FLAC3D基础知识介绍
- 格式:docx
- 大小:23.74 KB
- 文档页数:18
FLAC3D根底知识介绍一、概述FLAC〔Fast Lagrangian Analysis of Continua〕由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的根本内存64K〕,所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已开展到V3.0版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令〔集〕文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进展计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进展土质、岩石和其它材料的三维构造受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的构造。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动〔大变形模式〕。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为假设干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
FLAC3D基本原理FLAC3D是一种常用的三维数值模拟软件,用于模拟岩土结构与地下工程行为。
该软件基于行为离散化原理,采用有限差分(Finite Difference)法进行数值计算,能够模拟地质和土木工程中的各种复杂现象。
1.离散化方法:FLAC3D使用有限差分法将模拟空间离散化,将三维空间划分为规则的网格单元。
每个单元内的物理特性和力学行为都通过节点上的数值来表示,如应力、应变、速度和位移等。
这种离散化方法能够准确地描述物理实体及其行为,方便进行数值计算。
2.材料模型:FLAC3D提供了一系列常用的材料模型,用于描述不同类型的岩土材料的力学性质。
这些材料模型可以基于材料的实验数据进行参数校准,用于模拟材料的弹性、塑性、损伤和破坏行为。
通过选择合适的材料模型,可以准确地模拟不同材料在不同工况下的力学响应。
3.节点连接:FLAC3D使用连接单元将不同类型的节点连接起来,表示它们之间的物理关系。
连接单元可以用于定位节点的相对位置、约束节点的运动、传递节点间的力和应力等。
通过定义不同的连接单元,可以准确地设置节点间的物理行为,从而模拟复杂的地质和结构体系。
4.边界条件:FLAC3D允许用户设定各种边界条件,以模拟实际工况下的问题。
边界条件可以是预设的平移、旋转或固定约束,也可以是施加在表面或内部的荷载、速度或位移等条件。
通过设置合适的边界条件,可以模拟出各种复杂的力学行为,如坡体稳定性、岩石应力分布、地下水渗流等。
5.可视化显示:FLAC3D具有强大的可视化功能,可以将模拟结果以直观的方式展示出来。
用户可以通过设置不同的颜色、亮度和透明度等参数,来显示节点和单元的不同属性,如应力、位移和应变等。
这些可视化结果可以帮助用户直观地理解模拟的物理过程和行为规律。
总而言之,FLAC3D的基本原理是基于离散化方法和有限差分法,使用材料模型、连接单元和边界条件来模拟复杂的地质和土木工程行为。
通过可视化显示结果,用户可以直观地理解模拟的物理过程和行为规律,并进行相应的工程分析和设计。
FLAC3D的基本知识介绍岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。
由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。
差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。
FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V5.0的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
并且其推出的FLAC SLOPE有了WINDOWS界面。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
FLAC3D采用ANSI C++语言编写的。
FLAC3D的基本知识介绍岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。
由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。
差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。
FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V5.0的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
并且其推出的FLAC SLOPE有了WINDOWS界面。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
FLAC3D采用ANSI C++语言编写的。
FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
FLAC3D入门基本知识FLAC3D一点知识点,仅以参考4、id,cid的区别id是指在整个结构中的编号,而cid是指在某一类比如说cable中的编号。
拿cable 中的一个单元来说,它既有自己在整个结构中的cd,又有自己在cable中的cid如果我设置了两个pilesel pile id=1 begin=(10.0, 1.0, 0.0) end=(10.0, 1.0, -10.0) nseg=5sel pile id=2 begin=(10.0, 3.0, 0.0) end=(10.0, 3.0, -10.0) nseg=5那么,id=1是不是代表第一根桩?第一根桩分五段,cid=1~5,那么第二根桩是cid=6~10!5、什么情况下使用set large?初始应力平衡的时候,不能用large模式。
在进行初始应力平衡时一定不要用!在进行大变形计算时,最好要用!!一般硬岩可以使用FLAC默认的小应变,如果是土体和软岩,用大应变 . 在做开挖的时候在进行原始应力平衡计算的时候是用小应变,后面的开挖以及支护的时候选用大应变.6、得到初始应力的方法:方法、可以先给一些材料参数很大的值,进行初始求解,在计算之前再将材料参数设为正常值,即可。
如在手册中给的第一个示例中就是这样做的。
下面是例子,These are only initial values that are used during the development of gravitational stresses within the body. In effect, we are forcing the body to behave elastically during the development of the initial in-situ stress state.* This prevents any plastic yield during the initial loading phase of the analysis. Gen zone brick size 6 8 8Mode mohrProp bulk 1e8 shear 0.3e8 fric 35Prop cohesion 1e10 tens 1e10 ;注意在此这个值给的很大。
FLAC3D的基本知识介绍岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。
由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。
差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。
FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。
目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。
1995年,FLAC2D已升级为V5.0的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。
并且其推出的FLAC SLOPE有了WINDOWS界面。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。
FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
FLAC3D采用ANSI C++语言编写的。
FLAC 3D 基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua )由美国Itasca 公司开发的。
目前,FLAC 有二维和三维计算程序两个版本,二维计算程序V3.0 以前的为DOS 版本,V2.5 版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。
1995 年,FLAC2D 已升级为V3.3 的版本,其程序能够使用护展内存。
因此,大大发护展了计算规模。
FLAC3D是一个三维有限差分程序,目前已发展到V3.0 版本。
FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。
因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。
FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。
调整三维网格中的多面体单元来拟合实际的结构。
单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。
FLAC3D 采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。
由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。
三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。
三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。
三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。
FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc 开发的三维快速拉格朗日分析程序,该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏或塑性流动的力学行为,特别适用于分析渐进破坏和失稳以及模拟大变形。
它包含10种弹塑性材料本构模型,有静力、动力、蠕变、渗流、温度五种计算模式,各种模式间可以互相藕合,可以模拟多种结构形式,如岩体、土体或其他材料实体,梁、锚元、桩、壳以及人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩、界面单元等,可以模拟复杂的岩土工程或力学问题。
FLAC3D采用ANSI C++语言编写的。
二、FLAC3D的优点与不足FLAC3D有以下几个优点:1对模拟塑性破坏和塑性流动采用的是混合离散法。
这种方法比有限元法中通常采用的离散集成法更为准确、合理。
2即使模拟的系统是静态的,仍采用了动态运动方程,这使得FLAC3D 在模拟物理上的不稳定过程不存在数值上的障碍。
3采用了一个显式解方案。
因此,显式解方案对非线性的应力-应变关系的求解所花费的时间,几互与线性本构关系相同,而隐式求解方案将会花费较长的时间求解非线性问题。
面且,它没有必要存储刚度矩阵,这就意味着,米用中等容量的内存可以求解多单兀结构;模拟大变形问题几互并不比小变形问题多消耗更多的计算时间,因为没有任何刚度矩阵要被修改。
当然,它也存在以下几个不足之处:1对于线性问题的求解,FLAC3D比其他有限元程序运行得要慢;但是,当进行大变形非线性问题或模拟实际可能出现不稳定问题时,FLAC3D是最有效的工具。
2用FLAC3D求解时间取决于最长的自然周期和最短的自然周期之比。
三、FLAC3D的特点1、应用范围广泛1.1 包含10材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型,总共包含了10种材料模型:1. 开挖模型null2. 3个弹性模型(各向同性,横观各向同性和正交各向同性弹性模型)3. 6 个塑性模型(Drucker-Prager 模型、Morh-Coulomb 模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型)。
Flac3D网格中的每个区域可以给以不同的材料模型,并且还允许指定材料参数的统计分布和变化梯度。
还包含了节理单元,也称为界面单元,能够模拟两种或多种材料界面不同材料性质的间断特性。
节理允许发生滑动或分离,因此可以用来模拟岩体中的断层、节理或摩擦边界。
FLAC3D中的网格生成器gen,通过匹配、连接由网格生成器生成局部网格,能够方便地生成所需要的三维结构网格。
还可以自动产生交岔结构网格(比如说相交的巷道),三维网格由整体坐标系x,y,z 系统所确定,这就提供了比较灵活的产生和定义三维空间参数。
1.2 有五种计算模式(1)静力模式。
这是FLAC-3D默认模式,通过动态松弛方法得静态解。
(2)动力模式。
用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件,边界可以固定边界和自由边界。
动力计算可以与渗流问题相藕合。
(3) 蠕变模式。
有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型。
(4) 渗流模式。
可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合。
渗流服从各向同性达西定律,流体和孔隙介质均被看作可变形体。
考虑非稳定流,将稳定流看作是非稳定流的特例。
边界条件可以是固定孔隙压力或恒定流,可以模拟水源或深井。
渗流计算可以与静力、动力或温度计算耦合,也可以单独计算。
(5) 温度模式。
可以模拟材料中的瞬态热传导以及温度应力。
温度计算可以与静力、动力或渗流计算藕合,也可单独计算。
1.3 可以模拟多种结构形式(1) 对于通常的岩体、土体或其他材料实体,用八节点六面体单元模拟。
(2) FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元。
可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等。
(3) FLAC-3D的网格中可以有界面,这种界面将计算网格分割为若干部分,界面两边的网格可以分离,也可以发生滑动,因此,界面可以模拟节理、断层或虚拟的物理边界。
1.4 可以有多种边界条件边界方位可以任意变化,边界条件可以是速度边界、应力边界,单元内部可以给定初始应力,节点可以给定初始位移、速度等,还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布。
2 FLAC-3D 内嵌语言FISHFLAC-3D具有强大内嵌语言FISH,使得用户可以定义新的变量或函数,以适应用户的特殊需要,例如,利用HSH做以下事情:(1) 用户可以自定义材料的空间分布规律,如非线性分布等。
(2) 用户可以定义变量,追踪其变化规律并绘图表示或打印输出。
(3) 用户可以自己设计FLAC-3D内部没有的单元形态。
(4) 在数值试验中可以进行伺服控制。
(5) 用户可以指定特殊的边界条件。
(6) 自动进行参数分析。
(7) 利用FLAC-3D内部定义的Fish变量或函数,用户可以获得计算过程中节点、单元参数,如坐标、位移、速度、材料参数、应力、应变、不平衡力等。
3 FLAC-3D具有强大的前后处理功能FLAC-3D具有强大的自动三维网格生成器,内部定义了多种单元形态,用户还可以利用FISH自定义单元形态,通过组合基本单元,可以生成非常复杂的三维网格,比如交叉隧洞等。
在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果,以对结果进行实时分析,图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等,可以给出计算域的任意截面上的变量图或等直线图,计算域可以旋转以从不同的角度观测计算结果。
四、FLAC3D做计算分析的一般步骤:与大多数程序采用数据输入方式不同,FLAC采用的是命令驱动方式。
命令字控制着程序的运行。
在必要时,尤其是绘图,还可以启动FLAc用户交互式图形界面。
为了建立FLAC 计算模型,必须进行以下三个方面的工作:1. 有限差分网格2. 本构特性与材料性质3. 边界条件与初始条件完成上述工作后,可以获得模型的初始平衡状态,也就是模拟开挖前的原岩应力状态。
然后,进行工程开挖或改变边界条件来进行工程的响应分析,类似于FLAC的显式有限差分程序的问题求解。
与传统的隐式求解程序不同,FLAC采用一种显式的时间步来求解代数方程。
进行一系列计算步后达到问题的解。
在FLAC中,达到问题所需的计算步能够通过程序或用户加以控制,但是,用户必须确定计算步是否已经达到问题的最终的解五、FLAC3D分析的使用领域根据手册中所说,总结如下:1承受荷载能力与变形分析:用于边坡稳定和基础设计2渐进破坏与坍塌反演:用于硬岩采矿和隧道设计3断层构造的影响研究:用于采矿设计4施加于地质体锚索支护所提供的支护力研究:岩锚和土钉的设计5排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究:挡土墙结构的地下水流动和土体固结研究6粘性材料的蠕变特性:用于碳酸钾盐矿设计7陡滑面地质结构的动态加载:用于地震工程和矿山岩爆研究8爆炸荷载和振动的动态响应:用于隧道开挖和采矿活动9结构的地震感应:用于土坝设计10由于温度诱发荷载所导致的变形和结构的不稳定12大变形材料分析:用于研究粮仓谷物流动和放矿的矿石流动六、后处理用tecplot绘制曲线1•第一主应力2. xdisp、ydisp、zdisp、disp用exceI做曲线隧道1做地表沉降槽(zdisp)2地表横向位移(xdisp)3隧道中线竖向沉降曲线(zdisp)4提取位移矢量图,5显示初期支护结构内力6显示state (找塑性区)基坑1做地表沉降槽(zdisp)2提取位移矢量图,3显示初期支护结构内力4显示state (找塑性区)边坡做安全系数和应变图七、模型最优化用FLAC3D解决问题时,为了得到最有效的分析使模型最优化是很重要的。
这个章节对改进模型的运行提供了一些方法建议。
同时, 准备计算时需要避免的一些通常出现的缺陷也列了出来。
1.检查模型运行时间一个FLAC3D例子的运行时间是区域数的4/3倍。
这个规则适用于平衡条件下的弹性问题。
对于塑性问题,运行时间会有点改变,但是不会很大,但是如果发生塑性流动,这个时间将会大的多。
对一个具体模型检查自己机子的计算速度很重要。