气体放电过程分析共66页
- 格式:ppt
- 大小:5.70 MB
- 文档页数:66
气体放电过程的分析摘要:气体电介质,特别是空气,是电力系统中最重要的绝缘介质。
对气体放电过程进行分析,研究气体电介质的绝缘特性具有十分重要的意义。
而气体放电又受气体间隙、环境电场影响,其过程的分析需要各种理论的支持。
关键字:气体放电、带电质点、气体间隙、电子崩、汤逊理论、流注理论K一、气体中带电质点的产生与消失1.气体中带电质点的产生气体的特点:气体的分子间距很大,极化率很小,因此,介电常数都接近于1。
纯净的、中性状态的气体是不导电的,只有气体中出现了带电质点(电子、正离子、负离子)以后,才可能导电,并在电场作用下发展成为各种形式的气体放电现象。
气体导电的原因:气体中出现了带电质点(电子、正离子、负离子)以后,游离出来的自由电子、正离子和负离子在电场作用下移动,从而形成气体电介质的电导层。
气体带电质点的来源:有两个,一是气体分子本身发生游离(包括撞击游离、光游离、热游离等多种形式);二是放在气体中的金属发生表面游离。
2.气体中带电质点的消失气体中带电质点的消失主要有下列三种方式:带电质点受电场力的作用流入电极并中和电量;带电质点的扩散;带电质点的复合。
1)带电质点受电场力的作用而流入电极,中和电量带电质点在电场力的作用下受到加速,在向电场方向运动途中会不断地与气体分子相碰撞,碰撞后会发生散射,但从宏观来看,是向电场方向作定向运动的。
其平均速度开始是逐渐增加的(因受电场力的加速),但随着速度的增加,碰撞时失去的动能也增加,最后,在一定的电场强度下,其平均速度将达到某个稳定值。
这一平均速度称为带电质点的驱引速度。
2)带电质点的扩散带电质点的扩散就是指这些质点会从浓度较大的区域转移到浓度较小的区域,从而使带电质点在空间各处的浓度趋于均匀的过程。
带电质点的扩散是由杂乱的热运动造成的,而不是由于同号电荷的电场斥力造成的,因为即使在很大的浓度下,离子之间的距离仍大到静电力起不到什么作用的程度。
电子的直径比离子的直径小很多,在运动中受到的碰撞也比离子少得多,因此电子的扩散比离子的扩散快得多。
气体放电过程的分析干燥气体通常是良好的绝缘体,但当气体中存在自由带电粒子时,它就变为电的导体。
这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。
依气体压力、施加电压、电极形状、电源频率的不同,气体放电有多种多样的形式。
主要的形式有暗放电、辉光放电、电弧放电、电晕放电、火花放电、高频放电等。
20世纪70年代以来激光导引放电、电子束维持放电等新的放电形式,也日益受到人们的重视。
暗放电暗放电主要是非自持放电(但自持放电的某些区域中有暗放电存在)。
关于暗放电的理论是英国物理学家J.S.汤生于1903年提出的,故这种放电也称为汤生放电。
汤生理论的物理描述是:设外界催离素在阴极表面辐照出一个电子,这个电子向阳极方向飞行,并与分子频繁碰撞,其中一些碰撞可能导致分子的电离,得到一个正离子和一个电子。
新电子和原有电子一起,在电场加速下继续前进,又能引起分子的电离,电子数目便雪崩式地增长。
这称为电子繁流(图2)。
气体放电汤生根据上述物理描述,推导出抵达阳极的电子数目n u为式中n0为阴极发射的电子数;d为阴极阳极间距离;α为汤生第一电离系数。
上式表明,电子数目随距离d指数增长。
在一些光电器件中,特意充入一些惰性气体,使光电阴极发射的电子在气体中进行繁流,以得到光电流的放大,提高器件的灵敏度。
放电中产生的正离子最后都抵达阴极。
正离子轰击阴极表面时,使阴极产生电子发射;这种离子轰击产生的次级电子发射,称为r过程。
r过程使放电出现新的特点,这就是:r过程产生的次级电子也能参加繁流。
如果同一时间内,由于r过程产生的电子数,恰好等于飞抵阳极的电子数,放电就能自行维持而不依赖于外界电离源,这时就转化为自持放电。
辉光放电低压气体在着火之后一般都产生辉光放电。
若电极是安装在玻璃管内,在气体压力约为 100帕且所加电压适中时,放电就呈现出明暗相间的 8个区域(图4)。
图中下方的曲线表示光强的分布,按从阴极到阳极的顺序分为7个区。
气体放电过程分析报告一、气体放电的定义气体放电是人们在自然界与日常生活中常常碰到的现象,如闪电、日光灯等,它一般是指在电场作用下或其他激活方法使气体电离,形成能导电的电离气体。
气体放电是产生低温等离子体的主要途径。
所谓的低温等离子体是区别于核聚变中高温等离子体而言的。
低温等离子体物理与技术在经历了一个由20世纪60年代初的空间等离子体研究向80年代和90年代以材料及微电子为导向的研究领域的重大转变之后,现在已经成为具有全球影响的重要课题,其发展对于高科技经济的发展及传统工业的改造有着巨大的影响。
二、气体放电过程分析气体放电的经典理论主要有汤森放电理论和流注放电理论等。
1903年,为了解释低气压下的气体放电现象,汤森(J.S.Townsend)提出了气体击穿理论,引入了三个系数来描述气体放电的机理,并给出了气体击穿判据。
汤森放电理论可以解释气体放电中的许多现象,如击穿电压与放电间距及气压之间的关系,二次电子发射的作用等。
但是汤森放电解释某些现象也有困难,如击穿形成的时延现象等;另外汤森放电理论没有考虑放电过程中空间电荷作用,而这一点对于放电的发展是非常重要的。
电子雪崩中的正离子随着放电的发展可以达到很高的密度,从而可以明显的引起电场的畸变,进而引起局部电子能量的加强,加剧电离。
针对汤森放电理论的不足,1940年左右,H.Raether及Loeb、Meek等人提出了流注(Streamer)击穿理论,从而弥补了汤森放电理论中的一些缺陷,能有效地解释高气压下,如大气压下的气体放电现象,使得放电理论得到进一步的完善。
近年来,随着新的气体放电工业应用的不断涌现及实验观测技术的进一步发展,将放电理论与非线性动力学相结合,利用非线性动力学的方法来研究气体放电中的各种现象成为气体放电研究中的重要内容。
汤逊理论通过引入“电子崩”的概念,较好地解释了均匀电场中低气压短间隙的气体放电过程,通过这个理论可以推导出有关均匀电场中气隙的击穿电压及其影响因素的一些实用性结论。
气体放电过程的分析气体放电是人们在自然界和日常生活中常常碰到的现象,如闪电、日光灯等,他一般是指在电场作用下或其他激活方法使气体电离,形成能导电的电离气体。
气体电介质,特别是空气,是电力系统中最重要的绝缘物质,对气体绝缘特性的研究对气体放电十分重要。
而气体放电又受气体间隙、环境电场的影响,其过程的分析需要多种理论的支持,如汤逊理论和流注理论等。
1.1气体中带电质点的产生先介绍气体的特点:气体的分子间距很大,极化率很小,因此介电常数都接近于1,。
纯净的、中性状态下的气体是不导电的,只有气体中出现了带电质点像电子、正离子、负离子以后,才能导电,并在电场作用下发展成各种形式的气体放电现象。
气体中带电质点的产生有两个途径:一是气体本身发生游离;二是气体中的金属电极表面发生游离。
而带电质点有以下形式的游离形成:(1)碰撞游离在电场作用下,电子被加速获得动能。
如果其动能大于气体质点的游离能,在和气体质点发生碰撞时,就能使气体质点产生游离分裂成正离子和电子,这就是碰撞游离。
(2)光游离电磁射线的能量hV等于或大于气体质点游离能时所引起的游离过程叫做光游离。
(3)热游离因气体分子热运动状态引起的游离称为热游离,其实质仍是碰撞游离和光游离,只是直接的能量来源不同。
(4)表面游离放在气体中的金属电极表面游离出自由电子的现象称为表面游离。
金属表面游离是所需能量可以从以下途径获得。
(1)正离子碰撞阴极正离子在电场中向阴极运动,碰撞阴极时将能量传递给电子而使金属表面逸出两个电子,其中一个与正离子结合而合成中性质点,另一个才可能成为自由电子。
(2)光电效应金属表面受到光的照射,也能产生表面游离。
(3)强场发射在阴极附近加上很强的外电场,其电场强度达1000000V/cm,将电子从阴极表面拉出来,称为强场发射或冷发射。
(4)热电子发射将金属电极加热到很高的温度,可以使其中电子获得很大能量,逸出金属在电子、离子器件中常利用热电子发射作为电子来源,在强场领域,对某些电弧放电的过程有重要作用。
气体放电的基本物理过程气体放电是指在气体中一些条件下产生的电流和光辐射现象。
它是由于电流穿过气体时,气体分子与电子碰撞而产生的。
1.电离阶段:当气体中存在电场时,电场的作用下,电子受到电场力的作用而受激,能量增加,然后具有足够的能量与气体分子发生碰撞。
这些高能电子与气体分子碰撞后会将气体分子中的电子击出,产生自由电子和正离子。
这个过程称为电离。
2.生长阶段:在电离阶段后,自由电子会与气体分子重新碰撞形成新的电子和正离子。
这个过程称为复合。
而新产生的电子又与其他气体分子发生碰撞,形成更多的正离子和自由电子。
这种电子的产生和复合的过程不断重复,直到达到一个动态平衡,产生了足够的自由电子和离子。
3.暴击阶段:当电子和正离子的数量进一步增加时,电子会与正离子再次碰撞,使其能量增加。
而当电子进一步与气体分子发生碰撞时,能量超过分子的离解能,就会导致气体分子的电离和激发,产生更多的自由电子和离子。
这个过程会导致电流和电压的增加。
4.衰减阶段:当电压继续升高时,电离和激发的过程会不断增强,导致放电区域中电子和气体分子的密度变得非常高。
这会使得电子和离子发生更多的碰撞,将能量转移给气体分子并使其激发或电离。
然而,当电子和正离子的能量损失超过其再激发或电离的能量时,放电区域中电子和离子的数量会逐渐减少,最终放电将停止。
这个过程称为电流的衰减。
总体来说,气体放电的基本物理过程是通过电场的作用将气体分子电离,产生自由电子和正离子。
这些电子和离子通过与气体分子的碰撞产生更多的电离和激发,导致电流和电压的增加。
最终放电区域中电子和离子的能量损失超过再激发或电离的能量,导致电流的衰减。