带传动,皮带不打滑,B、C两轮同轴,a、b、c三点分别处于A、B、C三轮的边缘,d点在A轮半径的中点。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D =5m/s ; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=-可得:1R Lμ=若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=-可得:22R Lμ=若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=-综上所述,μ需满足的条件:2R R L Lμ<<.5.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R6.如图,1111C D E F 和2222C D E F 是距离为L 的相同光滑导轨,11C D 和11E F 为两段四分之一圆弧,半径分别为18r r =和2.r r =在水平矩形1122D E E D 内有竖直向上的匀强磁场,磁感应强度为.B 导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速释放,则()1求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);()2若P 、Q 不会在轨道上发生碰撞,棒Q 到达12E E 瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;()3若P 、Q 不会在轨道上发生碰撞,且两者到达12E E 瞬间,均能脱离轨道飞出,求回路中产生热量的范围. 【答案】(12BL gr方向逆时针(2)3gr (3)3mgr ≤Q ≤4mgr . 【解析】(1)导体棒P 由12C C 下滑到12D D ,根据机械能守恒定律:211 42D D mgr mv v gr ==,求导体棒P 到达12D D 瞬间:D E BLv = 回路中的电流:22BL grE I R ==(2)棒Q 到达12E E 瞬间,恰能脱离轨道飞出,此时对Q :22QQ mv mg v gr r ==设导体棒P 离开轨道瞬间的速度为P v ,根据动量守恒定律:D P Q mv mv mv =+ 代入数据得:3P v gr =(3)由()2若导体棒Q 恰能在到达12E E 瞬间飞离轨道,P 也必能在该处飞离轨道 根据能量守恒,回路中产生的热量22211113222D P Q Q mv mv mv mgr =--= 若导体棒Q 与P 能达到共速v ,则根据动量守恒:()2D mv m m v v gr =+⇒=回路中产生的热量()22211422D Q mv m m v mgr =-+=; 【点睛】根据机械能守恒定律求出求导体棒P 到达12D D 的速度大小,然后根据法拉第电磁感应定律即可求解;恰好脱了轨道的条件是重力提供向心力,两棒作用过程中动量守恒,由此可正确解答;根据题意求出临界条件结合动量守恒和功能关系即可正确求解;本题是电磁感应与电路、磁场、力学、功能关系,临界条件等知识的综合应用,重点考查了功能关系以及动量守恒定律的应用,是考查分析和处理综合题的能力的好题.7.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少? 【答案】(1)25/m s (261m (3)1.25m 【解析】 【分析】 【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21AN v F m R=在B 点,根据牛顿第二定律22BN v F mg m R-=根据题意有213N N F F mg -=故2()B v g R h =+若0h =,则小球在B 点的速度1225m/s v gR ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得1t s =则水平方向126m x v t ==故小球落地点距C 点的距离s ==;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v = 则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又2Hx '=解得1.25m l =.点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.8.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R = ①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨ 解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件 300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.9.如图,半径R =0.4m 的部分光滑圆轨道与水平面相切于B 点,且固定于竖直平面内.在水平面上距B 点s =5m 处的A 点放一质量m =3kg 的小物块,小物块与水平面间动摩擦因数为1=3μ.小物块在与水平面夹角θ=37o 斜向上的拉力F 的作用下由静止向B 点运动,运动到B 点撤去F ,小物块沿圆轨道上滑,且能到圆轨道最高点C .(g 取10m/s 2,sin37o =0.6,cos37o =0.8)求:(1)小物块在B 点的最小速度v B 大小;(2)在(1)情况下小物块在水平面上运动的加速度大小;(3)为使小物块能沿水平面运动并通过圆轨道C 点,则拉力F 的大小范围.【答案】(1)25/B v m s = (2)22/a m s = (3)1650N F N ≤≤(或1650N F N ≤<) 【解析】【详解】(1) 小物块恰能到圆环最高点时,物块与轨道间无弹力.设最高点物块速度为v C ,则2C v mg m R= 解得:2C v gR = 物块从B 到C 运动,只有重力做功,所以其机械能守恒:()2211222B C mv mv mg R =+ 解得:525m/s B v gR ==(2) 根据运动学规律22B v as =,解得222m/s 2B v a s== (3)小物块能沿水平面运动并通过圆轨道C 点,有两种临界情况: ①在F 的作用下,小物块刚好过C 点:物块在水平面上做匀加速运动,对物块在水平面上受力分析如图:则 Fcos N ma θμ-=Fsin N mg θ+=联立解得:16N mg ma F cos sin μθμθ+==+ ②在F 的作用下,小物块受水平地面的支持力恰好为零Fsin mg θ=, 解得:50N =F综上可知,拉力F 的范围为:16N 50N F ≤≤(或16N 50N F ≤<)10.如图所示,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零; (3)转台从静止开始加速到角速度3gLω=的过程中,转台对物块做的功.【答案】(1)1g Lμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1g Lμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =+【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.2.如图所示,竖直平面内的光滑3/4的圆周轨道半径为R ,A 点与圆心O 等高,B 点在O 的正上方,AD 为与水平方向成θ=45°角的斜面,AD 长为72R .一个质量为m 的小球(视为质点)在A 点正上方h 处由静止释放,自由下落至A 点后进入圆形轨道,并能沿圆形轨道到达B 点,且到达B 处时小球对圆轨道的压力大小为mg ,重力加速度为g ,求:(1)小球到B 点时的速度大小v B(2)小球第一次落到斜面上C 点时的速度大小v(3)改变h ,为了保证小球通过B 点后落到斜面上,h 应满足的条件 【答案】2gR 10gR 332R h R ≤≤ 【解析】 【分析】 【详解】(1)小球经过B 点时,由牛顿第二定律及向心力公式,有2Bv mg mg m R+=解得2B v gR(2)设小球离开B 点做平抛运动,经时间t ,下落高度y ,落到C 点,则212y gt =cot B y v t θ=两式联立,得2244B v gR y R g g===对小球下落由机械能守恒定律,有221122B mv mgy mv += 解得v ===(3)设小球恰好能通过B 点,过B 点时速度为v 1,由牛顿第二定律及向心力公式,有21v mg m R=又211()2mg h R mv -=得32h R =可以证明小球经过B 点后一定能落到斜面上设小球恰好落到D 点,小球通过B 点时速度为v 2,飞行时间为t ',21)sin 2gt θ='2)cos v t θ='解得2v =又221()2mg h R mv -=可得3h R =故h 应满足的条件为332R h R ≤≤ 【点睛】小球的运动过程可以分为三部分,第一段是自由落体运动,第二段是圆周运动,此时机械能守恒,第三段是平抛运动,分析清楚各部分的运动特点,采用相应的规律求解即可.3.如图所示,半径R=0.40m 的光滑半圆环轨道处于竖起平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m=0.10kg 的小球,以初速度V 0=7.0m/s 在水平地面上向左做加速度a=3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点.求(1)小球到A 点的速度 (2)小球到B 点时对轨道是压力(3)A 、C 间的距离(取重力加速度g=10m/s 2).【答案】(1) 5/A V m s = (2) 1.25N F N = (3)S AC =1.2m 【解析】 【详解】(1)匀减速运动过程中,有:2202A v v as -=解得:5/A v m s =(2)恰好做圆周运动时物体在最高点B 满足: mg=m 21Bv R,解得1B v =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:12mv 2A =2mgR+12mv 2B 联立可得:v B =3 m/s因为v B >v B1,所以小球能通过最高点B .此时满足2N v F mg m R+=解得 1.25N F N =(3)小球从B 点做平抛运动,有:2R=12gt 2 S AC =v B ·t得:S AC =1.2m . 【点睛】解决多过程问题首先要理清物理过程,然后根据物体受力情况确定物体运动过程中所遵循的物理规律进行求解;小球能否到达最高点,这是我们必须要进行判定的,因为只有如此才能确定小球在返回地面过程中所遵循的物理规律.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t=1 s此时滑块的位移为:x1=v D t-a1t2,木板的位移为:x2=a2t2,L=x1-x2,代入数据解得:L=2.5 mv共=2 m/sx2=1 m达到共同速度后木板又滑行x′,则有:v共2=2μ2gx′,代入数据解得:x′=1.5 m木板在水平地面上最终滑行的总位移为:x木=x2+x′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.一个同学设计了一种玩具的模型如图所示,该模型由足够长的倾斜直轨道AB与水平直轨道BC平滑连接于B点,水平直轨道与圆弧形轨道相切于C点,圆弧形轨道的半径为R、直径CD竖直,BC=4R。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
高中物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B点进入半圆形轨道瞬间,对轨道的压力为其重力的9倍,之后向上运动经C点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开C点后,再落回到水平面上时距B点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】(1)(2)4R(3)或【解析】【详解】(1)由动能定理得W=在B点由牛顿第二定律得:9mg-mg=m解得W=4mgR(2)设物块经C点落回到水平面上时距B点的距离为S,用时为t,由平抛规律知S=v c t2R=gt2从B到C由动能定理得联立知,S= 4 R(3)假设弹簧弹性势能为EP,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知EP≤mgR若物块刚好通过C点,则物块从B到C由动能定理得物块在C点时mg=m则联立知:EP≥mgR .综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为 EP≤mgR 或 EP≥mgR .3.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。
(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。
30.(合肥)质量为m=1kg 的小物块轻轻放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆孤轨道下滑。
B 、C 为圆弧的两端点,其连线水平。
已知圆弧半径R=1.0m 圆弧对应圆心角︒=106θ,轨道最低点为O ,A 点距水平面的高度h=0.8m 。
小物块离开C 点后恰能无碰撞的沿固定斜面向上运动,0.8s 后经过D 点,物块与斜面间的滑动摩擦因数为1μ=0.33(g=10m/s 2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A 点的水平初速度v 1 (2)小物块经过O 点时对轨道的压力 (3)斜面上CD 间的距离(4)假设小物块与传送带间的动摩擦因数为=2μ0.3,传送带的速度为5m/s ,则PA 间的距离是多少?39.(巢湖)质量为M 的圆环用细线(质量不计)悬挂着,将两个质量均为m 的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求: (1)在圆环不动的条件下,悬线中的张力T 随cos θ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T 的极小值及相应的cos θ值;(2)小球与圆环的质量比Mm 至少为多大时圆环才有可能上升?23.福建摸底如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。
槽内放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“”形槽的宽度略小。
现有半径r(r<<R)的金属小球以水平初速度V 0冲向滑块,从滑块的一侧半圆形槽口边缘进入。
已知金属小球的质量为m ,木质滑块的质量为3m ,整个运动过程中无机械能损失。
求:(1)当金属小球滑离木质滑块时,金属小球和木质滑块的速度各是多大;(2)当金属小球经过木质滑块上的半圆柱形槽的最右端A 点时,金属小球的对地速度。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.2.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R3.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =4.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得:T11s2mg042( H L )L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.2.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω0时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0.(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0g .=l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.3.如下图,高为L 的倾斜直轨道AB、 CD 与水平面的夹角均为53°,分别与竖直平面内的圆滑圆弧轨道相切于B、D 两点,圆弧的半径也为L 。
第10讲 圆周运动目录考点一 圆周运动中的运动学分析 ............................................................................................. 1 考点二 圆周运动中的动力学分析 ............................................................................................. 1 考点三 圆周运动的临界问题 ..................................................................................................... 4 考点四 竖直平面内圆周运动绳、杆模型 ................................................................................. 7 练出高分 (10)考点一 圆周运动中的运动学分析1.线速度:描述物体圆周运动快慢的物理量.v =Δs Δt =2πrT .2.角速度:描述物体绕圆心转动快慢的物理量.ω=ΔθΔt =2πT. 3.周期和频率:描述物体绕圆心转动快慢的物理量.T =2πr v ,T =1f .4.向心加速度:描述速度方向变化快慢的物理量.a n =rω2=v 2r =ωv =4π2T2r . 5.相互关系:(1)v =ωr =2πTr =2πrf .(2)a n =v 2r =rω2=ωv =4π2T2r =4π2f 2r .[例题1] (2023•崇明区二模)如图为车库出入口采用的曲杆道闸,道闸由转动杆OP 与横杆PQ 链接而成,P 、Q 为横杆的两个端点。
在道闸抬起过程中,杆PQ 始终保持水平,则在抬起过程中P 和Q 两点( )A .线速度相同,角速度相同B.线速度相同,角速度不同C.线速度不同,角速度相同D.线速度不同,角速度不同[例题2](2023•台州二模)某款机械表中有两个相互咬合的齿轮A、B,如图所示,齿轮A、B的齿数之比为1:2,齿轮匀速转动时,则A、B齿轮的()A.周期之比T1:T2=2:1B.角速度之比为ω1:ω2=2:1C.边缘各点的线速度大小之比v1:v2=1:2D.转速之比为n1:n2=1:2[例题3](2023•广东一模)如图,为防止航天员的肌肉萎缩,中国空间站配备了健身自行车作为健身器材。
30.(合肥)质量为m=1kg 的小物块轻轻放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆孤轨道下滑。
B 、C 为圆弧的两端点,其连线水平。
已知圆弧半径R=1.0m 圆弧对应圆心角︒=106θ,轨道最低点为O ,A 点距水平面的高度h=0.8m 。
小物块离开C 点后恰能无碰撞的沿固定斜面向上运动,0.8s 后经过D 点,物块与斜面间的滑动摩擦因数为1μ=0.33(g=10m/s 2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A 点的水平初速度v 1 (2)小物块经过O 点时对轨道的压力 (3)斜面上CD 间的距离(4)假设小物块与传送带间的动摩擦因数为=2μ0.3,传送带的速度为5m/s ,则PA 间的距离是多少?39.(巢湖)质量为M 的圆环用细线(质量不计)悬挂着,将两个质量均为m 的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求: (1)在圆环不动的条件下,悬线中的张力T 随cos θ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T 的极小值及相应的cos θ值;(2)小球与圆环的质量比Mm 至少为多大时圆环才有可能上升?23.福建摸底如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。
槽内放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“”形槽的宽度略小。
现有半径r(r<<R)的金属小球以水平初速度V 0冲向滑块,从滑块的一侧半圆形槽口边缘进入。
已知金属小球的质量为m ,木质滑块的质量为3m ,整个运动过程中无机械能损失。
求:(1)当金属小球滑离木质滑块时,金属小球和木质滑块的速度各是多大;(2)当金属小球经过木质滑块上的半圆柱形槽的最右端A 点时,金属小球的对地速度。
25.河南如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上。
现有一滑块A 从光滑曲面上离桌面h 高处由静止开始下滑下,与滑块B 发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出。
已知,3,,m m m m m m C B A ===求: (1)滑块A 与滑块B 碰撞结束瞬间的速度;(2)被压缩弹簧的最大弹性势能; (3)滑块C 落地点与桌面边缘的水平距离。
26.河北调研如图,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点。
水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R=0.8m 的圆环剪去了左上角135°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离也是R 。
用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点。
用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为226t t x -=,物块飞离桌面后由P 点沿切线落入圆轨道。
g=10m/s 2,求:(1)BP间的水平距离。
(2)判断m2能否沿圆轨道到达M点。
(3)释放后m2运动过程中克服摩擦力做的功27.(开城)如图所示,质量为m=0.5kg的小球从距离地面高H=5m处自由下落,到达地面时恰能沿凹陷于地面的半圆形槽壁运动,半圆形槽的半径R为0.4m,小球到达槽最低点时速率恰好为10m/s,并继续沿槽壁运动直到从槽左端边缘飞出且沿竖直方向上升、下落,如此反复几次,设摩擦力大小恒定不变,求:(1)小球第一次飞出半圆槽上升距水平地面的高度h为多少?(2)小球最多能飞出槽外几次?(g=10m/s2)。
20.海南如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg的木块,一颗质量为m = 0.01kg的子弹,以v o= 400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R多大时,平抛的水平距离最大? 最大值是多少?(g取10m/s2)6.(08天津)光滑水平面上放着质量mA =1 kg的物块A与质量mB=2 kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49 J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C.取g=10 m/s2,求(1)绳拉断后瞬间B的速度vB的大小; (2)绳拉断过程绳对B的冲量I的大小; (3)绳拉断过程绳对A所做的功W.8.(08广东)如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45 m的1/4圆弧面,A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑,小滑块P1和P2的质量均为m,滑板的质量M=4m.P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.40,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,P2静止在粗糙面的B点.P1以v=4.0 m/s的初速度从A点沿弧面自由滑下,与P2发生弹性碰撞后,P1处在粗糙面B点上,当P2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P2继续滑动,到达D点时速度为零,P1与P2可视为质点,取g=10 m/s2.问:(1)P2在BC段向右滑动时,滑板的加速度为多大? (2)BC长度为多少?N、P1和P2最终静止后,P1与P2间的距离为多少?10.如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一初速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R。
重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t;(2)小球A冲进轨道时速度v的大小。
HR地面地面36.(12广东)图18(a )所示的装置中,小物块A 、B 质量均为m ,水平面上PQ 段长为l ,与物块间的动摩擦因数为μ,其余段光滑。
初始时,挡板上的轻质弹簧处于原长;长为r 的连杆位于图中虚线位置;A 紧靠滑杆(A 、B 间距大于2r )。
随后,连杆以角速度ω匀速转动,带动滑杆作水平运动,滑杆的速度-时间图像如图18(b )所示。
A 在滑杆推动下运动,并在脱离滑杆后与静止的B 发生完全非弹性碰撞。
(1)求A 脱离滑杆时的速度u o ,及A 与B 碰撞过程的机械能损失ΔE 。
(2)如果AB 不能与弹簧相碰,设AB 从P 点到运动停止所用的时间为t 1,求ω得取值范围,及t 1与ω的关系式。
(3)如果AB 能与弹簧相碰,但不能返回道P 点左侧,设每次压缩弹簧过程中弹簧的最大弹性势能为E p ,求ω的取值范围,及E p 与ω的关系式(弹簧始终在弹性限度内)。
36、(11广东)如图20所示,以A 、B 和C 、D 为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B 点,上表面所在平面与两半圆分别相切于B 、C 。
一物块被轻放在水平匀速运动的传送带上E 点,运动到A 时刚好与传送带速度相同,然后经A 沿半圆轨道滑下,再经B 滑上滑板。
滑板运动到C 时被牢固粘连。
物块可视为质点,质量为m ,滑板质量M=2m ,两半圆半径均为R ,板长l =6.5R ,板右端到C 的距离L 在R <L <5R 范围内取值。
E 距A 为S=5R ,物块与传送带、物块与滑板间的动摩擦因素均为μ=0.5,重力加速度取g. (1) 求物块滑到B 点的速度大小;(2) 试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f 与L 的关系,并判断物块能否滑到CD 轨道的中点。
15.(09·安徽)过山车是游乐场中常见的设施。
下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =。
一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m /s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m 。
小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的。
假设水平轨道足够长,圆形轨道间不相互重叠。
重力加速度取210m /s g =,计算结果保留小数点后一位数字。
试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二圆形轨道,B 、C 间距L 应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径3R 应满足的条件;小球最终停留点与起点A 的距离。
17.(09·浙江)某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟。
已知赛车质量m=0.1kg ,通电后以额定功率P=1.5w 工作,进入竖直轨道前受到阻力恒为0.3N ,随后在运动中受到的阻力均可不记。
图中L=10.00m ,R=0.32m ,h=1.25m ,S=1.50m 。
问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 )22.(09·四川) 如图所示,轻弹簧一端连于固定点O ,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V 0=20 m/s 竖直向下射出小球P,小球P 到达O 点的正下方O 1点时速度恰好水平,其大小V=15 m/s.若O 、O 1相距R=1.5 m,小球P 在O 1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1 kg 的静止绝缘小球N 相碰。
碰后瞬间,小球P 脱离弹簧,小球N 脱离细绳,同时在空间加上竖直向上的匀强电场E 和垂直于纸面的磁感应强度B=1T 的弱强磁场。
此后,小球P 在竖直平面内做半径r=0.5 m 的圆周运动。