电磁场与电磁波理论基础 课后答案
- 格式:pdf
- 大小:390.57 KB
- 文档页数:15
一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形;(2)求三角形的面积。
第一章矢量分析第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zyz yx z y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zyz y x z y xC C C A A A e e e e e e e e e C A x x x x x452102321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为,位置矢量B 与X 轴的夹角为,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅cos B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=求:(a) A ; (b); (c); (d); (e)(f)解:(a) ; (b) 14132222222=++=++=z y x A A A A )ˆ2ˆˆ(61ˆz y x BB b -+==( c) ; (d) 7=⋅B A z y xC B ˆ4ˆ7ˆ---=⨯(e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯(f)19)(-=⋅⨯C B A1.2;求:(a) A ; (b) ; (c) ; (d) ; (e) BA+解:(a) ;(b) ;(c) 25π+=A )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ43-=⋅πB A (d)z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ(e)z B A ˆˆ)3(ˆ-++=+ϕπρ1.3; 求:(a) A ; (b); (c); (d); (e)解:(a) ; (b) ; (c) ;254π+=A )ˆˆ(11ˆ2θππ-+=rb22π-=⋅B A(d) ; (e) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ϕπˆ2ˆ3-=+rB A 1.4 ;当时,求。
解:当时,=0, 由此得 5-=α1.5将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。
解:(1)圆柱坐标系由(1.2-7)式,;ϕϕϕρsin ˆcos ˆˆ1-==xF ϕϕϕρcos ˆsin ˆˆ2+==y F(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xFϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF1.6将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。
解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρ)ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕ1.7将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot ⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
第一章 习题解答1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z aC =5x a -2za求:错误!未找到引用源。
矢量A 的单位矢量A a ; 错误!未找到引用源。
矢量A 和B 的夹角AB θ; 错误!未找到引用源。
A ·B 和A ⨯B错误!未找到引用源。
A ·(B ⨯C )和(A ⨯B )·C ;错误!未找到引用源。
A ⨯(B ⨯C )和(A ⨯B )⨯C解:错误!未找到引用源。
A a =A A=(x a +2y a -3z a ) 错误!未找到引用源。
cos AB θ=A ·B /A BAB θ=135.5o错误!未找到引用源。
A ·B =-11, A ⨯B =-10x a -y a -4z a 错误!未找到引用源。
A ·(B ⨯C )=-42(A ⨯B )·C =-42错误!未找到引用源。
A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14 那么2x +2y +2z =141.9求标量场ψ(x,y,z )=62x 3y +ze 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +ze z a 得ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场与电磁波课后习题解答给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)2222314141412(3)A x y z+-===-++-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 6453x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ=1417238==⨯A B A B ,得 1cos AB θ-=(135.5238= (5)A 在B 上的分量 B A =A cos AB θ=17=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
r a=2r jq 题2-11E 2E 3E 题2-2图()004,,()400P ,,oYZ1r 2r r 1R 2R 18q C=q 题2-3图第二章 静电场 2-1.已知半径为r a =的导体球面上分布着面电荷密度为0cos S S ρρϑ=的电荷,式中的0S ρ为常数,试计算球面上的总电荷量。
解 取球坐标系,球心位于原点中心,如图所示。
由球面积分,得到()220cos sin S S S Q dS r d d p p=r =rq q q j òòòò220022000200cos sin cos sin sin20S S S r d d rd d a d p pp pp =rq q q j=r q q q j =r p q q =òòòòò2-2.两个无限大平面相距为d ,分别均匀分布着等面电荷密度的异性电荷,求两平面外及两平面间的电场强度。
解 假设上板带正电荷,面密度为S r ;下板带负电,面密度为S -r 。
对于单一均匀带电无限大平面,根据书上例 2.2得到的推论,无限大带电平面的电场表达式为2SE r =e 对于两个相距为的d 无限大均匀带电平面,根据叠加原理 123000SE ,E ,E r ===e2-3.两点电荷18C q =和24C q =−,分别位于4z =和4y =处,求点(4,0,0)P 处的电场强度。
解 根据点电荷电场强度叠加原理,P 点的电场强度矢量为点S 1和S 1处点电荷在P 处产生的电场强度的矢量和,即()112233010244q q R R =+pe pe R R E r 式中11144x z ,R =-=-==R r r e e 22244x y ,R =-=-==R r r e e代入得到()()()()()330444844142x y x z x y z éù-êú-êú=-êúpe êúëûù=+-úûe e e e E r e e e 2-7.一个点电荷+q 位于(-a , 0, 0)处,另一点电荷-2q 位于(a , 0, 0)处,求电位等于零的面;空间有电场强度等于零的点吗?解 根据点电荷电位叠加原理,有120121()4q q u R R r πε⎡⎤=+⎢⎥⎣⎦式中()11y z x a y R =-=+++=R r r e e e()22y z x a y R =-=-++=R r r e e e代入得到()4q u r πε⎡⎤=电位为零,即令0()04q u r πε⎡⎤== 简化可得零电位面方程为()()2233330x a x a y z ++++=根据电位与电场强度的关系,有()()()()()()()()3322222222222222203322332222222()()2422x y z x yx a y z x a y z x a y z x a y z x a y u u u u xy z x a y z z q x a x a y y z z E r r e e e e e πε−−−−−−⎡⎤∂∂∂=−∇=−++⎢⎥∂∂∂⎣⎦⎧⎛⎫⎪⎡⎤⎡⎤=−−++− ⎪⎨⎣⎦⎣⎦ ⎪⎪⎝⎭⎩⎛⎫⎡⎤⎡⎤+−+ ⎪⎣⎦⎣⎦ ⎪⎝⎭⎛⎫⎡⎤⎡⎤+−+ ⎣⎦⎣+++−+++++−+++++++⎦ ⎝−⎭z e ⎫⎪⎪⎬⎪⎪⎭要是电场强度为零,必有 000x y z E ,E ,E ===即()()()()()()()()332233222222222222222233222222202020x a x a y y z z x a y z x a y z x a y z x a y z x a y z x a y z −−−−−−+++−+++++−⎧⎡⎤⎡⎤+++++−+−++−=⎪⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎨⎣⎦⎣⎦⎪⎪⎡⎤⎡⎤−+=⎪⎣⎣⎩+⎦⎦此方程组无解,因此,空间没有电场强度为零的点。
2-8. 两无限长同轴圆柱导体,半径分别为a 和b ()a b <,内外导体间为空气,如题2-8所示。
设同轴圆柱导体的电荷均匀分布,其电荷面密度分别为1S ρ和2S ρ,求:(1)空间各处的电场强度;(2)两导体间的电压;(3)要使b ρ>区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解 根据内外导体表面的电荷分布,可判断出空间电场分布具有柱对称性。
在柱坐标中,作一长度为l ,半径为ρ的同轴圆柱形闭合高斯面S ,则在S 侧面上D 的大小处处相等,D 的方向均沿e ρ方向。
而在S 的两端面上,由于D 与端面方向垂直,故D 对两端面的通量贡献为零。
根据高斯定理,我们可以得到200()2D S e e ρρ lS d D d dz l D Qπρρρϕπρ⋅=⋅==⎰⎰⎰⎰其中Q 为高斯面S 内包围的总自由电荷。
(1)求空间各处的电场强度,分为三种情况①当0ρ<<a ,即内导体内部,此时0=Q ,故有000ρ=⇒=⇒D E D =u =u ar =题2-9图②当ρ<<a b ,此时12πρ=S Q al ,由高斯定理可得1()111022e e ρρπρπρρρρρρερ⋅===⇒=⇒=⇒=⎰⎰D S D E S S S S S d l D Q al a a a D ρρ③当ρ>b ,此时高斯面内的1222πρπρ=+S S Q al bl ,由高斯定理可得12()1212120222e e ρρπρπρπρρρρρρρρρερ⋅===++++⇒=⇒=⇒=⎰⎰D S D E S S S S S S S S S d l D Q al bl a b a b a b D ρρ(2)求两导体间的电压,由电位与电场强度之间的关系(此时电场强度须使用情况②时电场强度的值),可以得到1110001ln e e E l bbbS S S aaa a a ab U d d d a r r =⋅=⋅==e r e e òòòρρr r r r(3)要使ρ>b 区域内的电场强度为零,由上述情况③的结果可知,必须满足120ρρ+=S S a b2-9.电场中有一半径为a 的圆柱体,已知圆柱内、外的电位为20,cos ,u a a u A aρρϕρρ=≤⎧⎪⎛⎫⎨=−≥ ⎪⎪⎝⎭⎩求:(1)圆柱体内、外的电场强度;(2)这个圆柱是由什么材料构成的,表面有电荷吗?解 (1)根据电位与电场强度的关系式1z u u u u z E e e e ρϕρρϕ⎡⎤∂∂∂=−∇=−++⎢⎥∂∂∂⎣⎦得到22221cos 1si 0,n ,aa a A au A E E e e ρϕρϕϕρρρ≤⎛⎫⎛⎫+−≥ ⎪ ⎪⎝⎭⎝==−⎭=−∇+ (2)由于圆柱体是等位体,且圆柱内电场为零,判断材料是导体。
有根据电位边界条件 1212S u un nεερ∂∂−=−∂∂0xdρ0题2-11图而0,2cos ,aau au A aρρρρϕρρ==⎧∂=≤⎪∂⎪⎨∂⎪=≥⎪∂⎩所以02cos S A uϕρεερ∂=−=−∂ 2-11.两无限大平行板电极,距离为d ,电位分别为0和U 0,两板间充满电荷密度为0/x d ρ的介质,如图所示。
求两极板间的电位分布和极板上的电荷密度。
解 由于两无限大平板间存在电荷密度分布,电位函数满足泊松方程。
又平板沿Y 和Z 方向无穷大,电位分布与x 和z 无关,因此,有02200V x d d udxρερε=−=−且满足边界条件000x x d u u U ==⎧=⎪⎨=⎪⎩ 求解二阶常微分方程,得到 3012016u x c x c d r =-++e 应用边界条件,有2000010006x x d u ,c U d u U ,c d ==ì==ïïïr í==+ïïe ïïî所以300000166U d u x x d dæör r ÷ç÷=-++ç÷ç÷e e èø 根据电位满足的边界条件 1212S u un nεερ∂∂−=−∂∂ 可得在下极板上表面的电荷密度分布为r20V e ρρρ−=ld r题2-15图12120S x u u x x ρεε=∂∂⎛⎫=−− ⎪∂∂⎝⎭下 下极板导体中的电位为零,有 20u x∂=∂ 代入,得到02000001000662S x x U Uu x xd d dd d ρεερρρε==∂⎛⎫⎛⎫=−=−+=−+ ⎪ ⎪∂⎝⎭⎝⎭下 对于上极板,导体中的电位为常数 10u U = 有10u x∂=∂ 上极板下表面电荷密度为2000003S x dx dU ddu u xxρεεερ==∂∂=∂−==∂上2-15.空间某区域中的电荷密度在柱坐标系中为20V e ρρρ−=(C/m 3),应用高斯定理求电通密度D 。
解 根据题意知,电荷密度分布与φ、z 无关,因此场分布具有柱对称性,电通密度矢量D 仅有e ρ分量,由高斯定理()()VS V d dV D S ρ⋅=⎰⎰⎰⎰⎰取圆柱面为高斯面,有2200020ed d ld l D ρρππρρρϕρρϕ−=⎰⎰⎰()200224022202el l d D d l e ρπρρρρρρϕπρπρρ−−=⎡⎤=−++⎣⎦⎰⎰()220222eD ρρρρρ−⎡⎤−++⎣⎦=2-17.在真空中放置一无限长线电荷密度为ρl 的细金属棒,证明在径向距离上的两点ρ1、ρ2之间的电位差为题2-17 201ln 2lU περ=⎪⎝⎭。
解 首先计算无限长带电金属棒在空间任一点产生的电场。
由于线电荷分布无限长,电通密度矢量仅有径向分量,且在同一圆柱面上电通密度矢量的大小相等,根据高斯定理,有2l(S )d D l l ⋅=pr =r òòD S 由此得到电通密度矢量2lr r =prD e 而电场强度为 02lr r =pe rΕe 根据电位的定义,在径向选择一点0r 为参考点,则有00212121122001ln 22l l U u u d d d d r r r r r r r r r r =-=⋅-⋅=⋅r r r=⋅r =pe r pe r òòòòE l E l E le e2-22. 如题2-22所示,三层厚度相同的电介质板具有不同的介电常数。