第三章-遥感传感器作业
- 格式:doc
- 大小:3.93 MB
- 文档页数:16
遥感原理与应用作业18地6118078607宋雨龙第一章绪论 (1)第二章电磁辐射与地物光谱特征 (3)第三章遥感成像原理与图像特征 (4)第四章卫星遥感平台 (5)第五章遥感数字图像处理基础 (6)第六章遥感数字图像处理 (7)第七章多源遥感信息融合 (9)第八章遥感图像分类 (9)第九章遥感技术应用 (10)第一章绪论1.阐述遥感的基本概念。
答:遥感(RS),即遥远的感知。
是指应用探测仪器,不与被测目标直接接触,在高空或远距离处,接收目标辐射或反射的电磁波信息,并对这些信息进行加工处理与分析,揭示出目标的特征性质及其运动状态的综合性探测技术。
2.遥感的主要特点表现在哪几方面?举例说明。
答:①感测范围大,具有综合、宏观的特点:遥感从飞机上或人造地球卫星上获取的航空或卫星影像,比在地面上观察视域范围大得多。
例如:一幅陆地卫星TM影像可反映出185km×185km的景观实况,我国全境仅需500余张这种影像就可拼接成全国卫星影像图。
②信息量大,具有手段多、技术先进的特点:根据不同的任务,遥感技术可选用不同波段和传感器来获取信息。
③获取信息快,更新周期短,具有动态监测的特点:卫星围绕地球运转,能及时获取所经地区的最新资料,例如:Landsat-5/7陆地卫星每16天即可对全球陆地表面成像一次。
④具有获取信息受条件限制少的特点:自然条件恶劣,人类难以到达的地方,如沙漠、沼泽、高山峻岭等都可以使用遥感进行观测。
⑤应用领域广,具有用途大、效益高的特点:遥感已广泛应用于环境监测、资源勘测、农林水利、地质勘探、环境保护、气象、地理、测绘、海洋研究和军事侦察等领域,且应用领域在不断扩展。
遥感在众多领域的广泛应用产生了十分可观的经济效应和卓有成效的社会效应。
3.遥感有哪几种主要分类?其分类依据是什么?4.当前遥感发展的现状和特点如何?答:当今,遥感技术已经发生了根本的变化,主要表现在遥感平台、传感器、遥感的基础研究和应用领域等方面。
第一章电磁涉及遥感物理基础名词解说:1、电磁波(变化的电场能够在其四周惹起变化的磁场,这一变化的磁场又在较远的地区内惹起新的变化电场,并在更远的地区内惹起新的变化磁场。
)变化电场和磁场的交替产生,以有限的速度由近及远在空间内流传的过程称为电磁波。
2、电磁波谱电磁波在真空中流传的波长或频次递加或递减次序摆列,就能获取电磁波谱。
3、绝对黑体关于任何波长的电磁辐射都所有汲取的物体称为绝对黑体。
4、辐射温度假如本质物体的总辐射出射度(包含所有波长)与某一温度绝对黑体的总辐射出射度相等,则黑体的温度称为该物体的辐射温度。
5、大气窗口电磁波经过大气层时较少被反射、汲取和散射的,透过率较高的电磁辐射波段。
6、发射率本质物体与同温下的黑体在同样条件下的辐射能量之比。
7、热惯量因为系统自己有必定的热容量,系统传热介质拥有必定的导热能力,因此当系统被加热或冷却时,系统温度上涨或降落常常需要经过必定的时间,这类性质称为系统的热惯量。
(地表温度振幅与热惯量 P 成反比,P越大的物体,其温度振幅越小;反之,其温度振幅越大。
)8、光谱反射率ρλ=Eρλ/ E λ ( 物体的反射辐射通量与入射辐射通量之比。
)9、光谱反射特征曲线依照某物体的反射率随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线。
填空题:1、电磁波谱按频次由高到低摆列主要由γ 射线、X射线、紫外线、可见光、红外线、微波、无线电波等构成。
2、绝对黑体辐射通量密度是温度T和波长λ 的函数。
3、一般物体的总辐射通量密度与绝对温度和发射率成正比关系。
4、维恩位移定律表示绝对黑体的最强辐射波长λ 乘绝对温度T是常数2897.8 。
当绝对黑体的温度增高时,它的辐射峰值波长向短波方向挪动。
5、大气层顶上太阳的辐射峰值波长为0.47μm选择题: ( 单项或多项选择 )1、绝对黑体的(②③ )①反射率等于 1 ②反射率等于 0 ③发射率等于 1 ④发射率等于 0。
2、物体的总辐射功率与以下那几项成正比关系(②⑥)①反射率②发射率③物体温度一次方④物体温度二次方⑤物体温度三次方⑥物体温度四次方。
第三章遥感成像原理与遥感图像特征·名词解释可见光与近红外成像原理:可见光成像是对目标的反射率的分布进行记录。
近红外成像原理近红外光源发出的近红外辐射照射到研究对象后,由近红外摄像机接收被研究对象反射回来的近红外辐射,形成研究对象的近红外图像。
热红外成像原理:红外热成像使人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
微波成像原理:发射机产生足够的电磁能量,经过收发转换开关传送给天线。
天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回接收机的方向,被天线获取。
中心投影卫星:光线通过投影中心投射到投影面上的成像方式的卫星。
多中心投影:有若干个投影中心的投影。
光谱分辨率:波谱分辨率是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。
空间分辨率:指像素所代表的地面范围的大小。
时间分辨率:指对同一地点进行采样的时间间隔,即采样的时间频率,也称重访周期·问答题摄影成像的基本原理是什么?其图像有什么特征?答:传统摄影依靠光学镜头及放置在焦平面的感光胶片来记录物体影像;数字摄影则通过放置在焦平面的光敏元件,经过光/电转换,以数字信号来记录物体影像。
图象特点:投影:航片是中心投影,即摄影光线交于同一点。
比例尺:航空像片上某一线段长度与地面相应线段长度之比,称为像片比例尺。
⑴平均比例尺:以各点的平均高程为起始面,并根据这个起始面计算出来的比例尺。
⑵主比例尺:由像主点航高计算出来的比例尺,它可以概略地代表该张航片的比例尺。
像点位移:⑴位移量与地形高差成正比,即高差越大引起的像点位移量也越大。
当高差为正时,像点位移为正,是背离像主点方移动;高差为负时,像点位移为负,是朝向像主点方向移动。
⑵位移量与像点距离像主点的距离成正比,即距像主点越远的像点位移量越大,像片中心部分位移量较小。
第一章电磁波及遥感物理基础名词解释:1、遥感2、遥感技术3、电磁波4、电磁波谱5、大气窗口6、光谱反射率7、光谱反射特性曲线问答题:1、叙述沙土、植物和水的光谱反射率随波长变化的一般规律。
2、地物光谱反射率受哪些主要的因素影响?3、何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。
第二章遥感平台及运行特点名词解释:1、遥感平台2、遥感传感器3、卫星轨道参数4、升交点赤经5、轨道倾角5、近地点角距6、卫星姿态角7、重复周期8、近圆形轨道9、与太阳同步轨道10、近极地轨道11、小卫星问答题:2、以Landsat-1为例,说明遥感卫星轨道的四大特点及其在遥感中的作用。
3、叙述地心直角坐标系与地心大地直角坐标系的差别和联系。
4、获得传感器姿态的方法有哪些?简述其原理。
5、简述遥感平台的发展趋势。
6、LANDSAT系列卫星、SPOT系列卫星、RADARSAT系列卫星传感器各有何特点?第三章遥感传感器及其成像原理名词解释:1、遥感传感器2、红外扫描仪3、多光谱扫描仪4、推扫式成像仪5、成像光谱仪6、MSS7、TM8、HRV9、SAR 10、INSAR 11、CCD 12、真实孔径侧视雷达13、合成孔径侧视雷达14、全景畸变15、动态全景畸变16、静态全景畸变17、距离分辨率18、方位分辨率19、雷达盲区20、粗加工产品21、精加工产品22、多中心投影填空题:1、目前遥感中使用的传感器大体上可分为等几种。
2、遥感传感器大体上包括几部份。
3、MSS成像板上有个探测单元;TM有个探测单元。
4、LANDSAT系列卫星具有全色波段的是,其空间分辨率为。
5、利用合成孔径技术能堤高侧视雷达的分辨率。
6、扫描仪产生的全景畸变,使影像分辨率发生变化,x方向以变化,y 方向以变化。
7、实现扫描线衔接应满足。
选择题:(单项或多项选择)1、全景畸变引起的影像比例尺变化在X方向①与COSθ成正比②在X方向与COSθ成反比③在X方向与COS²θ成正比④在X方向与COS²θ成反比。
第三章遥感传感器一、名词解释遥感传感器:获取遥感数据的关键设备(收集器,探测器,处理器,输出器)探测器:将收集的辐射能变为化学能或电磁能。
推扫式成像仪:一种瞬间在像面上先形成一条图像甚至一副二维影像,然后对影像景象进行扫描成像的成像仪。
成像光谱仪:在特定的光谱域以高分辨率同时获得连续的地位光谱图像。
瞬时视场:形成单个像元的视场,决定地面分辨率。
MSS:成像板上排列有24+2各玻璃纤维单元,每列有6个纤维单元,每个探测器的视场为86urad,每个像元的地面分辨率为79x79m,扫描一次每个弊端获得6条扫描线图像,其地面范围为474x185KM。
TM :是相对MSS的改进,一个高级的所波段扫描仪共有探测器100个,分7个波段,一次扫描成像为地面的480x185km 。
HRV :是一种线阵列推扫描仪,由于使用CCD元件做探测器,在瞬间能同时得到垂直航向的一天图像线,不需要用摆动的扫描镜,以推扫方式获得沿轨迹的连续图像条带。
SAR :利用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成较大的等效天线孔径的雷达。
INSAR:利用SAR在平行轨道上对同于地物额获取两幅(两幅以上)的但视复数影像来形成干涉,进而得到该地区的三维地表信息。
CCD :称电荷耦合器件,是一种由硅等半导体材料制成的固体器件,受光火电激产生的电荷靠电子或空穴运载,在固体内移动达到一路是序输出信号。
真实孔径侧视雷达:天象装在飞机侧面。
发射机向侧面内发射一束脉冲,地物发射的微波脉冲,有天线收集后,被接收机接收,回拨信号经电子处理器吃了,在阴极射线管上形成一条相应于辐照内各种地物反射特性的图像线。
全景畸变:由于地面分辨率随扫描角发生变化,而使红外扫描影像产生畸变,这种畸变称之为全景畸变。
合成孔径侧视雷达:是一个小天线作为的那个复数单元,将此单元沿一直线不断移动,在移动中选择若干个位置,在每个位置上发生一个信号,接收相应发生位置的回波信号储存记录下来(幅度和相位)。
遥感原理与应用习题第一章遥感物理基础一、名词解释1 遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。
2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。
3电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。
电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱5绝对黑体:能够完全吸收任何波长入射能量的物体6灰体:在各种波长处的发射率相等的实际物体。
7绝对温度:热力学温度,又叫热力学温标,符号T,单位K(开尔文,简称开)8色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。
9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。
10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。
11光谱反射率:物体的反射辐射通量与入射辐射通量之比。
12波粒二象性:电磁波具有波动性和粒子性。
13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。
问答题1黑体辐射遵循哪些规律?(1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。
(2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。
(3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。
(4 好的辐射体一定是好的吸收体。
(5 在微波段黑体的微波辐射亮度与温度的一次方成正比。
2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些?a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b. 微波、红外波、可见光3 物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?(1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。
第三章遥感传感器
C方向2012301610010 卢昕
一、名词解释
1.遥感传感器:是测量和记录被探测物体的电磁波特性的工具,是遥感技术系统的重要组成部分,是获取遥感数据的关键设备。
由收集器,探测器,处理器,输出器组成。
2.探测器:将收集的辐射能转化为化学能或者电能的设备。
具体的元器件如感光胶片、光电管等。
3.推扫式成像仪:瞬间在像面上先形成一条线图像,甚至是一幅二维影像,然后对影像进行扫描成像的成像仪。
4.成像光谱仪:以多路、连续并具有高光谱分辨率方式获取图像信息的仪器,通过将传统的空间成像技术与地物光谱技术有机的结合在一起,可以实现对同一地区同时获取几十个到几百个波段的地物反射光谱图像。
5.瞬时视场:传感器成像瞬间形成的单个像元的视场,决定地面分辨率。
6.MSS:Multispectral Scanner 多光谱扫描仪。
成像板上排列有24+2个玻璃纤维单元,按波段排列成四列,每列有6个纤维单元,每个探测器的视场为86μrad,每个像元的地面分辨率为79mx79m,扫描一次每个波段获得6条扫描线图像,其地面范围474m*185km。
7.TM :是相对MSS的改进,其中增加了一个扫描改正器,使扫描行垂直于飞行轨道,并使往返双向都对地面扫描。
一个高级的多波段扫描仪共有探测器100个,分7个波段,一次扫描成像为地面的480m*185km。
8.HRV :是一种线阵列推扫式扫描仪。
仪器中有一个平面反射镜,将地面辐射来的电磁波反射到反射镜组,然后聚焦在CCD线阵列元件上,CCD的输出端以一路时序视频信号输出。
由于使用线阵列的CCD元件作探测器,在瞬间能同时得到垂直航线的一条图像线,不需要用摆动的扫描镜,以“推扫”方式获取沿轨道的连续图像条带。
9.SAR :合成孔径雷达,是利用雷达与目标的相对运动把尺寸较小的真实天线孔
径用数据处理的方法合成一较大的等效天线孔径的雷达。
10.INSAR:相干雷达。
是利用SAR在平行轨道上对同一地区获取两幅(或两幅以上)的单视复数影像来形成干涉,进而得到该地区的三维地表信息。
D :电荷耦合器件,是一种由硅等半导体材料制成的固体器件,受光或电激发产生的电荷靠电子或空穴运载,在固体内移动,达到一路时序输出信号。
12.真实孔径侧视雷达:真实孔径侧视雷达的天线装在飞机的侧面,发射机向侧向面内发射一束窄脉冲,地物反射的微波脉冲,由天线收集后,被接收机接受。
回波信号经电子处理器的处理,在阴极射线管上形成一条相应于辐照带内各种地物反射特性的图像线,记录在胶片上。
飞机向前飞行时对一条一条辐照带连续扫描,在阴极射线管处的胶片与飞机速度同步转动,就得到沿飞机航线侧面的由回波信号强度表示的条带图像。
13.全景畸变:由于地面分辨率随扫描角发生变化,而使红外扫描影像产生畸变,这种畸变通常称为全景畸变,也就是整幅图像都发生了畸变。
14.合成孔径侧视雷达:是用一个小天线作为单个辐射单元,将此单元沿一直线不断移动,在移动中选择若干个位置,在每个位置上发射一个信号接受相应发射位置的回波信号储存记录下来。
存储时必须同时保存接受信号的幅度和相位。
当辐射单元移动一段距离后存储的信号和实际天线阵列诸单元所接受的信号非常相似。
15.距离分辨率:是在脉冲发射的方向上能分辨两个目标的最小距离,它与脉冲宽度有关。
16.方位分辨率:是在雷达飞行方向上能分辨两个目标的最小距离,它与波瓣角有关。
17.多中心投影:用以表示具有多个投影中心的遥感图像的几何特性的一种投影
方式。
18.斜距投影:侧视雷达图像在垂直飞行方向的像点位置是以飞机的目标的斜距来确定的,这种投影方式称为斜距投影.
二、简答题
1. 目前遥感中使用的传感器可分为哪几种?遥感传感器包括哪几部分?
答:1)目前遥感中使用的传感器可分为2种:
a.扫描成像类传感器:包括红外扫描仪、MSS 多光谱扫描仪、TM 专题制图仪、ETM+增强型专题制图仪、HRV 线阵列推扫式扫描仪、成像光谱仪;
b.雷达成像仪:包括真实孔径雷达、SAR、以及INSAR 等。
2)遥感传感器分为收集器、探测器、处理器和输出器四部分。
2.实现扫描线衔接应满足的条件是什么?
答:假定旋转棱镜扫描一次的时间为t,一个探测器的地面分辨率为a,若要实现扫描线衔接,即既不重叠又没有空隙,则飞机的地速满足W=a/t ,其中a=βH,则W/H=β/t,传感器的瞬时视场β和扫描周期t都为常数,只要保证卫星飞行速度和航高之比为一个常数,就能使扫描线正确衔接不出现条纹图像。
3.叙述侧视雷达图像的影像特征。
答:1)垂直飞行方向的比例尺由小变大;
2)造成山体前倾,朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉长,与中心投影相反,还会出现不同地物点重影现象。
3)高差产生的投影差亦与中心投影影像投影差位移的方向相反,位移量也不相同;
4)雷达立体图像的构像特点。
从不同摄站对同一地区获取的雷达图像能构成立体影像。
同侧立体像对形成的是反立体图像。
4.物面扫描的成像仪为何会产生全景畸变?
答:因为扫描仪的像距保持不变,总在焦面上,而物距随着扫描角会发生变化,这样就导致一个像元对应于地面地物的实际距离发生变化,即地面分辨率发生变化,产生全景畸变。
5.SPOT 卫星上的HRV推扫式扫描仪、TM专题制图仪、MSS多光谱扫描仪有何不同?
答:HRV 推扫式扫描仪是对像面扫描的成像仪,其上有CCD线阵列元件,可一次得到垂直于航线的一条图像线,无需摆动扫描镜,是以推扫的方式获取沿轨道的连续图像条带;MSS 和TM 都是对物面扫描的成像仪,MSS扫描仪上每个波段有6个相同大小的探测单元同时通过扫描的方式成像。
TM 是对MSS的改进,增加了一个扫描改正器,它使扫描行垂直于飞行轨道(MSS扫描不垂直于飞行轨道),另外使往返双向都对地面扫描。
TM 比MSS具有更高的空间分辨率和更好的频谱选择性和几何保真度,具有更高的辐射准确度和分辨率。
6. 侧视雷达影像的分辨力、比例尺、投影性质和投影差与中心投影航空或航天像片影像有何不同?
答:侧视雷达影像的分辨率分为距离分辨率和方位分辨率两种,分别是在脉冲发射方向上和雷达飞行方向上能分辨的最小距离,而中心投影航空像片影像就只有一种地面分辨率。
侧视雷达影像在垂直飞行方向的比列尺由小变大,而中心投影比例尺是不发生变化的,整幅图像的比例尺一样。
雷达影像上的山体会前倾,朝向传感器的山坡影像被压缩,背向的山坡被拉伸,这点和中心投影刚好相反,而且雷达影像还会出现重影现象,而中心投影则不会出现,对于同侧获取的雷达影像构成的立体对是一个反立体,中心投影构成的是正立体。
投影差方面侧视雷达因高差产生的投影差正好和中心投影投影差方向相反,位移量也不同,这也是造成雷达影像构成反立体的原因。
三、能力训练题
1、搜索网站资源,至少选择5种高分辨率测绘卫星或者资源卫星,针对这些卫星的典型应用或者主要特点,下载多种样例影像,并利用数字图像处理软件,裁剪样本影像,并针对这些样例影像的图像特征和主要应用,进行分析比较。
要求提交电子文档,并发送给助教。
答:1)QuickBird 卫星
特点及应用:QucikBird 最高分辨率可达到0.61m,可用于制作1:2000 比例尺的地形图。
QucikBird 卫星提供全色,多光谱数据,三波段融合彩色数据,全色及多光谱捆绑数据,四波段融合彩色数据。
QuickBird高分辨率的图像特点为测绘制图提供了史无前例的从国家到城市的准确有效生产地图的机会。
其样品影像如下:。