2018届高三第二次模拟考试理科数学 含答案
- 格式:doc
- 大小:1.14 MB
- 文档页数:22
黑龙江省哈尔滨市2018届高考第二次模拟数学(理)试题有答案哈尔滨市第六中学2018届高三第二次模拟考试理科数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足3(1)()2i z i i --= (i 为虚数单位),则z 的共轭复数为( )A .1i -B .12i +C .1i -D .12i -2.已知集合A ={x |2()lg(6)f x x x =-+},B ={x |()g x =x m -},若A B ≠?I ,则实数m 的取值范围是( )A .(?∞,3)B .(?2,3)C .(?∞,?2)D .(3,+∞)3.已知双曲线22221x y a b -= (a >0,b >0)的右顶点与抛物线2y =8x 的焦点重合,且其离心率e =32,则该双曲线的方程为( )A .22145y x -= B .22154x y -= C .22145x y -= D .22154y x -= 4.已知在各项均为正数的等比数列{n a }中,13a a =16,3a +4a =24,则5a =( )A .128B .108C .64D .32 5.已知α是第四象限角,且1sin cos 5αα+=,则tan 2α=( )A .13 B .13- C .12D .12-6.已知命题p :存在n R ∈,使得()f x =22n nnx+是幂函数,且在(0,)+∞上单调递增;命题q :“2,23x R x x ?∈+>”的否定是“2,23x R x x ?∈+<”.则下列命题为真命题的是( ) A .p q ∧ B .p q ?∧ C .p q ∧? D .p q ?∧?7.函数()f x =2ln ||2x x+的图象大致为( ) A . B .C .D .8.如图所示的程序框图的思路源于数学史上一个著名数列“斐波那契数列”,执行该程序,若输入6n =,则输出C =( ) A .5 B .8 C .13 D .219.从,,,,A B C D E 五名歌手中任选三人出席某义演活动,当三名歌手中有A 和B 时,A 需排在B 的前面出场(不一定相邻),则不同的出场方法有( )A .51种B .45种C .42种D .36种10.已知某几何体的三视图如图所示,则该几何体的内切球的体积为( )A .14π B .34πC .12π D .32π11.正方形ABCD 的四个顶点都在椭圆22221x y a b+=上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是() A .51(0,)- B .51(,1)- C .31(,1)- D . 31(0,)- 12.已知()f x '为函数()f x 的导函数,且()f x = 212x ?(0)f x +(1)f '1x e -, ()g x = ()f x ?212x x +,若方程2()x g x a -?x =0在(0,+∞)上有且仅有一个根,则实数a 的取值范围是()A . (0,1]B .(?∞,?1]C .(?∞,0)∪{1}D .[1,+∞)第II 卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分.)13.一个煤气站有5个阀门控制对外输送煤气,使用这些阀门必须遵守以下操作规则:(i)如果开启1号阀门,那么必须同时开启2号阀门并且关闭5号阀门;(ii)如果开启2号阀门或者5号阀门,那么要关闭4号阀门;(iii)不能同时关闭3号阀门和4号阀门.现在要开启1号阀门,则同时开启的2个阀门是.14.若实数x ,y 满足约束条件42y x y x y k ≤??≤-+??≥?,且22x y μ=++的最小值为4-,则k = .15.若9290129(1)(1)(1)x a a x a x a x =+-+-++-L ,则7a 的值为. 16.已知首项为13的数列{n a }的前n 项和为n S ,定义在[1,+∞)上恒不为零的函数()f x ,对任意的x ,y ∈R ,都有()f x ·()f y =()f x y +.若点(n ,n a )(n ∈N *)在函数()f x 的图象上,且不等式2m +23m<="">三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ?中,角,,A B C 的对边分别为,,a b c ,且满足(2)cos cos c b A a B -=.(1)求角A 的大小;(2)若D 为BC 上一点,且满足2,23BD DC AD ==u u u r u u u r,3,b =求a .18.(本小题满分12分)如图1,已知在梯形ABCD 中,//AB CD ,,E F 分别为底,AB CD 上的点,且EF AB ⊥,112,22EF EB FC EA FD ====,沿EF 将平面AEFD 折起至平面AEFD ⊥平面EBCF ,如图2所示.(1)求证:平面ABD ⊥平面BDF ;(2)若二面角B ?AD ?F 的大小为60°,求EA 的长度.图图1 图219.(本小题满分12分)小张经营一个抽奖游戏。
理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】分析:先化简集合B,再求A∩B,即得解.详解:由题得,学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...∴.故选A.点睛:本题主要考查集合的交集运算,属于基础题.2. 已知复数(为虚数单位),则的共轭复数在复平面对应的点的坐标是()A. B. C. D.【答案】D【解析】分析:先化简复数z,再求z的共轭复数,再判断的共轭复数在复平面对应的点的坐标.详解:由题得,∴,所以的共轭复数在复平面对应的点的坐标是(-1,-3).故选D.点睛:本题主要考查复数的运算、共轭复数和复数的几何意义,属于基础题.3. 一次考试中,某班学生的数学成绩近似服从正态分布,则该班数学成绩的及格率可估计为(成绩达到分为及格)(参考数据:)()A. B. C. D.【答案】D【解析】分析:先求出,再求出,最后根据正态分布求出该班数学成绩的及格率.详解:由题得∵∴.∴∵,∴该班数学成绩的及格率可估计为0.34+0.5=0.84.故选D.点睛:本题主要考查正态分布及其计算,对于这些计算,千万不要死记硬背,要结合正态分布的图像理解掌握,就能融会贯通.4. 若函数为奇函数,则()A. B. C. D.【答案】B【解析】函数为奇函数,所以可得,,故选D.5. 已知点是直线上的动点,由点向圆引切线,切点分别为,,且,若满足以上条件的点有且只有一个,则()A. B. C. D.【答案】B【解析】分析:先分析得到四边形PMON是正方形,再分析出,再根据点到直线的距离求出b的值. 详解:由题得,∴四边形PMON是正方形,∴|PO|=,∵满足以上条件的点有且只有一个,∴,∴.故选B.点睛:本题的关键是对已知条件的分析转化,首先要分析出四边形PMON是正方形,再分析出,再根据点到直线的距离求出b的值.6. 已知不等式组表示的平面区域为,若函数的图象上存在区域上的点,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析:作出可行域,由y=|x﹣1|的图象特点,平移图象可得.详解:作出不等式组表示的平面区域D(如图阴影),函数y=|x﹣1|的图象为直线y=x﹣1保留x轴上方的并把x轴下方的上翻得到,其图象为关于直线x=1对称的折线(图中红色虚线),沿x=1上下平移y=|x﹣1|的图象,当经过点B时m取最小值,过点D时m取最大值,由可解得,即B(2,﹣1)此时有﹣1=|2﹣1|+m,解得m=﹣2;由可解得,即B(1,1)此时有1=|1﹣1|+m,解得m=1;故实数m的取值范围为[﹣2,1],故答案为[﹣2,1].故选C.点睛:本题考查简单线性规划,数形结合分析是解决问题的关键.7. 某几何体的三视图如图所示,若图中小正方形的边长均为,则该几何体的体积是()A. B. C. D.【答案】A【解析】由三视图可知,该几何体是由半个圆柱与半个圆锥组合而成,其中圆柱的底面半径为,高为,圆锥的底面半径和高均为,其体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8. 设,若,则()A. B. C. D.【答案】A【解析】分析:先根据计算出n的值,再利用二项式展开式的通项求.详解:由题得二项式展开式的通项为,∵0,∴.∴n=5.∴.故选A.点睛:本题主要考查二项式展开式的通项和二项式展开式的系数,属于基础题.9. 执行如图所示的程序框图,输出的值是()A. B. C. D.【答案】D【解析】分析:直接按照程序框图运行程序,找到函数的周期,即可求出输出值.详解:当n=1,S=0时,S=;执行第一次循环可得n=2,S=;执行第二次循环可得n=3,S=;执行第三次循环可得n=4,S=;执行第四次循环可得n=5,S=;执行第五次循环可得n=6,S=; 执行第六次循环可得n=7,S=,归纳可知,其周期为6,所以.所以输出S=. 点睛:本题主要考查程序框图和数列的周期性,属于基础题.10. 设为双曲线上的点,,分别为的左、右焦点,且,与轴交于点,为坐标原点,若四边形有内切圆,则的离心率为()A. B. C. D.【答案】C【解析】分析:求出圆的圆心、半径和直线PF1的方程,根据切线的性质列方程求出a,b,c的关系,得出离心率.详解:F1(﹣c,0),F2(c,0),P(c,),直线PF1的方程为y=x+,即b2x﹣2acy+b2c=0,四边形OF2PQ的内切圆的圆心为M(,),半径为,∴M到直线PF1的距离d==,化简得:9b2﹣12abc﹣b4=0,令b=1可得ac=,又c2﹣a2=1,∴a=,c=.∴e==2.故选C.点睛:求离心率的取值,一般是找到关于离心率的方程,再解方程.关键是找方程,本题是根据直线和圆相切得到圆心到直线的距离等于半径找到的方程.11. 在四面体中,,,底面,为的重心,且直线与平面所成的角是,若该四面体的顶点均在球的表面上,则球的表面积是()A. B. C. D.【答案】D【解析】分析:求出△ABC外接圆的直径,利用勾股定理求出球O的半径,即可求出球O的表面积.详解:取的中点为E,由题意,AE=,AD=,cos∠BAC==﹣,∴sin∠BAC=,∴△ABC外接圆的直径为2r==,设球O的半径为R,∴R==∴球O的表面积为,点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12. 设等差数列的公差为,前项和为,记,则数列的前项和是()A. B. C. D.【答案】C【解析】分析:由等差数列的求和公式可得首项,tana n tana n+1=﹣1=﹣1,运用裂项相消求和,结合两角和差的正切公式,即可得到所求和.详解:等差数列{a n}的公差d为,前8项和为6π,可得8a1+×8×7×=6π,解得a1=,tana n tana n+1=﹣1=﹣1,则数列{tana n tana n+1}的前7项和为(tana8﹣tana7+tana7﹣tana6+…+tana2﹣tana1)﹣7=(tana8﹣tana7)﹣7=(tan﹣tan)﹣7=(tan﹣tan)﹣7=(tan()﹣tan())﹣7=()﹣7=.故选C.点睛:解答本题的关键是化简,求和首先要看通项的特征, tana n tana n+1=﹣1=﹣1,化简到这里之后,就可以再利用裂项相消求和了.化简时要注意观察已知条件,看到要联想到差角的正切公式,再化简.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 问题“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?”源自南北朝张邱建所著的《张邱建算经》,该问题的答案是__________.【答案】尺【解析】分析:先确定等差数列的首项和末项,再利用等差数列的求和公式求和.详解:由题得三十日的织布数组成一个首项是5尺末项为1尺的等差数列,所以三十日的总的织布数为.故填90尺.点睛:本题主要考查等差数列的求和公式,属于基础题.14. 已知向量与的夹角是,且,则向量与的夹角是__________.【答案】【解析】分析:根据平面向量的数量积与夹角、模长公式,计算即可.详解:向量与的夹角是,且||=|+|,∴=+2•+,∴2•+=0,即2||×||×cos+=0,化简得||=||,∴cosθ====﹣,∴向量与+的夹角是120°.故答案为:120°.点睛:本题考查了利用平面向量的数量积求夹角、模长的问题,考查了运算能力及逻辑推理能力.15. 已知函数的周期为,当时,函数恰有两个不同的零点,则实数的取值范围是__________.【答案】【解析】分析:先根据已知条件求出函数f(x)的解析式,再把函数恰有两个不同的零点转化为y=f(x)的图像与直线y=-m恰有两个交点,再画图分析得到实数m的取值范围.详解:由题得.∴.∵,∴由得f(x)=-m,即y=f(x)的图像与直线y=-m恰有两个交点,结合图像可知-2≤-m<3,即-3<m≤-2.故填点睛:本题的关键是转化,把函数恰有两个不同的零点转化为y=f(x)的图像与直线y=-m 恰有两个交点,后面问题就迎刃而解了.处理零点问题常用数形结合分析解答.16. 当,不等式恒成立,则实数的取值范围是__________.【答案】【解析】分析:先分离参数得到a,构造函数f(x)=.利用导数求出函数的最值即可求解实数a的取值范围.详解:∵x>1时,不等式(x﹣1)e x+1>ax2恒成立∴(x﹣1)e x﹣ax2+1>0恒成立,∴a,在(1,+∞)恒成立,设f(x)=,f′(x)=∵x2e x﹣2(x﹣1)e x+2=e x(x2﹣2x+2)+2=e x[(x﹣1)2+1]+2>0恒成立,∴f′(x)>0,在(1,+∞)恒成立,∴f(x)在(1,+∞)单调递增,∴f(x)min>f(1)=1,∴a≤1.故填(﹣∞,1].点睛:本题的关键是分离参数得到a,再构造函数f(x)=.利用导数求出函数的最小值即可求解实数a的取值范围.处理参数问题常用分离参数的方法,可以提高解题效率,优化解题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,的对边分别为,,,且.(1)求;(2)若,,为边上一点,且,求的长.【答案】(1);(2).【解析】分析:(1)利用正弦定理边化角,再利用三角恒等变换公式化简,即得A的值. (2)先利用已知条件和余弦定理得到,,,再利用余弦定理求AD的值.详解:(1)∵,∴.∴,∴.∵,∴,∴,∴.(2)∵,,∴.由,得,∴,又,∴.则为等边三角形,且边长为,∴.在中,,,,由余弦定理可得.点睛:本题主要考查利用正弦定理和余弦定理解三角形,考查三角恒等变换能力和计算能力,属于基础题.18. 如图,三棱柱中,,平面.(1)证明:;(2)若,,求二面角的余弦值.【答案】(1)见解析;(2)余弦值为.【解析】分析: (1)先证明平面,即证.(2)先证明,,再建立空间直角坐标系,利用向量法求二面角的余弦值.详解:(1)证明:∵平面,∴.∵,∴,∴平面,∴.(2)解:∵平面,∴,∴四边形为菱形,∴.又,∴与均为正三角形.取的中点,连接,则.由(1)知,则可建立如图所示的空间直角坐标系.设,则,,,,.∴,,.设平面的法向量为,则,∴∴取,则为平面的一个法向量.又为平面的一个法向量,∴.又二面角的平面角为钝角,所以其余弦值为.点睛:本题主要考查空间位置关系的证明和二面角的平面角的计算,主要考查学生的空间想象能力和计算能力.属于中档题.19. 某大型商场去年国庆期间累计生成万张购物单,从中随机抽出张,对每单消费金额进行统计得到下表:由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过元的概率;(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则为:从装有大小材质完全相同的个红球和个黑球的不透明口袋中,随机摸出个小球,并记录两种颜色小球的数量差的绝对值,当时,消费者可分别获得价值元、元和元的购物券.求参与抽奖的消费者获得购物券的价值的数学期望.【答案】(1) ;(2)见解析.【解析】分析:(1)设所求概率为根据每单消费额的中位数与平均数恰好相等得到p的方程,再解方程即得解. (2)先求、和的概率,再列出分布列,最后计算出数学期望.详解:(1)因消费额在区间的频率为,故中位数估计值为.设所求概率为,而消费额在的概率为.故消费额在区间内的概率为.因此消费额的平均值可估计为.令其与中位数相等,解得.(2)根据题意,,.设抽奖顾客获得的购物券价值为,则的分布列为故(元).点睛:本题主要考查频率分布直方图和随机变量的分布列和数学期望等知识,考查学生的分析能力和计算能力,属于中档题.20. 已知抛物线的焦点为,为轴上的点.(1)当时,过点作直线与相切,求切线的方程;(2)存在过点且倾斜角互补的两条直线,,若,与分别交于,和,四点,且与的面积相等,求实数的取值范围.【答案】(1) 切线的方程为或;(2) 的取值范围为或或. 【解析】分析:(1)设切点为,再求切线的斜率和切点,最后写出直线的点斜式方程化简即得解. (2)先求出的面积为,的面积为.再令它们想到得到找到a的范围.详解:(1)设切点为,则∴点处的切线方程为.∵过点,∴,解得或.当时,切线的方程为或.(2)设直线的方程为,代入得,①,得,②由题意得,直线的方程为,同理可得,即,③②×③得,∴. ④设,,则,.∴.点到的距离为,∴的面积为.同理的面积为.由已知得,化简得,⑤欲使⑤有解:则,∴.又,得,∴.综上,的取值范围为或或.点睛:本题的难点在第(2)问,首先要求出与的面积,涉及到较复杂的字符运算,其次是求出,要想到函数,分析出a的范围,最后是不要漏掉了,其中也包含了a的范围.所以在解答数学问题时,要学会分析数学问题,同时要严谨.21. 已知函数.(1)讨论函数的单调性;(2)定义:“对于在区域上有定义的函数和,若满足恒成立,则称曲线为曲线在区域上的紧邻曲线”.试问曲线与曲线是否存在相同的紧邻直线,若存在,请求出实数的值;若不存在,请说明理由.【答案】(1) 当时,在上单调递减;当时,在上单调递减,在上单调递增;(2)见解析.【解析】分析:(1)先求导,再对m分类讨论,求出函数的单调性.(2)先把命题等价转化为曲线与曲线是否相同的外公切线,再去求两支曲线的外公切线令它们相等,最后转化为唯一解问题求出m的值.详解:(1).当时,,函数在上单调递减;当时,令,得,函数在上单调递减;令,得,函数在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)原命题等价于曲线与曲线是否相同的外公切线.函数在点处的切线方程为,即,曲线在点处的切线方程为,即.曲线与的图象有且仅有一条外公切线,所以有唯一一对满足这个方程组,且,由(1)得代入(2)消去,整理得,关于的方程有唯一解.令,∴.当时,在上单调递减,在上单调递增;所以.因为,;,,只需.令,在为单减函数,且时,,即,所以时,关于的方程有唯一解,此时,外公切线的方程为.∴这两条曲线存在相同的紧邻直线,此时.点睛:(1)本题主要考查利用导数研究函数的单调性、极值、最值和导数的几何意义等知识,也考查了学生的分析问题的能力和计算能力,属于难题. (2)本题难点有二个地方,难点一是要把问题转化为为曲线与曲线是否相同的外公切线,难点二是得到两个切线重合后,如何分析有唯一一对满足这个方程组,且.这个唯一性的问题利用到了又用到了导数的知识.22. 在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,为曲线上的动点,与轴、轴的正半轴分别交于,两点.(1)求线段中点的轨迹的参数方程;(2)若是(1)中点的轨迹上的动点,求面积的最大值.【答案】(1)点的轨迹的参数方程为(为参数);(2)面积的最大值为.【解析】试题分析:(1)将极坐标方程利用,化为直角坐标方程,利用其参数方程设,则,从而可得线段中点的轨迹的参数方程;(2)由(1)知点的轨迹的普通方程为,直线的方程为.设,利用点到直线距离公式、三角形面积公式以及辅助角公式,结合三角函数的有界性可得面积的最大值.试题解析:(1)由的方程可得,又,,∴的直角坐标方程为,即.设,则,∴点的轨迹的参数方程为(为参数).(2)由(1)知点的轨迹的普通方程为,,,,所以直线的方程为.设,则点到的距离为,∴面积的最大值为.【名师点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.23. 已知函数.(1)解不等式;(2)若关于的不等式只有一个正整数解,求实数的取值范围.【答案】(1) 不等式的解集为{或};(2) .【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解.试题解析:(1)当时,,解得,∴;当时,,解得,∴;当时,,解得,∴.综上,不等式的解集为或.(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解,∴.。
哈尔滨市第六中学2018届高三第二次模拟考试理科数学试卷考试说明:本试卷分第1卷(选择题)和第2卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足3(1)()2i z i i --= (i 为虚数单位),则z 的共轭复数为( ) A .1i - B .12i + C .1i - D .12i -2.已知集合A ={x |2()lg(6)f x x x =-+},B ={x |()g x=,若A B ≠∅I ,则实数m 的取值范围是( )A .(−∞,3)B .(−2,3)C .(−∞,−2)D .(3,+∞)3.已知双曲线22221x y a b -= (a >0,b >0)的右顶点与抛物线2y =8x 的焦点重合,且其离心率e =32,则该双曲线的方程为( )A .22145y x -=B .22154x y -=C .22145x y -=D .22154y x -=4.已知在各项均为正数的等比数列{n a }中,13a a =16,3a +4a =24,则5a =( )A .128B .108C .64D .325.已知α是第四象限角,且1sin cos 5αα+=,则tan 2α=( )A .13B .13-C .12D .12-6.已知命题p :存在n R ∈,使得()f x =22n n nx +是幂函数,且在(0,)+∞上单调递增; 命题q :“2,23x R x x ∃∈+>”的否定是“2,23x R x x ∀∈+<”.则下列命题为真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝7.函数()f x =2ln ||2x x +的图象大致为( )A .B .C .D .8.如图所示的程序框图的思路源于数学史上一个著名数列“斐波那契数列”,执行该程序,若输入6n =,则输出C =( )A .5B .8C .13D .219.从,,,,A B C D E 五名歌手中任选三人出席某义演活动,当三名歌手中有A 和B 时, A 需排在B 的前面出场(不一定相邻),则不同的出场方法有( )A .51种B .45种C .42种D .36种10.已知某几何体的三视图如图所示,则该几何体的内切球的体积为( )A .14π B.C .12π D.211.正方形ABCD 的四个顶点都在椭圆22221x y a b +=上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是()A.B.C.1(,1)2D.1(0,)212.已知()f x'为函数()f x的导函数,且()f x=212x−(0)fx+(1)f'1x e-,() g x=()f x−212x x+,若方程2()xg xa-−x=0在(0,+∞)上有且仅有一个根,则实数a的取值范围是()A. (0,1] B.(−∞,−1] C.(−∞,0)∪{1} D.[1,+∞)第2卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分.)13.一个煤气站有5个阀门控制对外输送煤气,使用这些阀门必须遵守以下操作规则:(i)如果开启1号阀门,那么必须同时开启2号阀门并且关闭5号阀门;(ii)如果开启2号阀门或者5号阀门,那么要关闭4号阀门;(iii)不能同时关闭3号阀门和4号阀门.现在要开启1号阀门,则同时开启的2个阀门是.则k = .15.若9290129(1)(1)(1)x a a x a x a x =+-+-++-L ,则7a 的值为 . 16.已知首项为13的数列{n a }的前n 项和为n S ,定义在[1,+∞)上恒不为零的函数()f x ,对任意的x ,y ∈R ,都有()f x ·()f y =()f x y +.若点(n ,n a )(n ∈N *)在函数()f x 的图象上,且不等式2m +23m <n S 对任意的n ∈N *恒成立,则实数m 的取值范围为______________三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足(2)cos cos c b A a B -=.(1)求角A 的大小; (2)若D 为BC 上一点,且满足2,BD DC AD ==u u u r u u u r3,b =求a .18.(本小题满分12分)如图1,已知在梯形ABCD 中,//AB CD ,,E F 分别为底,AB CD上的点,且EF AB ⊥,112,22EF EB FC EA FD ====,沿EF 将平面AEFD 折起至平面AEFD ⊥平面EBCF ,如图2所示.(1)求证:平面ABD ⊥平面BDF ;(2)若二面角B −AD −F 的大小为60°,求EA 的长度.图图1 图219.(本小题满分12分)小张经营一个抽奖游戏。
齐齐哈尔市2018届高三第二次模拟考试数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1M x x =<,{}20N x x x =-<,则()A.M N⊆B.N M⊆C.{}1M N x x =< D.{}M N x x => 2.设(2)(3)3(5)i xi y i +-=++(i 为虚数单位),其中,x y 是实数,则x yi +等于()A.513C.22D.23.某高校调查了320名学生每周的自习时间(单位:小时),制成了下图所示的频率分布直方图,其中自习时间的范围是[]17.530,,样本数据分组为[]17.520,,[]2022.5,,[]22.525,,[]2527.5,,[]27.530,.根据直方图,这320名学生中每周的自习时间不足22.5小时的人数是()A.68B.72C.76D.804.521(1)(1)x x-+的展开式中2x 的系数为()A.15B.-15C.5D.-55.已知双曲线22221(0,0)x y a b a b-=><5F ,过点F 与x 轴垂直的直线与双曲线的两条渐近线分别交于点M ,N ,若OMN ∆的面积为20,其中O 是坐标原点,则该双曲线的标准方程为()A.22128x y -=B.22148x y -= C.22182x y -=D.22184x y -=6.某空间几何体的三视图如下图所示,则该几何体的体积为()A.4+2πB.2+6π C.4+πD.2+4π7.执行如下图的程序框图,若输入a 的值为2,则输出S 的值为()A.3.2B.3.6 C. 3.9D.4.98.等比例数列{}n a 的前n 项和为n S ,公比为q ,若6359,62S S S ==则,1a =()B.2D.39.已知函数()cos(2.)0,2f x x πωωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,将其图象向右平移6π个单位后得函数()cos 2.g x x =的图象,则函数()f x 的图象()A.关于直线23x π=对称B.关于直线x π=对称C.关于点2-03π⎛⎫⎪⎝⎭,对称D.关于点5-012π⎛⎫⎪⎝⎭对称10.已知三棱柱111ABC A B C -的六个顶点都在球O 的球面上,球O 的表面积为194π,1AA ⊥平面,5,12,13ABC AB BC AC ===,则直线1BC 与平面11AB C 所成角的正弦值为()A.5352B.7352C.5226D.722611.已知椭圆2222=10)x y a b a a+>>(的短轴长为2,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB ∆的面积为2,点P 为椭圆上的任意一点,则1211+PF PF 的取值范围为()A.[]12,B.C.4⎤⎦D.[]14,12.已知对任意21,x e e ⎡⎤∈⎢⎥⎣⎦不等式2xa e x >恒成立(其中 2.71828...e =,是自然对数的底数),则实数a 的取值范围是()A.02e ⎛⎫ ⎪⎝⎭,B.0e (,)C.(,2)e -∞-D.24(,e -∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数,x y 满足条件40,220,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩的最小值为-8,则实数=a .14.若函数()f x 是偶函数0x ≥时,()1(1)f x g x =+,则满足(21)1f x +<的实数x 取值范围是.15.已知平行四边形ABCD 中,2AD =,120BAD ∠=,点E 是CD 中点,1AE BD ∙=,则BD BE ∙=.16.已知数列{}n a 的前n 项和为n S ,且24a =,4=30S ,2n ≥时,112(1)n n n a a a +-+=+,则{}n a 的通项公式n a =.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中a b c 、、分别为角A B C 、、所对的边,已知sin 12sin sin 2cos B A C C *=-(I)求角B 的大小;(Ⅱ)若1,a b ==,求ABC ∆的面积.18.在四棱锥A DBCE -中,底面DBCE 是等腰梯形,2BC DE =,,BD DE CE ADE ==∆是等边三角形,点F 在AC 上.且3AC AF =.(I)证明://AD 平面BEF ;(Ⅱ)若平面ADE ⊥平面BCED ,求二面角A BE F --的余弦值.19.近年来,随着科学技术迅猛发展,国内有实力的企业纷纷进行海外布局,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外设多个分支机构需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工对是否愿意接受外派工作的态度随机调查了100位员工,得到数据如下表:愿意接受外派人数不愿意接受外派人数合计80后20204090后402060合计6040100(Ⅰ)根据调查的数据,判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄层有关”,并说明理由;(Ⅱ)该公司选派12人参观驻海外分支机构的交流体验活动,在参与调查的80后员工中用分层抽样方法抽出6名,组成80后组,在参与调查的90后员工中,也用分层抽样方法抽出6名,组成90后组①求这12人中,80后组90后组愿意接受外派的人数各有多少?②为方便交流,在80后组、90后组中各选出3人进行交流,记在80后组中选到愿意接受外派的人数为x ,在90后组中选到愿意接受外派的人数为y ,求x y <的概率.参考数据:20()p k k ≥0.150.100.050.0250.0100.0050k 2.0722.7063.8415.0246.6357.879参考公式:2(2=()()()()n ad bc K a b c d a c b d -++++),其中n a b c d=+++20.设抛物线的顶点为坐标原点,焦点F 在y 轴的正半轴上,点A 是抛物线上的一点,以A 为圆心,2为半径的圆与y 轴相切,切点为F .(I)求抛物线的标准方程:(Ⅱ)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点,连接QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.21.已知函数-1()1x f x k nx x=-,且曲线()y f x =在点1(1))f (,处的切线与y 轴垂直.(I)求函数()f x 的单调区间;(Ⅱ)若对任意(0,1)(1,)x e ∈ (其中e 为自然对数的底数),都有()11(0)1f x a x x a+>>-恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为=sin cos ρθθ+,点P 的曲线C 上运动.(I)若点Q 在射线OP 上,且4OP OQ ∙=,求点Q 的轨迹的直角坐标方程;(Ⅱ)设34,4M π⎛⎫⎪⎝⎭,求MOP ∆面积的最大值.23.选修4-5:不等式选讲设0,0a b >>,且222a b ab +=,求证:(Ⅰ)332a b +≥;(Ⅱ)55()()4a b a b ++≥齐齐哈尔市2018届高三第二次模拟考试数学试卷(理科)一、选择题1.B {}{}2001N x x x x x M=-<=<<⊆2.A 2)(3)3(5)i xi y i +-=++(,6(32)3(5)x x i y i ++-=++,4,5y x yi =+=3.B 3200.02+0.07 2.5=72⨯⨯().4.C 24555C C-=.5.A 由c a =22222225,5,4b c a a b a a=+==,∴渐近线方程为2y x =±,则(,2)M c c -,-,2)N c c -(,∴14202OMNS C C ∆=⨯⨯=,210,c ∴=222,8a b ==,∴双曲线方程为22128x y -=.6.D 该几何体是一个三棱柱与一个圆柱的组合体,体积=22+12=2+4V ππ⨯⨯.7.C 21,122k S ==+=;282,2=33k S ==+;8219=3=+=346k S ,;1921074,6530k S ==+=;1072117=5=+==3.930630k S ,.输出=3.9S .8.B 显然1q ≠±,由639S S =得31+9q =,38,2q q ∴==,又5151(12)=62212a S a -==-,.9.D ()cos(23f x x π=+.10.C 由222+AB BC AC =知AB BC ⊥,设球半径为1,R AA x =,则由1AA ⊥平面ABC 知22213(2)x R +=,又24194R ππ=,5x ∴=,从而11AB C ∆的面积为,又1ABB ∆面积为252,设点B 到平面11AB C 的距离为d,则1125=12335⨯⨯⨯,d ∴=,113BC =,∴直线1BC 与平面11AB C所成角正弦值为126d BC =.11.D 由22222,b a b c ==+,12()22a cb -=,得2,1,a b c ===1212111122(4)a aPF PF PF PF PF PF ∴+==-,又1PF ≤≤12111+4PF PF ∴≤≤.12.A 由2x ae x >得12121,x nx nx a a x >>,令21()nxf x x=,则22(11)'()0,0nx f x x e x -=><<,()f x ∴在1,e e ⎡⎤⎢⎥⎣⎦是增函数,在2,e e ⎡⎤⎣⎦上是减函数,12()f e a e >=,02e a ∴<<.二、填空题13.-2作出约束条件40,220,0,0x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩表示的可行域,(0,0),(0,1),(2,2),(4,0)OABC O A B C ,y ax z =-+,平移直线y ax =-至点40(,)时,min 4z a =,由48a =-,得2a =-.14.-54(,)-9219,54x x <+<-<<15.13由1AE BD ∙= ,得1(+)()12AD AB AD AB ∙-=,设AB m = ,所以2114+122m m -=,解得3m =,所以22131319()+4+23+13222222BD BE AD AB AD AD AB AB ∙=-=-∙=⨯⨯⨯= .16.2n 由112(1)n n n a a a +-+=+得112n n n n a a a a +--=-+,{}1n n a a +∴-是公差为2的等差数列,又3122(1)10a a a +=+=,412344=1430S a a a a a +++=+=,416a ∴=,又4232(1)a a a +=+,39a ∴=,11a ∴=,213a a ∴-=,所以132(2)21n n a a n n --=+-=-,累加法得2n ≥时,2112211()()...()(21)(23)...1n n n n n a a a a a a a a n n n ---=-+-++-+=-+-++=,又11a =,所以2n a n =.三、解答题17.解:(Ⅰ)由sin 12sin sin 2cos B A C C=-及sin sin()A B C =+得2sin cos 2sin()sin 2sin cos 2cos sin B C B C C B C C C =+-=+-,2cos sin sin B C C ∴=,又在ABC ∆KH ,sin 0C ≠,1cos 2B ∴=,0<<,3B B ππ∴= (Ⅱ)在ABC ∆中,由余弦定理,得2222cos b a c ac B=+-21,,713a b B c c π===∴=+- 260c c ∴--=0c > ,3c ∴=,ABC ∴∆的面积133sin S ac B ==.18.解:(Ⅰ)连接DC ,交BE 于点G ,连接FG .∵在等腰梯形DBCE D 中,,2BD DE CE BE DE ===,//BC DE ∴,2CG BC DG DE ∴==,3AC AF = ,2CFAF∴=,CF CGAF DG∴=,//AD FG ∴,又AD ⊄平面BEF ,FG ⊂平面BEF ,所以//AD 平面BEF .(Ⅱ)取DE 中点O ,取BC 中点H ,连接,AO OH ,显然AO DE ⊥,又平面ADE ⊥平面BCED ,平面ADE 平面BCED DE =,所以,AO ⊥平面BCED .由于O H 、分别为DE 、BC 中点,且在等腰梯形DBCE 中,2BC DE =,则OH DE ⊥,故以O 为原点,以OD 方向为x 轴,OH 方向为y 轴,以OA 方向为z 轴,建立下图所示空间直角坐标系.设=2(0)BC a a >,可求各点坐标分别为333,,0,,0,0,000,02222a B a a C a a E A a ⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭、、、,,可得33333,,,0,,,0222222a a AB a a a AE a a ⎛⎫⎛⎫⎛⎫=-=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭、、BE=224++(2,0,0),,-,,3322333BF BC CF BC CA a a a a a a a ⎛⎫⎛⎫===-+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面ABE 的一个法向量为111(,,)u x y z =,由00AB u AE u ∙=∙=、可得11111022022ax ay az a x az ⎧+-=⎪⎪⎨⎪--=⎪⎩,令11z =可得1x =,13y =,则(u =.设平面FBE 的一个法向量为222(,,)v x y z =,由00BE v BF v ∙=∙=、可得222223-0,224330,333a x ay ax az ⎧-=⎪⎪⎨⎪--+=⎪⎩令2y =221,3x z =-=-则,()3v =--.从而3113cos ,13u v u v u v +∙===∙,则二面角A BE F --的余弦值为1113.19.解:(Ⅰ)由22()=()()()()n ad bc K a b c d a c b d -++++可得其观测值2100(20204020)400400100 2.778 2.706604060405760000k ⨯⨯-⨯⨯⨯==≈≥⨯⨯⨯所以在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄有关”.(Ⅱ)①由分层抽样知80后组中,愿意接受外派人数为3,90后组中,愿意接受外派人数为4,②“x y <”包含“0,1x y ==”“0,2x y ==”“0,3x y ==”“1,2x y ==”“1,3x y ==”“2,3x y ==”六个互斥事件.且031213342(0,1)3310066C C C C P x y C C ===⨯=,0321333420,2)3310066C C C CP x y C C ====⨯=(,0330133420,3)3310066C C C C P x y C C ====⨯=(,1221273342=1,2)3310066C C C CP x y C C ===⨯=(,123093342=1,3)3310066C C C C P x y C C ===⨯=(,213093342=2,3)3310066C C C CP x y C C ===⨯=(,所以13127991()1002P x y +++++<==.20.解:(Ⅰ)设所求抛物线方程为22(0)x py p =>,由以A 为圆心,2为半径的圆与y 轴相切,切点为F ,所以=2p ,即该抛物线的标准方程为24x y =.(Ⅱ)由题知,直线m 的斜率存在,不妨设直线1122:6,(,),(,)m y kx P x y Q x y =+,由264y kx x y =+⎧⎨=⎩,消y 得24240x kx --=,即1212424x x k x x +=⎧⎨∙=-⎩.抛物线在点121(,)4x P x 处的切线方程为1121()42xx y x x -=-,令1y =-,得12412x x x -=,所以241,1)21x R x --(,而,,Q F R 三点共线,所以QF FR k k =,及01F (,),得21221114241x x x x ---=-,即1222(4)(4)16012x x x x --+=,整理得2212121212)4()216160x x x x x x x x ⎡⎤-+-++=⎣⎦(,将*()式代入得214k =,即12k =±,故所求直线m 的方程为162y x =+或162y x =-+.21.解:(Ⅰ)()f x 的定义域为(0,)+∞,因为2211'()k kx f x x x x -=-=,由题意知,'(1)=0f ,211,'()x k f x x -∴== ,所以由'()0f x >得1x >,由'()0f x <01x <<,()f x ∴的单调减区间为01(,),单调增区间为(1,)+∞.(Ⅱ)由(Ⅰ)知1()11f x nx x =-+,()111111111(1)1f x nx nx x x x x x x x x ∴+=-++=-----,法一:设1()1nx m x x =-,则211'()(1)x x nx m x x x --=-,令()11n x x x nx =--,则'()1111n x nx nx =--=-,1x ∴>时,'()0n x <,()n x ∴在[)1+∞,上递减,()(1)0n x n ∴≤=,(]1,x e ∴∈时,'()0m x <,()m x ∴在(]1e ,上是减函数,(]1,x e ∴∈时,1()()1m x m e e >=-由题意知,111a e ≤-,又0,1a a e >∴≥-,下证1,01a e x ≥-<<时,111nx x a>-成立,即证11a nx x <-成立,令)11x a nx x ϕ=-+(,则'()1a a x x x xϕ-=-=,由1,1a e x x ≥-<<,'()0,()x x ϕϕ∴>∴在(]01,是增函数,(0,1)x ∴∈时,()(1)0x ϕϕ<=,11a nx x ∴<-成立,即111nx x a >-成立,∴正数a 的取值范围是[)1,e -+∞.法二:①当(0,1)x ∈时,11(0)1nx a x a>>-可化为110(0)a nx x a -+<>,令()11(0)g x a nx x a =-+>,则问题转化为验证()0g x <对任意(0,1)x ∈恒成立.'()1(0)a a x g x a x x-=-=>,令'()0g x >,得0x a <<,令'()0g x <,得x a >,所以函数()g x 在(0,)a 上单调递增,在,)a +∞(上单调递减.()i 当01a <<时,下面验证()110((0,1))g a a na a a =-+>∈.设()11(01)T x x nx x x =-+<<,则'()11110(01)T x nx nx x =+-=<<<.所以()T x 在01(,)上单调递减,所以()(1)0T x T >=.即()0((0,1)g a a >∈.故此时不满足()0g x <对任意(0,1)x ∈恒成立;)ii (当1a ≥时,函数()g x 在01)(,上单调递增.故()(1)0g x g <=对任意(0,1)x ∈恒成立,故1a ≥符合题意,综合()i )ii (得1a ≥.②当(1,)x e ∈时,11(0)1nx a x a >>-,则问题转化为验证()0h x >对任意(1,)x e ∈恒成立.'()1(0)a a x h x a x x-=-=>,令'()0h x >得0x a <<;令'()0h x <,得x a >,所以函数()h x 在(0,)a 上单调递增,在,)a +∞(上单调递减.()i 当a e ≥时,()h x 在1,)e (上是增函数,所以()(1)0h x h >=)ii (当1a e <<时,()h x 在1,)a (上单调递增,在(,)a e 上单调递减,所以只需()0h e ≥,即1a e ≥-()iii 当11a <≤时,()h x 在1,)e (上单调递减,则需()0h e ≥.因为()0h e a e =+-<不符合题意.综合()i )ii (()iii ,得1a e ≥-.综合①②,得正数a 的取值范围是[)1,+e -∞22.解:(Ⅰ)设(,),(1,)(>0,10)Q P ρθρθρρ>,则1=sin cos ρθθ+,又4OP OQ ∙=,14ρρ∴=,14ρρ∴=,4sin cos θθρ∴=+,cos sin 4ρθρθ∴+=将cos ,sin x y ρθρθ==代入得,点Q 轨迹方程为4x y +=(Ⅱ)设(,)(>0)P ρθρ则3=cos sin ,4,4M πρθθ⎛⎫+ ⎪⎝⎭,MOP ∴∆的面积134sin 2sin 242S πρθρθθ⎛⎫=⨯-=+ ⎪⎝⎭2cos sin )sin 2)θθθ+=+≤,当且仅当sin 21θ=时,取“=”,取=4πθ即可,MOP ∴∆面积的最大值为(用直角坐标方程求解,参照给分)23.解:(Ⅰ)220,0,2a b a b ab >>+= ,33332222)2()()a b a b a b ab a a b b b a ∴+-=+--=-+-(222=)()()()0a b a b a b a b --=-+≥(,332a b ∴+≥.(Ⅱ)5566553323355()()()2a b a b a b a b ab a b a b a ab ++=+++=+-++3324224332222=()(2)()()a b ab a a b b a b ab a b ++-+=++-,330,0,2,a b a b >>+≥ 552)(2=4a b a b ∴++≥(.。
山西省2018届高三第二次模拟理科数学试卷(附解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,1,0,1,2A =--,()()120B x x x =-+<,则A B =( ) A .{}1,0- B .{}0,1C .{}1,0,1-D .{}0,1,22.已知复数241iz i+=-(i 为虚数单位),则z 的共轭复数在复平面对应的点的坐标 是( ) A .()3,3B .()1,3-C .()3,1-D .()1,3--3.一次考试中,某班学生的数学成绩X 近似服从正态分布()100,100N ,则该班数学成绩的及格率可估计为(成绩达到90分为及格)(参考数据:()0.68P X μσμσ-≤≤+≈)( ) A .60%B .68%C .76%D .84%4.若函数()()22,0,x x f x g x x -⎧-<⎪=⎨>⎪⎩为奇函数,则()()2f g =( )A .2-B .2C .1-D .15.已知点P 是直线0x y b +-=上的动点,由点P 向圆22:1O x y +=引切线,切点分别为M ,N ,且90MPN ∠=︒,若满足以上条件的点P 有且只有一个,则b =( )A .2B .2±CD .6.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩,表示的平面区域为D ,若函数1y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( )A .10,2⎡⎤⎢⎥⎣⎦B .12,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .31,2⎡⎤-⎢⎥⎣⎦7.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是( )A .283π B .323π C .523π D .563π 8.设()201212nn n x a a x a x a x -=++++,若140a a +=,则5a =( )A .32-B .64C .128-D .2569.执行如图所示的程序框图,输出的值是( )A .2-B .0C .2D 10.设P 为双曲线()2222:1,0x y C a b a b-=>上的点,1F ,2F 分别为C 的左、右焦点,且212PF F F ⊥,1PF 与y 轴交于点Q ,O 为坐标原点,若四边形2OF PQ 有内切圆,则C 的离心率为( )A B C .2D .311.在四面体ABCD 中,AB AC ==,6BC =,AD ⊥底面ABC ,G 为DBC ∆的重心,且直线DG 与平面ABC 所成的角是30,若该四面体ABCD 的顶点均在球O 的表面上,则球O 的表面积是( )A .24πB .32πC .46πD .49π12.设等差数列{}n a 的公差为9π,前8项和为6π,记tan 9k π=,则数列{}1tan tan n n a a +的前7项和是( )A .22731k k --B .22371k k --C .221171k k --D .227111k k --第Ⅱ卷(共90分)二、填空题:每题5分,满分20分,将答案填在答题纸上.13.问题“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?”源自南北朝张邱建所著的《张邱建算经》,该问题的答案是 . 14.已知向量a 与b 的夹角是56π,且a a b =+,则向量a 与a b +的夹角是 .15.已知函数()()2cos2cos 0222xxxf x ωωωω=+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,函数()()g x f x m =+恰有两个不同的零点,则实数m 的取值范围是 . 16.当1x >,不等式()211x x e ax -+>恒成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2cos c B b C a A +=.(1)求A ;(2)若2a =,2sin sin sin B C A =,D 为BC 边上一点,且13BD BC =,求AD 的长.18.(12分)如图,三棱柱111ABC A B C -中,90BCA ∠=,1AC ⊥平面1A BC . (1)证明:1BC AA ⊥;(2)若BC AC =,11A A AC =,求二面角11B A B C --的余弦值.19.(12分)某大型商场去年国庆期间累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表:分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过800元的概率;(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次.抽奖规则为:从装有大小材质完全相同的5个红球和5个黑球的不透明口袋中,随机摸出4个小球,并记录两种颜色小球的数量差的绝对值X,当4,2,0X=时,消费者可分别获得价值500元、200元和100元的购物券.求参与抽奖的消费者获得购物券的价值的数学期望.20.(12分)已知抛物线2:4E x y =的焦点为F ,(),0P a 为x 轴上的点. (1)当0a ≠时,过点P 作直线l 与E 相切,求切线l 的方程;(2)存在过点P 且倾斜角互补的两条直线1l ,2l ,若1l ,2l 与E 分别交于A ,B 和C ,D 四点,且FAB ∆与FCD ∆的面积相等,求实数a 的取值范围.21.(12分)已知函数()ln f x m x =. (1)讨论函数()()11F x f x x=+-的单调性; (2)定义:“对于在区域D 上有定义的函数()y f x =和()y g x =,若满足()()f x g x ≤恒成立,则称曲线()y g x =为曲线()y f x =在区域D 上的紧邻曲线”.试问曲线()1y f x =+与曲线1xy x =+是否存在相同的紧邻直线,若存在,请求出实数m 的值; 若不存在,请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为221613sin ρθ=+,P 为曲线C 上的动点,C 与x 轴、y 轴的正半轴分别交于A ,B 两点.(1)求线段OP 中点Q 的轨迹的参数方程;(2)若M 是(1)中点Q 的轨迹上的动点,求MAB ∆面积的最大值.23.(10分)【选修4-5:不等式选讲】 已知函数()221f x x x =+--. (1)解不等式()1f x ≤;(2)若关于x 的不等式()f x ax >只有一个正整数解,求实数a 的取值范围.2018届山西省高三第二次模拟考试卷数学(理)答案一、选择题.二、填空题. 13.90尺 14.120︒15.(]3,2--16.(],1-∞三、解答题.17.【答案】(1)3A π=;(2)3AD =. 【解析】(1)∵cos cos 2cos c B b C a A +=,∴sin cos sin cos 2sin cos C B B C A A +=. ∴()sin 2sin cos B C A A +=,∴sin 2sin cos A A A =, ∵()0,A π∈,∴sin 0A ≠,∴1cos 2A =,∴3A π=. (2)∵2a =,2sin sin sinBC A =,∴24bc a ==.由2222cos a b c bc A =+-,得2244b c =+-,∴228b c +=,又4bc =,∴2b c ==.则ABC ∆为等边三角形,且边长为2,∴23BD =.在ABC ∆中,2AB =,23BD =,3B π=,由余弦定理可得AD =.18.【答案】(1)证明见解析;(2)7-. 【解析】(1)证明:∵1AC ⊥平面1A BC ,∴1AC BC ⊥. ∵90BCA ∠=,∴BC AC ⊥,∴BC ⊥平面11ACC A , ∴1BC AA ⊥.(2)∵1AC ⊥平面1A BC ,∴11AC AC ⊥, ∴四边形11ACC A 为菱形,∴1AA AC =.又11A A AC =,∴1A AC ∆与11ACC ∆均为正三角形. 取11AC 的中点1D ,连接1CD ,则1CD AC ⊥.由(1)知1CD BC ⊥,则可建立如图所示的空间直角坐标系C xyz -.设2BC AC ==,则()2,0,0A,(1C -,()0,2,0B,(1A,(1B -. ∴()112,2,0B A =-,(11,0,B B =,(1AC =-.设平面11B A B 的法向量为(),,m x y z =,则11100,m B A m B B ⎧⋅=⎪⎨⋅=⎪⎩,∴2200x y x -=⎧⎪⎨=⎪⎩,∴x yx =⎧⎪⎨=⎪⎩,取1z =,则)m =为平面11B A B 的一个法向量.又(1AC =-为平面1A BC 的一个法向量,∴111cos ,77m AC m AC m AC ⋅<>===-⋅. 又二面角11B A B C --的平面角为钝角,所以其余弦值为 19.【答案】(1)0.05p =;(2)()5003E Y =元. 【解析】(1)因消费额在区间(]0,400的频率为0.5,故中位数估计值为400. 设所求概率为p ,而消费额在(]0,600的概率为0.8. 故消费额在区间(]600,800内的概率为0.2p -.因此消费额的平均值可估计为()1000.253000.255000.37000.2900p p ⨯+⨯+⨯+⨯-+⨯. 令其与中位数400相等,解得0.05p =.(2)根据题意()44554101412C C P X C +===,()1331555541010221C C C C P X C +===,()225541010021C C P X C ===.设抽奖顾客获得的购物券价值为Y ,则Y 的分布列为故()15002001002121213E Y =⨯+⨯+⨯=(元). 20.【答案】(1)切线l 的方程为0y =或20ax y a --=;(2)a 的取值范围为1a <<-或11a -<<或1a <<.【解析】(1)设切点为200,3x Q x ⎛⎫⎪⎝⎭则002x x l x yk ===. ∴Q 点处的切线方程为()200042x x y x x -=-. ∵l 过点P ,∴()200042x x a x -=-,解得02x a =或00x =. 当0a ≠时,切线l 的方程为0y =或20ax y a --=. (2)设直线1l 的方程为()y k x a =-,代入24x y =得2440x kx ka -+=,①216160k ka ∆=->,得()0k k a ->, ②由题意得,直线2l 的方程为()y k x a =--, 同理可得()0k k a --->,即()0k k a +>, ③ ②×③得()2220k k a ->,∴22a k <.④设()11,A x y ,()22,B x y ,则224x x k +=,224x x ka =.∴AB =F 到AB的距离为d =,∴FAB ∆的面积为41S =+ 同理FCD ∆的面积为41S =-由已知得4141+=- 化简得()2221a k -=, ⑤欲使⑤有解:则22a <,∴a < 又22212a k k=-<,得21k ≠,∴21a ≠. 综上,a的取值范围为1a <-或11a -<<或1a << 21.【答案】(1)见解析;(2)存在,1m =. 【解析】(1)()()'22110m mx F x x x x x -=-=>. 当0m ≤时,()'0F x <,函数()F x 在()0,+∞上单调递减;当0m >时,令()'0F x <,得1x m <,函数()F x 在10,m ⎛⎫⎪⎝⎭上单调递减; 令()'0F x >,得1x m >,函数()F x 在1,m ⎛⎫+∞ ⎪⎝⎭上单调递增. 综上所述,当0m ≤时,()F x 在()0,+∞上单调递减;当0m >时,()F x 在10,m ⎛⎫⎪⎝⎭上单调递减,在1,m ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)原命题等价于曲线()1y f x =+与曲线1xy x =+是否相同的外公切线. 函数()()1ln 1f x m x +=+在点()()11,ln 1x m x +处的切线方程为()()111ln 11m y m x x x x -+=-+,即()1111ln 111mx my x m x x x =++-++, 曲线1x y x =+在点222,1x x x ⎛⎫ ⎪+⎝⎭处的切线方程为()()22222111x y x x x x -=-++, 即()()222222111x y x x x =+++.曲线()1y f x =+与1xy x =+的图象有且仅有一条外公切线, 所以()()()21221212121,(1)11ln 1.(2)11m x x mx x m x x x ⎧=⎪++⎪⎨⎪+-=⎪++⎩有唯一一对()12,x x 满足这个方程组,且0m >,由(1)得()21211x m x +=+代入(2)消去1x ,整理得()2222ln 1ln 101m x m m m x +++--=+,关于()221x x >-的方程有唯一解. 令()()()22ln 1ln 111g x m x m m m x x =+++-->-+, ∴()()()()'2221122111m x m g x x x x +-⎡⎤⎣⎦=-=+++. 当0m >时,()g x 在11,1m ⎛⎫--+ ⎪⎝⎭上单调递减,在11,m ⎛⎫-++∞ ⎪⎝⎭上单调递增;所以()min 11ln 1g x g m m m m ⎛⎫=-+=-- ⎪⎝⎭.因为x →+∞,()g x →+∞;1x →-,()g x →+∞,只需ln 10m m m --=. 令()ln 1h m m m m =--,()'ln h m m =-在0m >为单减函数, 且1m =时,()'0h m =,即()()max 10h m h ==, 所以1m =时,关于2x 的方程()2222ln 1ln 101m x m m m x +++--=+有唯一解, 此时120x x ==,外公切线的方程为y x =. ∴这两条曲线存在相同的紧邻直线,此时1m =.22.【答案】(1)点Q 的轨迹的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数);(2)4.【解析】(1)由C 的方程可得2223sin 16ρρθ+=,又222x y ρ=+,sin y ρθ=,∴C 的直角坐标方程为22416x y +=,即221164x y +=.设()4cos ,2sin P θθ,则()2cos ,sin Q θθ,∴点Q 的轨迹的参数方程为2cos sin x y θθ=⎧⎨=⎩(θ为参数).(2)由(1)知点Q 的轨迹的普通方程为2214x y +=,()4,0A ,()0,2B,AB =直线AB 的方程为240x y +-=. 设()2cos ,sin M θθ,则M 到AB 的距离为d ==≤, ∴MAB ∆面积的最大值为142S =⨯=.23.【答案】(1){3x x ≥或13x ≤};(2)13a ≤<. 【解析】()()()()4,23,214,1x x f x x x x x -≤-⎧⎪=-<≤⎨⎪-+>⎩, (1)当2x ≤-时,41x -≤,∴5x ≤,∴2x ≤-; 当21x -<≤时,31x ≤,∴13x ≤,∴123x -<≤; 当1x >时,41x -+≤,∴3x ≥,∴3x ≥. 综上,不等式的解集为{3x x ≥或13x ≤}. (2)作出函数()y f x =与y ax =的图象,由图象可知当13a ≤<时,不等式只有一个正整数解1x =, ∴13a ≤<.。
江西省新余市2018届高三第二次模拟考试数学试题(理)第Ⅰ卷一、选择题1. 集合,,则()A. B. C. D.2. 已知复数满足:则复数的虚部为()A. B. C. D.3. 已知下列命题:①在某项测量中,测量结果服从正态分布,若在内取值范围概率为,则在内取值的概率为;②若,为实数,则“”是“”的充分而不必要条件;③已知命题,,则是:,;④中,“角,,成等差数列”是“”的充分不必要条件;其中,所有真命题的个数是()A. 个B. 个C. 个D. 个4. 从中不放回地依次取个数,事件“第一次取到的是奇数”“第二次取到的是奇数”,则()A. B. C. D.5. 为迎接中国共产党十九大的到来,某校举办了“祖国,你好”诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的名学生中选派名学生参加,且当这名同学都参加时,甲和乙的朗诵顺序不能相邻,那么不同的朗诵顺序的种数为()A. B. C. D.6. 在的展开式中,项的系数等于,则等于()A. B. C. D.7. 在如图所示的程序框图中,若输入的,,则输出的结果为()A. B. C. D.8. 已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.9. 斜率为的直线过抛物线焦点,交抛物线于,两点,点为中点,作,垂足为,则下列结论中不正确的是()A. 为定值B. 为定值C. 点的轨迹为圆的一部分D. 点的轨迹是圆的一部分10. 某几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.11. 已知椭圆,,为其左、右焦点,为椭圆上除长轴端点外的任一点,为内一点,满足,的内心为,且有(其中为实数),则椭圆的离心率等于()A. B. C. D.12. 定义:如果函数在区间上存在,满足,,则称函数是在区间上的一个双中值函数,已知函数是区间上的双中值函数,则实数的取值范围是()A. B. C. D.第Ⅱ卷二、填空题13. 已知向量,,,若,则__________.14. 若实数,满足不等式组,则的最小值是__________.15. 在中,内角,,的对边分别为,,,,,则__________.16. 对于函数,下列个结论正确的是__________(把你认为正确的答案全部写上).(1)任取,都有;(2)函数在上单调递增;(3),对一切恒成立;(4)函数有个零点;(5)若关于的方程有且只有两个不同的实根,,则.三、解答题17. 已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)求数列的通项公式;(3)设,求的前项和.18. “微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的人(男、女各人),记录了他们某一天的走路步数,并将数据整理如下:(1)已知某人一天的走路步数超过步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有以上的把握认为“评定类型”与“性别”有关?附:,0.102.706(2)若小王以这位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选人,其中每日走路不超过步的有人,超过步的有人,设,求的分布列及数学期望.19. 已知四棱锥,底面为菱形,,为上的点,过的平面分别交,于点,,且平面.(1)证明:;(2)当为的中点,,与平面所成的角为,求二面角的余弦值.20. 已知动圆过定点,且在轴上截得的弦长为,记动圆圆心的轨迹为曲线.(1)求直线与曲线围成的区域面积;(2)点在直线上,点,过点作曲线的切线、,切点分别为、,证明:存在常数,使得,并求的值.21. 已知函数(为自然对数的底数).(1)若,求函数的单调区间;(2)若,且方程在内有解,求实数的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为,直线的参数方程为(为参数),直线和圆交于,两点.(1)求圆心的极坐标;(2)直线与轴的交点为,求.23. 设不等式的解集为,.(1)证明:;(2)比较与的大小.【参考答案】第Ⅰ卷一、选择题1. 【答案】D【解析】由题意得,∴.选D.2. 【答案】C【解析】由,得,∴,∴复数的虚部为1.选C.3. 【答案】C【解析】对于①,根据正态曲线的对称性可得,故,即①正确.对于②,,故“”是“”的既不充分也不必要条件.故②不正确.对于③,由题意得是:,,故③不正确.对于④,“角,,成等差数列”等价于;由得,即,当,即时等式成立.当,可得.即“”等价于“或”,所以“角,,成等差数列”是“”的充分不必要条件,故④正确.综上可得①④正确.选C.4. 【答案】A【解析】由题意得,∴.选A.5. 【答案】B【解析】6名学生选派4名参加,共有种,当甲乙丙都参加且甲乙朗诵次序相邻时,共有种数,由去杂法可知所求不同的朗诵顺序的种数为,选B.6.【答案】A【解析】,必须,,的系数为,解得,所以7. 【答案】C【解析】第一次循环:;第二次循环:;第三次循环:,第四次循环:,第五次循环:,第六次循环:,结束循环,输出,选C.8. 【答案】D【解析】由题意得,画出函数的图象.结合图象可得,当直线为x轴时,满足条件,此时;当直线经过点时,不再满足条件.故m的取值范围为.选D.9. 【答案】C【解析】由题意知抛物线的焦点为,故直线的方程为,由消去y整理得,设,则,∴.选项A中,,为定值.故A正确.选项B中,,为定值,故B正确.选项C中,由消去k得,故点的轨迹不是圆的一部分,所以C不正确.选项D中,由于,直线过定点,所以点Q在以为直径的圆上,故D正确.综上选C.10. 【答案】D【解析】由题设中提供的三视图中图形信息与数据信息可知该几何体是两个三棱锥的的拼合体,如图,其外接球的球心在中点上,由于都是以为斜边的直角三角形,所以,而,故,所以几何体的外接球的面积,应选答案D.11. 【答案】B【解析】设,由,可得G为的重心,即有G点坐标为,由,可得IG∥x轴,即有I的纵坐标为,在中,,则.因为I为的内心,故有I的纵坐标即为内切圆半径,所以,故,即,整理得,故椭圆C的离心率.选B.12. 【答案】A【解析】,∵函数是区间上的双中值函数,∴区间上存在,满足∴方程在区间有两个不相等的解,令,则,解得∴实数的取值范围是.故答案为.第Ⅱ卷二、填空题13.【答案】【解析】∵,,∴,又,∴,解得,∴,∴.14.【答案】【解析】画出不等式组表示的可行域如图阴影部分所示.①当时,,可得,平移直线,结合图形可得当直线经过可行域内的点B(1,0)时,直线在y轴上的截距最小,此时z取得最小值,且.②当时,,可得,平移直线,结合图形可得当直线经过可行域内的点时,直线在y轴上的截距最小,此时z取得最小值,且.综上.15.【答案】【解析】依据题设可得,由正弦定理余弦定理可得,即,也即与联立可得,故,应填答案.16.【答案】(1)(4)(5)【解析】由题意,得的图象如图所示,由图象,则任取,,都有,故(1)正确;函数在上先增后减,故(2)错误;当时,,即,故(3)错误;在同一坐标系中作出和的图象,可知两函数图象有三个不同公共点,即函数有3个零点,故(4)正确;在同一坐标系中作出和的图象,由图象可知当且仅当时,关于的方程有且只有两个不同的实根,,且,关于对称,即;故(5)正确;故填(1)、(4)、(5).三、解答题17.解:(1)由题意知,即,①当n≥2时,有a n=S n﹣S n﹣1,代入①式得,整理得(n≥2).又当n=1时,由①式可得S1=1;∴数列是首项为1,公差为1的等差数列.(2)由(1)可得,∵数列{a n}是各项都为正数,∴,∴当n≥2时,,又满足上式,∴.(3)由(2)得,当n为奇数时,当n为偶数时,∴数列{b n}的前n项和.18.解:(1)由题意得列联表为:由表中数据可得,故没有95%以上的把握认为认为“评定类型”与“性别”有关.(2)由条件知,从小王的微信好友中任选一人,其每日走路步数不超过步的概率为,超过步的概率为.由题意得的所有可能取值为0,1,2.,,故随机变量的分布列为:所以.19. (1)证明:连结交于点,连结.因为为菱形,所以,且为、的中点,因为,所以,因为且平面,所以平面,因为平面,所以.因为平面,平面,且平面平面,所以,所以.(2)解:由(1)知且,因为,且为的中点,所以,所以平面,所以与平面所成的角为,所以,所以,因为,所以.分别以,,为轴,建立如图所示空间直角坐标系,设,则,所以.记平面的法向量为,则,令,则,所以,记平面的法向量为,则,令,则,所以,记二面角的大小为,则.所以二面角的余弦值为.20解:(1)设动圆圆心的坐标为,由题意可得,化简得,故曲线的方程为.由,解得或,所以直线与曲线围成的区域面积为.(2)设、,则由题意得切线的方程为,切线的方程为,设点,从而有,所以可得直线AB的方程为即.由消去y整理得,又,所以,所以,故,= ,所以.故存在常数,使得成立.21.解:(1)当,所以,时,的单调递减区间为;时,的单调递增区间为,递减区间为;时,的单调递增区间为,递减区间为.(2)由得.由得,设,则在内有零点.设为在内的一个零点,则由、知在区间和上不可能单调递增,也不可能单调递减,设,则在区间和上均存在零点,即在上至少有两个零点..当时,在区间上递增,不可能有两个及以上零点;当时,在区间上递减,不可能有两个及以上零点;当时,得所以在区间上递减,在上递增,在区间上存在最小值,若有两个零点,则有:.,设,则,令,得,当时,递增, 当时,递减,恒成立.由,得.当时,设的两个零点为,则在递增,在递减,在递增,所以,则在内有零点.综上,实数的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.解:(1)由,得,故得,所以圆的普通方程为,所以圆心坐标为,圆心的极坐标为.(2)把化为普通方程得,令得点P坐标为,故直线的参数方程可化为,代入整理得,所以点A、B对应的参数分别为,所以.法二:把化为普通方程得,令得点P坐标为,又因为直线恰好经过圆C的圆心,故.23.(1)证明:记由,解得,则.所以.(2)解:由(1)得,因为,所以.故.。
广西2018届高三第二次模拟数学(理)试题含答案广西区2018年3月高三年级第二次高考模拟联合考试数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合2{|20}A x x =->,{|0}B x x =>,则AB =( )A .(0B .(2)(0)-∞-+∞,, C .(2)+∞ D .(2)(0)-∞+∞,,2.复数13ii -=+ ( ) A .931010i - B .131010i + C .931010i + D .131010i - 3. 以下关于双曲线M :228x y -=的判断正确的是( ) A .M 的离心率为2 B .M 的实轴长为2C.M 的焦距为16 D .M 的渐近线方程为y x =± 4.若角α 的终边经过点(123)-, ,则tan()3πα+= ( )A .7-B .37-335.35 5.某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为( )A .51296π-B .296 C.51224π- D .5126.设x ,y 满足约束条件330280440x y x y x y -+⎧⎪+-⎨⎪+-⎩≥≤≥,则3z x y =+的最大值是( )A .9B .8 C.3 D .47.执行如图所示的程序框图,若输入的11k =,则输出的S =( )A .12B .13 C.15 D .188.我国南宋著名数学家秦九韶发现了三角形三边求三角形面积的“三斜求积公式”,设ABC △三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积公式”为2222221[()]42a cb S ac +-=-.若2sin 24sin a C A =,2(sin sin )()(27)sin a C B c b a A -+=-,则用“三斜求积公式”求得的S =( )AB 155156 D 1579.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100 的产品为优质产品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100 件这种产品,并测量了每件产品的质量指标值(都在区间[90110], 内),将这些数据分成4 组:[9095), ,[95100), ,[100105), ,[105110], ,得到如下两个频率分布直方图:已知这2 种配方生产的产品利润y (单位:百元)与其质量指标值t 的关系式均为19509510011001052105t t y t t -<⎧⎪<⎪=⎨<⎪⎪⎩,,≤,≤,≥.若以上面数据的频率作为概率,分别从用A 配方和B 配方生产的产品中随机抽取一件,且抽取的这2 件产品相互独立,则抽得的这两件产品利润之和为0 的概率为( )A .0.125B .0.195 C.0.215 D .0.235 10. 设38a =,0.5log 0.2b =,4log 24c =,则( )A .a c b <<B .a b c << C.b a c << D .b c a << 11. 将函数sin 2cos2y x x =+的图象向左平移ϕ(02πϕ<<)个单位长度后得到()f x 的图象,若()f x 在5()4ππ,上单调递减,则ϕ的取值范围为( ) A .3()88ππ,B .()42ππ, C.3[]88ππ, D .[)42ππ, 12.过圆P :221(1)4x y ++=的圆心P 的直线与抛物线C :23y x = 相交于A ,B 两点,且3PB PA =,则点A 到圆P 上任意一点的距离的最大值为( ) A .116 B .2 C.136 D .73第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()AB m n =, ,(21)BD =, ,(38)AD =, ,则mn = . 14.71(4)2x - 的展开式中3x 的系数为 . 15. 若函数32()3f x x x a =--(0a ≠)只有2个零点,则a = . 16.在等腰三角形ABC 中,23A π∠=,23AB =,将它沿BC 边上的高AD 翻折,使BCD △ 为正三角形,则四面体ABCD 的外接球的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知公差不为0的等差数列{}n a 的前n 项和n S ,11S +,3S ,4S 成等差数列,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若4S ,6S ,10S 成等比数列,求n 及此等比数列的公比.18. 4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解高三学生课外阅读情况,(1)从参加问卷调查的 名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10 名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用X 表示抽得甲组学生的人数,求X 的分布列及数学期望. 19. 如图,在正方体1111ABCD A B C D - 中,F ,G 分别是棱1CC ,1AA 的中点,E 为棱AB 上一点,113B M MA = 且GM ∥ 平面1B EF .(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.20. 已知椭圆C :22221x y a b +=(0a b >> )的离心率3e =,直线310x y -= 被以椭圆C 的短轴3(1)求椭圆C 的方程;(2)过点(40)M , 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅ ,求λ 的取值范围.21. 已知函数3()ln(1)ln(1)(3)f x x x k x x =+---- (k ∈R )(1)当3k = 时,求曲线()y f x = 在原点O 处的切线方程; (2)若()0f x > 对(01)x ∈, 恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 23cos 0ρθθ-=. (1)写出直线l 的普通方程及曲线C 的直角坐标方程;(2)已知点(01)P ,,点(30)Q ,直线l 过点Q 且曲线C 相交于A ,B 两点,设线段AB 的中点为M ,求PM的值.23.选修4-5:不等式选讲 已知函数()23f x x x =-++. (1)求不等式()15f x ≤的解集;(2)若2()x a f x -+≤对x ∈R 恒成立,求a 的取值范围.广西区2018年3月高三年级第二次高考模拟联合考试数学参考答案(理科)一、选择题1-5:DADBC 6-10:ACDBA 11、12:CC 二、填空题13.7 14.140- 15.4- 16.15π 三、解答题 17. 1)设数列{}n a 的公差为d由题意可知3142215210S S S a a a d =++⎧⎪=⎨⎪≠⎩,整理得1112a d a =⎧⎨=⎩ ,即112a d =⎧⎨=⎩所以21na n =-(2)由(1)知21n a n =- ,∴2n S n = ,∴416S = ,836S = ,又248nS S S= ,∴22368116n == ,∴9n = ,公比8494S q S ==18.由已知得,问卷调查中,从四个小组中抽取的人数分别为3 ,4 ,2 ,1 , 从参加问卷调查的10 名学生中随机抽取两名的取法共有21045C = 种,这两名学生来自同一小组的取法共有22234210C C C ++= 种.所以所求概率102459P == (2)由(1)知,在参加问卷调查的10 名学生中,来自甲、丙两小组的学生人数分别为3 ,2 .X 的可能取值为0 ,1 ,2 ,22251(0)10C P X C === ,1132253(1)5C C P X C === ,23253(2)10C P X C === .所以X 的分布列为()012105105E X =⨯+⨯+⨯=19.(1)证明:取11A B 的中点N ,连接AN , 因为1=3B M MA ,所以M 为1A N 的中点,又G 为1AA 的中点,所以GM AN ∥ , 因为GM ∥ 平面1B EF ,GM ⊂ 平面11ABB A ,平面11ABB A 平面11B EFB E =所以1GM B E ∥ ,即1AN B E ∥ ,又1B N AE ∥ ,所以四边形1AEB N 为平行四边形,则1AEB N = ,所以E 为AB 的中点.(2)解:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz - ,不妨令正方体的棱长为2 , 则1(222B ,,) ,(210)E ,, ,(021)F ,, ,1(202)A ,, ,可得1(012)B E =--,, ,(211)EF =-,, ,设()m x y z =,, 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ ,令2z = ,得(142)m =--,, 易得平面11ABC D 的一个法向量为1(202)n DA ==,,所以42cos422221m n m n m n⋅===⨯, 故所求锐二面角的余弦值为424220.解:(1)因为原点到直线310x -=的距离为12, 所以22213()(2b += (0b > ),解得1b = . 又22222314c b e a a ==-= ,得2a =所以椭圆C 的方程为2214x y += . (2) 当直线l 的斜率为0 时,12MA MB λ=⋅=当直线l 的斜率不为0 时,设直线l :4x my =+ ,11()A x y , ,22()B x y , ,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩ ,得22(4)8120m y my +++=由22=6448(4)0mm ∆-+> ,得212m >,所以122124y y m =+2221122212(1)31112(1)44m MA MB m m y m m λ+=⋅=++==-++由212m > ,得2330416m <<+ ,所以39124λ<< . 综上可得:39124λ<≤ ,即39(12]4λ∈, 21.解:(1)当3k = 时,211()9(1)11f x x x x'=+--+- ,∴(0)11f '= 故曲线()y f x = 在原点O 处的切线方程为11y x =(2)22223(1)()1k x f x x+-'=- 当(01)x ∈, 时,22(1)(01)x-∈, ,若23k -≥ ,2223(1)0k x +-> ,则()0f x '> ,∴()f x 在(01), 上递增,从而()(0)0f x f >= .若23k <-,令2()01(01)3f x x k '=⇒=--, ,当2(01)3x k∈--,时,()0f x '< ,当1)x ∈ 时,()0f x '> ,∴min 2()(1)(0)03f x f f k=--<= 则23k <-不合题意. 故k 的取值范围为2[)3-+∞, 22.解:(1)由直线l 的参数方程消去t ,得l 的普通方程为sin cos cos 0x y ααα-+= , 由2sin23cos 0ρθθ-= 得22sin 23cos 0ρθρθ-=所以曲线C 的直角坐标方程为223y x =(2)易得点P 在l ,所以3tan 30PQ k α===-,所以56πα= 所以l 的参数方程为32112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩ , 代入223y x = 中,得21640t t ++= .设A ,B ,M 所对应的参数分别为1t ,2t ,0t . 则12082t t t +==- ,所以08PM t == 23.解:(1)因为213()532212x x f x x x x --<-⎧⎪=-⎨⎪+>⎩,,≤≤, ,13x <-≤所以当3x <- 时,由()15f x ≤ 得83x -<-≤ ; 当32x -≤≤ 时,由()15f x ≤ 得32x -≤≤ ; 当2x > 时,由()15f x ≤ 得27x <≤ 综上,()15f x ≤ 的解集为[87]-, (2)(方法一)由2()x a f x -+≤ 得2()a x f x +≤ ,因为()(2)(3)5f x x x --+=≥ ,当且仅当32x -≤≤ 取等号,所以当32x -≤≤ 时,()f x 取得最小值5 .所以,当0x = 时,2()x f x +取得最小值5 ,故5a ≤ ,即a 的取值范围为(5]-∞, (方法二)设2()g x xa =-+ ,则max ()(0)g x g a == ,当32x -≤≤ 时,()f x 的取得最小值5 ,所以当0x = 时,2()x f x +取得最小值5 ,故5a ≤ ,即a 的取值范围为(5]-∞,。
山东省济南市2018届高三第二次模拟考试理数试题word含答案山东省济南市2018届高三第二次模拟(5月)考试理科数学参考公式:锥体的体积公式:V=1/3Sh,其中S为锥体的底面积,h为锥体的高。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
21.设全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分表示的集合为()小幅度改写:已知全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分为集合A和集合B的交集。
2.设复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是()小幅度改写:已知复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是z=-1+i。
3.已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα等于()小幅度改写:已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα=±3/5.4.已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为()小幅度改写:已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为x2/b2-y2/a2=1.5.某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
则中奖的概率为()小幅度改写:某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。
2018年普通高等学校招生全国统一考试模拟试题理数(二)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,复数()12ai a R i +∈-为纯虚数,则a 的值为 A .2- B .12- C .2 D .122.已知集合{}{}()22log 3,450,R A x x B x x x A C B =<=-->⋂=则 A .[-1,8)B.(]05, C .[-1,5) D .(0,8)3.已知n S 是各项均为正数的等比数列{}n a 前n 项和,7153564,20a a a a S =+==,则A .31B .63C .16D .1274.设向量)()(,,3,1,//a b x c b c a b b ==-=-,若,则与的夹角为 A .30° B .60° C .120° D .150°5.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为()222210x y a b a b +=>>,测得Γ的离心率为2,则椭圆Γ的方程为 A .221164x y += B .2214x y +=C .2216416x y += D .22154x y += 6.已知某服装厂生产某种品牌的衣服,销售量()q x (单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为()1260,020,190180,x x q x x ⎧<≤⎪+=⎨⎪-<≤⎩则当该服装厂所获效益最大时A .20B .60C .80D .407.已知,x y 满足不等式组240,20,130,x y x y z x y y +-≥⎧⎪--≤=+-⎨⎪-≤⎩则的最小值为A.2B.C. D.1 8.已知函数()2110sin 10sin ,,22f x x x x m π⎡⎤=---∈-⎢⎥⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦,则实数m 的取A .,03π⎡⎤-⎢⎥⎣⎦B .,06π⎡⎤-⎢⎥⎣⎦C .,36ππ⎡⎤-⎢⎥⎣⎦D .,63ππ⎡⎤-⎢⎥⎣⎦ 9.已知()2112n x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为42-,则n = A.10 B.8 C.12 D.1110.某几何体的三视图如图所示,则该几何体的表面积为A .30π+B .803π+ C. 923π+ D .763π+ 11.已知双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点分别为12,F F ,点P 是双曲线Γ右支上一点,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于点A ,且22PM MF = ,若PA的中点E 在1F M 的延长线上,则双曲线Γ的离心率是A .3B .2+C .1D .4+12.已知函数()()()222f x x x x mx n =+++,且对任意实数x ,均有()()33f x f x -+=--,若方程()f x a =有且只有4个实根,则实数a 的取值范围为A .()16,9-B .(]16,9-C .(]16,0-D .(]16,5--第Ⅱ卷本卷包括必考题和选考题两部分。
东北三省四市教研联合体2018届高三第二次模拟考试理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}03,1 -==x x x B x x A ,则B A ( ) A .(-1,0) B .(0,1) C .(-1,3) D .(1,3)2.若复数aiiz ++=11为纯虚数,则实数a 的值为( ) A .1 B .0 C .21- D .-13.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”取意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算.算筹是将几寸长的小竹棍摆在下面上进行运算.算筹的摆放形式有纵横两种形式(如下图所示).表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.以此类推.例如3266用箅筇表示就是,则8771用算筹可表示为( )中国古代的算筹数码 A .B .C .D .4.右图所示的程序框图是为了求出满足2822n n -的最小偶数n ,那么在空白框内填入及最后输出的n 值分别是( )A .1+=n n 和6B .2+=n n 和6 C.1+=n n 和8 D .2+=n n 和85.函数xxx x f tan 1)(2++=的部分图像大致为( )A .B .C. D .6.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .34B .3310 C.32 D .3387.6本不同的书在书架上摆成一排,要求甲、乙两本书必须摆在两端,丙、丁两本书必须相邻,则不同的摆放方法有( )种A .24B .36 C.48 D .608.ABC ∆的内角C B A ,,的对边分别为c b a ,,,若ABC b A c C a B b ∆=+=,2,cos cos cos 2的面积最大值是( )A .1B .3 C.2 D .49.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角C AD B --,则过D C B A ,,,四点的球的表面积为( )A .π3B .π4 C.π5 D .π6 10.将函数⎪⎭⎫⎝⎛+=32sin )(πx x f 的图像向右平移a 个单位得到函数的图象,则的值可以为( ) A .B .C .D .11..已知焦点在轴上的双曲线的左右两个焦点分别为和,其右支上存在一点满足,且的面积为3,则该双曲线的离心率为( )A .B .C .D .12.若直线()和曲线()的图象交于,,()三点时,曲线在点,点处的切线总是平行,则过点可作曲线的( )条切线 A .0B .1C .2D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数,满足约束条件则的最大值为 .14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为,现表中一个数据为污损,则被污损的数据为 .(最后结果精确到整数位)()cos(2)4g x x π=+a 512π712π924π14124πx 222211x y m m -=-1F 2F P 12PF PF ⊥12PF F ∆52722310kx y k --+=k R ∈:E 3253y ax bx =++0ab ≠11(,)A x y 22(,)B x y 33(,)C x y 123x x x <<E A C (,)b a E x y 0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩25z x y =++2.1161.13y x =-+15.已知函数满足,当时,的值为 .16.已知腰长为2的等腰直角中,为斜边的中点,点为该平面内一动点,若,则的最小值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设数列的前项和为,且,正项等比数列的前项和为,且,.(I )求和的通项公式;(II )数列中,,且,求的通项.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位); (2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率;(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注环境治理和保护问题的人数为随机变量,求的分布列与数学期望.19.在如图所示的几何体中,四边形是正方形,平面,,分别是线段,的中点,.()f x 1()(1)1()f x f x f x ++=-(1)2f =(2018)(2019)f f +ABC ∆M AB P ||2PC =()()PA PB PC PM ⋅⋅⋅{}n a n n S 21n S n n =-+{}n b n n T 22b a =45b a ={}n a {}n b {}n c 11c a =1n n n c c T +=-{}n c n c 80%[15,25)[25,35)[35,45)[45,55)[55,65)X X ABCD PA ⊥ABCD E F AD PB 1PA AB ==(1)证明:平面;(2)求平面与平面所成锐二面角的余弦值.20.在平面直角坐标系中,椭圆:的离心率为,点在椭圆上.(1)求椭圆的方程;(2)已知与为平面内的两个定点,过点的直线与椭圆交于,两点,求四边形面积的最大值.21.已知函数(). (I )若为在上的单调递增函数,求实数的取值范围;(II )设,当时,若(其中,),求证:. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线:,曲线:().(I )求与交点的极坐标; (II )设点在上,,求动点的极坐标方程. 23.选修4-5:不等式选讲已知函数,. (I )当时,求不等式的解集; (II )对于都有恒成立,求实数的取值范围.//EF DCP EFC PDC C 22221(0)x y a b a b+=>>123(1,)2M C C (2,0)P -(2,0)Q (1,0)l C A B APBQ 2()45xaf x x x e =-+-a R ∈()f x R a ()()xg x e f x =1m ≥12()()2()g x g x g m +=1x m <2x m >122x x m +<xOy x 1C cos 3ρθ=2C 4cos ρθ=02πθ≤<1C 2C Q 2C 23OQ QP =P ()|2||23|f x x x m =+++m R ∈2m =-()3f x ≤(,0)x ∀∈-∞2()f x x x≥+m数学(理科)试题参考答案一、选择题1-5: 6-10: 11、12: 二、填空题13.14 14.38 15. 16.22432- 三、解答题17.解:(1)∵,∴令,,,,经检验不能与()时合并,∴又∵数列为等比数列,,,∴,∴, ∴,∴.(2), ∵,,…,,以上各式相加得, ,∴, ∴.18.解:(1)由,得, 平均数为岁;设中位数为,则,∴岁. (2)第1,2组抽取的人数分别为2人,3人.CDCDD BABCC BC 72-21n S n n =-+1n =11a =12(1)n n n a S S n -=-=-(2)n ≥11a =n a 2n ≥1,1,2(1), 2.n n a n n =⎧=⎨-≥⎩{}n b 222b a ==458b a ==2424b q b ==2q =11b =12n n b -=122112nn n T -==--12121c c -=-23221c c -=-1121n n n c c ---=-112(12)(1)12n n c c n ---=---111c a ==121nn c n -=--21nn c =-10(0.0100.0150.0300.010)1a ⨯++++=0.035a =200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=x 100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=42.1x ≈设第2组中恰好抽取2人的事件为,则. (3)从所有参与调查的人中任意选出1人,关注环境治理和保护问题的概率为, 的所有可能取值为0,1,2,3,∴,,,,所以的分布列为:∵, ∴. 19.解:(1)取中点,连接,,∵,分别是,中点,∴,, ∵为中点,为矩形,∴,,∴,,∴四边形为平行四边形, ∴,∵平面,平面, ∴平面.(2)∵平面,且四边形是正方形,∴,,两两垂直,以为原点,,,所在直线为,,轴,建立空间直角坐标系,则,,,,,设平面法向量,,,则即取, 设平面法向量为,,,A 1223353()5C C P A C ==45P =X 03341(0)(1)5125P X C ==-=11234412(1)()(1)55125P X C ==-=2234448(2)()(1)55125P X C ==-=333464(3)()5125P X C ===X X 0123P 11251212548125641254~(3,)5X B 412()355E X =⨯=PC M DM MF M F PC PB //MF CB 12MF CB =E DA ABCD //DE CB 12DE CB =//MF DE MF DE =DEFM //EF DM EF ⊄PDC DM ⊂PDC //EF PDC PA ⊥ABC ABCD AD AB AP A AP AB AD x y z A xyz -(1,0,0)P (0,0,1)D (0,1,1)C 1(0,0,)2E 11(,,0)22F EFC 1(,,)n x y z =111(,,)222EF =-11(,,1)22FC =-110,0,EF n FC n ⎧⋅=⎪⎨⋅=⎪⎩0,110,22x y z x y z +-=⎧⎪⎨-++=⎪⎩1(3,1,2)n =-PDC 2(,,)n x y z =(1,0,1)PD =-(1,1,1)PC =-则即取,, 所以平面与平面. 20.解:(1)∵,∴, 椭圆的方程为,将代入得,∴, ∴椭圆的方程为. (2)设的方程为,联立 消去,得, 设点,, 有,, 有, 点到直线,点到直线,从而四边形的面积(或) 令,,有,设函数,,所以在上单调递增, 220,0,PD n PC n ⎧⋅=⎪⎨⋅=⎪⎩0,0,x z x y z -+=⎧⎨-++=⎩2(1,0,1)n =12121257cos ,||||142n n n n n n ⋅<>===⋅⨯EFC PDC 5712c a =2a c =2222143x y c c+=3(1,)222191412c c+=21c =22143x y +=l 1x my =+221,431,x y x my ⎧+=⎪⎨⎪=+⎩x 22(34)690m y my ++-=11(,)A x y 22(,)B x y 122634m y y m -+=+122934y y m -=+2222212112(1)||13434m m AB m m m ++=+=++P (2,0)-l 21m +(2,0)Q l 21m+APBQ 22222112(1)241234341m m S m m m++=⨯=+++121||||2S PQ y y =-21t m +1t ≥22431t S t =+243t t=+1()3f t t t =+21'()30f t t=->()f t [1,)+∞有,故, 所以当,即时,四边形面积的最大值为6. 21.解:(1)∵的定义域为且单调递增, ∴在上,恒成立, 即:,所以设,, ∴,∴当时,,∴在上为增函数, ∴当时,,∴在上为减函数,∴,∵,∴,即.(2)∵, ∵,,∴, ∴, ∴设,,则, ∴,∴在上递增,∴设,, ∴,∵, ∴,,∴,在上递增,134t t+≥2242461313t S t t t==≤++1t =0m =APBQ ()f x x R ∈x R ∈'()240xaf x x e =-+≥(42)x a x e ≥-()(42)x h x x e =-x R ∈'()(22)x h x x e =-(,1)x ∈-∞'()0h x >()h x (,1)x ∈-∞[1,)x ∈+∞'()0h x ≤()h x [1,)x ∈+∞max ()(1)2h x h e ==max (42)x a x e ⎡⎤≥-⎣⎦2a e ≥[2,)a e ∈+∞2()()(45)x xg x e f x x x e a ==-+-12()()2()g x g x g m +=[1,)m ∈+∞122221122(45)(45)2(45)2xxmx x e a x x e a m m e a -+-+-+-=-+-122221122(45)(45)2(45)xxmx x e x x e m m e -++-+=-+2()(45)xx x x e ϕ=-+x R ∈12()()2()x x m ϕϕϕ+=2'()(1)0xx x e ϕ=-≥()x ϕx R ∈()()()F x m x m x ϕϕ=++-(0,)x ∈+∞22'()(1)(1)m xm x F x m x e m x e +-=+----0x >0m xm x ee +->>22(1)(1)(22)20m x m x m x +----=-≥'()0F x ≥()F x (0,)x ∈+∞∴,∴,, 令,∴,即, 又∵,∴,即, ∵在上递增,∴,即得证. 22.解:(1)联立,∵,,∴所求交点的极坐标.(2)设,且,,由已知,得 ∴,点的极坐标方程为,. 23.解:(1)当时,当解得;当,恒成立;当解得, ()(0)2()F x F m ϕ>=()()2()m x m x m ϕϕϕ++->(0,)x ∈+∞1x m x =-11()()2()m m x m m x m ϕϕϕ+-+-+>11(2)()2()m x x m ϕϕϕ-+>12()()2()x x m ϕϕϕ+=12(2)2()()2()m x m x m ϕϕϕϕ-+->12(2)()m x x ϕϕ->()x ϕx R ∈122m x x ->122x x m +<cos 3,4cos ,ρθρθ=⎧⎨=⎩3cos θ=02πθ≤<6πθ=23ρ=(23,)6π(,)P ρθ00(,)Q ρθ004cos ρθ=0[0,)2πθ∈23OQ QP =002,5,ρρθθ⎧=⎪⎨⎪=⎩24cos 5ρθ=P 10cos ρθ=[0,)2πθ∈2m =-41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩413,0,x x +≤⎧⎨≥⎩102x ≤≤302x -<<13≤453,3,2x x --≤⎧⎪⎨≤-⎪⎩322x -≤≤-此不等式的解集为. (2)令 当时,,当时,,所以在上单调递增,当,所以在上单调递减, 所以,所以,当时,,所以在上单调递减, 所以, 所以, 综上,.1|22x x ⎧⎫-≤≤⎨⎬⎩⎭233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩302x -≤<22'()1g x x=-+20x -≤<'()0g x ≥()g x [2,0)-322x -≤≤'()0g x ≤()g x 3[,2)2-min ()(2)g x g =-2230m =+≥223m ≥-32x ≤-22'()50g x x =-+<()g x 3(,]2-∞-min 335()()026g x g m =-=+≥356m ≥-223m ≥-。
齐齐哈尔市2018届高三第二次模拟考试数学试卷(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1M x x =<,{}20N x x x =-<,则( )A .M N ⊆B .N M ⊆C .{}1M N x x =< D .{}0M N x x =>2.设(2)(3)3(5)i xi y i +-=++(i 为虚数单位),其中,x y 是实数,则x yi +等于( )A .5B ..23.某高校调查了320名学生每周的自习时间(单位:小时),制成了下图所示的频率分布直方图,其中自习时间的范围是[]17.530,,样本数据分组为[]17.520,,[]2022.5,,[]22.525,,[]2527.5,,[]27.530,.根据直方图,这320名学生中每周的自习时间不足22.5小时的人数是( )A .68B .72C .76D .80 4.521(1)(1)x x-+的展开式中2x 的系数为( ) A .15 B .-15 C.5 D .-55.已知双曲线22221(0,0)x y a b a b -=><F ,过点F 与x 轴垂直的直线与双曲线的两条渐近线分别交于点M ,N ,若OM N ∆的面积为20,其中O 是坐标原点,则该双曲线的标准方程为( )A .22128x y -= B .22148x y -= C.22182x y -= D .22184x y -=6.某空间几何体的三视图如下图所示,则该几何体的体积为( )A .4+2πB .2+6π C.4+π D .2+4π 7.执行如下图的程序框图,若输入a 的值为2,则输出S 的值为( )A .3.2B .3.6 C. 3.9 D .4.98.等比例数列{}n a 的前n 项和为n S ,公比为q ,若6359,62S S S ==则,1a =( )A ..3 9.已知函数()cos(2.)0,2f x x πωωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,将其图象向右平移6π个单位后得函数()cos 2.g x x =的图象,则函数()f x 的图象( ) A .关于直线23x π=对称 B .关于直线6x π=对称 C.关于点2-03π⎛⎫ ⎪⎝⎭,对称 D .关于点5-012π⎛⎫ ⎪⎝⎭,对称 10.已知三棱柱111ABC A B C -的六个顶点都在球O 的球面上,球O 的表面积为194π,1AA ⊥平面,5,12,13ABC AB BC AC ===,则直线1BC 与平面11AB C 所成角的正弦值为( )AB26.2611.已知椭圆2222=10)x y a b a a+>>(的短轴长为2,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB ∆,点P 为椭圆上的任意一点,则1211+PF PF 的取值范围为( )A .[]12, B.C.⎤⎦D .[]14,12.已知对任意21,x e e ⎡⎤∈⎢⎥⎣⎦不等式2xa e x >恒成立(其中 2.71828...e =,是自然对数的底数),则实数a 的取值范围是( )A .02e ⎛⎫ ⎪⎝⎭, B .0e (,) C.(,2)e -∞- D .24(,)e -∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数,x y 满足条件40,220,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩的最小值为-8,则实数=a .14.若函数()f x 是偶函数0x ≥时,()1(1)f x g x =+,则满足(21)1f x +<的实数x 取值范围是.15. 已知平行四边形ABCD 中,2AD =,120BAD ∠=,点E 是CD 中点,1AE BD ∙= ,则BD BE ∙=.16.已知数列{}n a 的前n 项和为n S ,且24a =,4=30S ,2n ≥时,112(1)n n n a a a +-+=+,则{}n a 的通项公式n a =.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中a b c 、、分别为角A B C 、、所对的边,已知sin 12sin sin 2cos B A C C*=- (I)求角B 的大小;(Ⅱ)若1,a b =求ABC ∆的面积.18.在四棱锥A DBCE -中,底面DBCE 是等腰梯形,2BC DE =,,BD DE CE ADE ==∆是等边三角形,点F 在AC 上.且3AC AF =. (I )证明://AD 平面BEF ;(Ⅱ)若平面ADE ⊥平面BCED ,求二面角A BE F --的余弦值.19.近年来,随着科学技术迅猛发展,国内有实力的企业纷纷进行海外布局,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外设多个分支机构需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工对是否愿意接受外派工作的态度随机调查了100位员工,得到数据如下表:(Ⅰ)根据调查的数据,判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄层有关”,并说明理由;(Ⅱ)该公司选派12人参观驻海外分支机构的交流体验活动,在参与调查的80后员工中用分层抽样方法抽出6名,组成80后组,在参与调查的90后员工中,也用分层抽样方法抽出6名,组成90后组①求这12 人中,80后组90后组愿意接受外派的人数各有多少?②为方便交流,在80后组、90后组中各选出3人进行交流,记在80后组中选到愿意接受外派的人数为x ,在90 后组中选到愿意接受外派的人数为y ,求x y <的概率. 参考数据:参考公式:2(2=()()()()n ad bc K a b c d a c b d -++++),其中n a b c d =+++20. 设抛物线的顶点为坐标原点,焦点F 在y 轴的正半轴上,点A 是抛物线上的一点,以A 为圆心,2为半径的圆与y 轴相切,切点为F . (I)求抛物线的标准方程:(Ⅱ)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点,连接QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程. 21.已知函数-1()1x f x k nx x=-,且曲线()y f x =在点1(1))f (,处的切线与y 轴垂直. (I)求函数()f x 的单调区间;(Ⅱ)若对任意(0,1)(1,)x e ∈ (其中e 为自然对数的底数),都有()11(0)1f x a x x a+>>-恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为=sin cos ρθθ+,点P 的曲线C 上运动.(I)若点Q 在射线OP 上,且4OP OQ ∙=,求点Q 的轨迹的直角坐标方程;(Ⅱ)设34,4M π⎛⎫⎪⎝⎭,求MOP ∆面积的最大值. 23.选修4-5:不等式选讲设0,0a b >>,且222a b ab +=,求证:(Ⅰ)332a b +≥;(Ⅱ)55()()4a b a b ++≥齐齐哈尔市2018届高三第二次模拟考试数学试卷(理科)一、选择题1.B {}{}2001N x x x x x M =-<=<<⊆2.A 2)(3)3(5)i xi y i +-=++(,6(32)3(5)x x i y i ++-=++,4,5y x yi =+=3.B 3200.02+0.07 2.5=72⨯⨯(). 4.C 24555C C -=.5.A由c a =22222225,5,4b c a a b a a=+==,∴渐近线方程为2y x =±,则(,2)M c c -,-,2)N c c -(,∴14202OMNS C C ∆=⨯⨯=,210,c ∴=222,8a b ==,∴双曲线方程为22128x y -=. 6.D 该几何体是一个三棱柱与一个圆柱的组合体,体积=22+12=2+4V ππ⨯⨯.7.C 21,122k S ==+=;282,2=33k S ==+;8219=3=+=346k S ,;1921074,6530k S ==+=;1072117=5=+==3.930630k S ,.输出=3.9S . 8.B 显然1q ≠±,由639S S =得31+9q =,38,2q q ∴==,又5151(12)=62212a S a -==-,. 9.D ()cos(2)3f x x π=+.10.C 由222+AB BC AC =知AB BC ⊥,设球半径为1,R AA x =,则由1AA ⊥平面ABC 知22213(2)x R +=,又24194R ππ=,5x ∴=,从而11AB C ∆的面积为,又1ABB ∆面积为252,设点B 到平面11AB C 的距离为d,则1125=12335⨯⨯⨯,d ∴=,113BC =,∴直线1BC 与平面11AB C所成角正弦值为126d BC =11.D 由22222,b a b c ==+,12()22a cb -=2,1,a b c ==1212111122(4)a a PF PF PF PF PF PF ∴+==-,又1PF ≤≤12111+4PF PF ∴≤≤. 12.A 由2x ae x >得12121,x nx nx a a x >>,令21()nx f x x=,则22(11)'()0,0nx f x x e x-=><<, ()f x ∴在1,e e ⎡⎤⎢⎥⎣⎦是增函数,在2,e e ⎡⎤⎣⎦上是减函数,12()f e a e >=,02e a ∴<<. 二、填空题13.-2 作出约束条件40,220,0,0x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩表示的可行域,(0,0),(0,1),(2,2),(4,0)OABC O A B C ,y ax z =-+,平移直线y ax =-至点40(,)时,min 4z a =,由48a =-,得2a =-. 14.-54(,)-9219,54x x <+<-<< 15.13 由1AE BD ∙=,得1(+)()12AD AB AD AB ∙-= ,设AB m = ,所以2114+122m m -=,解得3m =,所以22131319()+4+23+13222222BD BE AD AB AD AD AB AB ∙=-=-∙=⨯⨯⨯= .16.2n 由112(1)n n n a a a +-+=+得112n n n n a a a a +--=-+,{}1n n a a +∴-是公差为2的等差数列,又3122(1)10a a a +=+=,412344=1430S a a a a a +++=+=,416a ∴=, 又4232(1)a a a +=+,39a ∴=,11a ∴=,213a a ∴-=, 所以132(2)21n n a a n n --=+-=-, 累加法得2n ≥时,2112211()()...()(21)(23)...1n n n n n a a a a a a a a n n n ---=-+-++-+=-+-++=,又11a =,所以2n a n =. 三、解答题17.解:(Ⅰ)由sin 12sin sin 2cos B A C C=-及sin sin()A B C =+得2sin cos 2sin()sin 2sin cos 2cos sin B C B C C B C C C =+-=+-,2cos sin sin B C C ∴=,又在ABC ∆KH ,sin 0C ≠,1cos 2B ∴=,0<<,3B B ππ∴= (Ⅱ)在ABC ∆中,由余弦定理,得2222cos b a c ac B =+-21,,713a b B c c π===∴=+-260c c ∴--=0c > ,3c ∴=,ABC ∴∆的面积1sin 24S ac B ==. 18.解:(Ⅰ)连接DC ,交BE 于点G ,连接FG .∵在等腰梯形DBCE D 中,,2BD DE CE BE DE ===,//BC DE ∴,2CG BC DG DE ∴==, 3AC AF = ,2CFAF∴=,CF CG AF DG∴=,//AD FG ∴, 又AD ⊄平面BEF ,FG ⊂平面BEF ,所以//AD 平面BEF . (Ⅱ)取DE 中点O ,取BC 中点H ,连接,AO OH ,显然AO DE ⊥,又平面ADE ⊥平面BCED ,平面ADE 平面BCED DE =,所以,AO ⊥平面BCED . 由于O H 、分别为DE 、BC 中点,且在等腰梯形DBCE 中,2BC DE =,则OH DE ⊥,故以O 为原点,以OD 方向为x 轴,OH 方向为y 轴,以OA 方向为z 轴,建立下图所示空间直角坐标系.设=2(0)BC a a >,可求各点坐标分别为,0,0,0,000,02a B a C a E A ⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭、、、,可得3,,,0,,,0222222a a AB a a a AE a ⎛⎫⎛⎫⎛⎫=-=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭、、BE=224++(2,0,0),-,333BF BC CF BC CA a a a ⎛⎫⎛⎫===-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面ABE 的一个法向量为111(,,)u x y z =,由00AB u AE u ∙=∙= 、可得1111102202ax az a x ⎧+-=⎪⎪⎨⎪--=⎪⎩, 令11z =可得1x =13y =,则(u =.设平面FBE 的一个法向量为222(,,)v x y z =,由00BE v BF v ∙=∙=、可得222223-0,240,3a x ax ⎧=⎪⎪⎨⎪-+=⎪⎩令2y =221,3x z =-=-则,()3v =--.从而11cos ,13u v u v u v ∙====∙, 则二面角A BE F --的余弦值为1113. 19.解:(Ⅰ)由22()=()()()()n ad bc K a b c d a c b d -++++可得其观测值2100(20204020)400400100 2.778 2.706604060405760000k ⨯⨯-⨯⨯⨯==≈≥⨯⨯⨯所以在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄有关”. (Ⅱ)①由分层抽样知80后组中,愿意接受外派人数为3, 90后组中,愿意接受外派人数为4, ②“x y <”包含“0,1x y ==”“0,2x y ==”“0,3x y ==”“1,2x y ==”“1,3x y ==”“2,3x y ==”六个互斥事件.且031213342(0,1)3310066C C C C P x y C C ===⨯=,0321333420,2)3310066C C C CP x y C C ====⨯=(, 0330133420,3)3310066C C C C P x y C C ====⨯=(,1221273342=1,2)3310066C C C CP x y C C ===⨯=(,123093342=1,3)3310066C C C C P x y C C ===⨯=(,213093342=2,3)3310066C C C CP x y C C ===⨯=(,所以13127991()1002P x y +++++<==.20.解:(Ⅰ)设所求抛物线方程为22(0)x py p =>,由以A 为圆心,2为半径的圆与y 轴相切,切点为F ,所以=2p ,即该抛物线的标准方程为24x y =.(Ⅱ)由题知,直线m 的斜率存在,不妨设直线1122:6,(,),(,)m y kx P x y Q x y =+,由264y kx x y =+⎧⎨=⎩,消y 得24240x kx --=,即1212424x x k x x +=⎧⎨∙=-⎩.抛物线在点121(,)4x P x 处的切线方程为1121()42x x y x x -=-,令1y =-,得12412x x x -=,所以241,1)21x Rx --(,而,,Q F R 三点共线,所以QF FR k k =,及01F(,),得212211142412xx x x ---=-,即1222(4)(4)16012x x x x --+=,整理得2212121212)4()216160x x x x x x x x ⎡⎤-+-++=⎣⎦(,将*()式代入得214k =,即12k =±,故所求直线m 的方程为162y x =+或162y x =-+. 21.解:(Ⅰ)()f x 的定义域为(0,)+∞,因为2211'()k kx f x x x x-=-=, 由题意知,'(1)=0f ,211,'()x k f x x-∴== ,所以由'()0f x >得1x >,由'()0f x <01x <<,()f x ∴的单调减区间为01(,),单调增区间为(1,)+∞. (Ⅱ)由(Ⅰ)知1()11f x nx x =-+,()111111111(1)1f x nx nx x x x x x x x x ∴+=-++=-----, 法一:设1()1nx m x x =-,则211'()(1)x x nx m x x x --=-, 令()11n x x x nx =--,则'()1111n x nx nx =--=-,1x ∴>时,'()0n x <,()n x ∴在[)1+∞,上递减,()(1)0n x n ∴≤=,(]1,x e ∴∈时,'()0m x <,()m x ∴在(]1e ,上是减函数,(]1,x e ∴∈时,1()()1m x m e e >=-由题意知,111a e ≤-,又0,1a a e >∴≥-, 下证1,01a e x ≥-<<时,111nx x a>-成立, 即证11a nx x <-成立,令)11x a nx x ϕ=-+(,则'()1a a x x x xϕ-=-=, 由1,1a e x x ≥-<<,'()0,()x x ϕϕ∴>∴在(]01,是增函数,(0,1)x ∴∈时,()(1)0x ϕϕ<=,11a nx x ∴<-成立,即111nx x a>-成立,∴正数a 的取值范围是[)1,e -+∞. 法二:①当(0,1)x ∈时,11(0)1nx a x a>>-可化为110(0)a nx x a -+<>, 令()11(0)g x a nx x a =-+>,则问题转化为验证()0g x <对任意(0,1)x ∈恒成立. '()1(0)a a x g x a x x-=-=>,令'()0g x >,得0x a <<,令'()0g x <,得x a >, 所以函数()g x 在(0,)a 上单调递增,在,)a +∞(上单调递减.()i 当01a <<时,下面验证()110((0,1))g a a na a a =-+>∈.设()11(01)T x x nx x x =-+<<,则'()11110(01)T x nx nx x =+-=<<<.所以()T x 在01(,)上单调递减,所以()(1)0T x T >=.即()0((0,1)g a a >∈.故此时不满足()0g x <对任意(0,1)x ∈恒成立;)ii (当1a ≥时,函数()g x 在01)(,上单调递增.故()(1)0g x g <=对任意(0,1)x ∈恒成立,故1a ≥符合题意,综合()i )ii (得1a ≥.②当(1,)x e ∈时,11(0)1nx a x a>>-,则问题转化为验证()0h x >对任意(1,)x e ∈恒成立. '()1(0)a a x h x a x x-=-=>, 令'()0h x >得 0x a <<; 令'()0h x <,得x a >,所以函数()h x 在(0,)a 上单调递增,在,)a +∞(上单调递减.()i 当a e ≥时,()h x 在1,)e (上是增函数,所以()(1)0h x h >=)ii (当1a e <<时,()h x 在1,)a (上单调递增,在(,)a e 上单调递减,所以只需()0h e ≥,即1a e ≥-()iii 当11a <≤时,()h x 在1,)e (上单调递减,则需()0h e ≥.因为()0h e a e =+-<不符合题意.综合()i )ii (()iii ,得1a e ≥-.综合①②,得正数a 的取值范围是[)1,+e -∞22.解:(Ⅰ)设(,),(1,)(>0,10)Q P ρθρθρρ>,则1=sin cos ρθθ+, 又4OP OQ ∙=,14ρρ∴=,14ρρ∴=,4sin cos θθρ∴=+,cos sin 4ρθρθ∴+=将cos ,sin x y ρθρθ==代入得,点Q 轨迹方程为4x y +=(Ⅱ)设(,)(>0)P ρθρ则3=cos sin ,4,4M πρθθ⎛⎫+ ⎪⎝⎭,MOP ∴∆的面积134sin 2242S πρθρθθ⎛⎫=⨯-=+ ⎪⎝⎭2cos sin )sin 2)θθθ+=+≤当且仅当sin 21θ=时,取“=”,取=4πθ即可,MOP ∴∆面积的最大值为(用直角坐标方程求解,参照给分)23. 解:(Ⅰ)220,0,2a b a b ab >>+= ,33332222)2()()a b a b a b ab a a b b b a ∴+-=+--=-+-(222=)()()()0a b a b a b a b --=-+≥(,332a b ∴+≥.(Ⅱ)5566553323355()()()2a b a b a b a b ab a b a b a ab ++=+++=+-++ 3324224332222=()(2)()()a b ab a a b b a b ab a b ++-+=++-,330,0,2,a b a b >>+≥ 552)(2=4a b a b ∴++≥(.。
哈尔滨市第九中学2018届高三第二次模拟数学试卷(理科)一选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知i 是虚数单位,复数z 满足()11z i i -=+,则z 的共轭复数是 A. 1 B. -1 C. i D.i -2.设非空集合,P Q 满足PQ P =,则A. ,x Q x P ∀∈∈B. ,x Q x P ∀∉∉ . 00,x Q x P ∃∉∈ D.00,x P x P ∃∈∉3.若221x y+=,则x y +的取值范围是A. []0,2 B. []2,0- C. [)2,-+∞ D.(],2-∞-4.若2sin 3sin 33ππθθ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则tan θ=A. 2-B. 5C. 3D.5.从12,3,4,5,6,7,8中随机取出一个数x ,执行如图所示的程序框图,则输出的x 不小于40的概率为 A.34 B. 58 C. 78 D. 126.以坐标原点为对称中心,两条坐标轴为对称轴的双曲线的一条渐近线的倾斜角为3π,则双曲线的离心率为A. 2B. 2C.D.2 7.已知某几何体的三视图如图所示,则该几何体的体积为A. 16B. 32C. 48D. 144 8.函数()ln cos f x x x =+的图象为9.已知过球面上A,B,C 三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面的面积为 A.169π B. 83π C. 619πD.4π10.若实数,x y 满31x y -≤≤足,则2x yz x y+=+的最小值是 A.53 B. 2 C. 35 D.1211.已知抛物线2:8C y x =的焦为F,准线l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF = A.72 B. 52C. 3D. 2 12.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角”.该表由若干数字组成,从第二行起,每一行的数字均等于其“肩上”两数之和,表中最后一行今有一个数,则这个数为A. 201620172⨯B. 201820172⨯C. 201720162⨯D.201820162⨯二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量()()1,2,4,3a b ==,且()a tab ⊥+,则实数t = .14. 已知12nx x ⎛⎫+ ⎪⎝⎭的展开式中前三项的系数依次成等差数列,则展开式中4x 的系数为 .15. 2018年1月27日,哈尔滨地铁3号线一期开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街。
人大附中2018届高三第二次模拟考试卷理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,则复数的共轭复数在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.设为锐角,,,若与共线,则角()A.15°B.30°C.45°D.60°3.函数在单调递增,且关于对称,若,则的的取值范围是()A.B.C.D.4.如图,执行所示的算法框图,则输出的值是()A.B.C.D.5.函数的部分图像如下图,且,则图中的值为()A.1 B.C.2 D.或26.李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步,50步B.20步,60步C.30步,70步D.40步,80步7.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的体积为()A.B. C.D.8.设点是表示的区域内任一点,点是区域关于直线的对称区域内的任一点,则的最大值为()A.B.C.D.9.如图所示,为了测量,处岛屿的距离,小明在处观测,,分别在处的北偏西、北偏东方向,再往正东方向行驶40海里至处,观测在处的正北方向,在处的北偏西方向,则,两处岛屿间的距离为()。
重庆市2018届高三下学期二模理科数学试题(附解析)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}6,5,4,3,2,1=U ,集合{}3,5,1=A ,集合{}Z x x x x B ∈≤--=,0)4)(2(|,则()U A B =ð( )A .{}1,6B .{}6C .{}63,D .{}1,3 2.在复平面内,复数Z 所对应的点的坐标为)(4,3,则ZZ=( ) A .i 5453-B .i 5354-C .i 5453+D .i 5354+3.已知数列{}n a 为等差数列,其前n 项和为n S ,若6482=-+a a a ,则11=S ( ) A .132B .108C .66D .不能确定4.某车间为了规划生产进度提高生产效率,记录了不同时段生产零件个数x (百个)与相应加工总时长y (小时)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程为05.07.0ˆ+=x y ,则下列结论错误..的是( ) A .加工总时长与生产零件数呈正相关 B .该回归直线一定过点)5.2,5.3(C .零件个数每增加1百个,相应加工总时长约增加0.7小时D .m 的值是2.855.已知函数⎪⎩⎪⎨⎧≥<≤=1,4sin 10,2)(x x x x f x π,则=-+)7log 3()2(2f f ( )A .87B .157C .158D .2276.某几何体的三视图如图所示,其侧视图为等边三角形,则该几何体的体积为( )A .3263+πB .43+πC .32123+πD .432+π7.已知25tan 1tan =+αα,)2,4(ππα∈,则)42sin(πα-的值为( ) A .1027-B .102C .102-D .1027 8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的2,2==n x ,则输出的=S ( )A .8B .10C .12D .229.已知向量b a ,5==+的取值范围是( ) A .]5,0[B .]25,5[C .]7,25[D .]10,5[10.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12F F 、,以O 为圆心,12F F 为直径的圆与椭圆在第一象限相交于点P ,且直线OP 的斜率为3,则椭圆的离心率为( )A .13-B .213- C .22 D .23 11.已知实数b a ,满足不等式1)1(22≤-+b a ,则点)1,1(-A 与点)1,1(--B 在直线01=++by ax 的两侧的概率为( ) A .43B .32C .21D .3112.已知函数mx x x x f ++=233)(,)0(,)1ln()(>++=n nx x x g ,若函数)(x f 的图像关于点)1,1(--对称,且曲线)(x f 与)(x g 有唯一公共点,则=+n m ( )A .3B .5C .7D .9第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若51(2)(1)ax x++展开式中常数项为12,则实数a 等于 .14.甲、乙、丙三个同学在看c b a ,,三位运动员进行“乒乓球冠军争夺赛”.赛前,对于谁会得冠军进行预测,甲说:不是b ,是c ;乙说:不是b ,是a ;丙说:不是c ,是b .比赛结果表明,他们的话有一人全对,有一人对一半错一半,有一人全错,则冠军是 .15.已知三棱锥ABC P -的外接球的球心为O ,⊥PA 平面ABC ,AB AC ⊥,2AB AC ==,1PA =,则球心O 到平面PBC 的距离为 .16.如图,在平面四边形ABCD 中,ACD ∆的面积为3,132-==BC AB ,,135120=∠=∠BCD ABC ,,则=AD .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)有如下数阵,,,,,)2,2,2()2,2,2()2,2()2(:12154332-+n n n 其中第n 个括号内的所有元素之和记为n a .(1)求数列{}n a 的通项公式;(2)令22(1)log (4)n n n n b n a =-⋅+-,求数列{}n b 的前100项和100S .18.(12分)当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.重庆2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分,某学校在初三上期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率; (2)若该校初三年级所有学生的跳绳个数X 服从正态分布),(2σμN ,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差1692≈S (各组数据用中点值代替).根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果 四舍五入到整数)(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为ξ,求随机变量ξ的分布列和期望.附:若随机变量X 服从正态分布),(2σμN ,则6826.0)(=+<<-σμσμX P ,)22(σμσμ+<<-X P .9974.0)33(9544.0=+<<-=σμσμX P ,19.(12分)如图,在矩形ABCD 中,点G F E 、、分别为CD 和AB 的三等分点,其中AD AG AB 33==23=,现将ADE ∆和BCF ∆分别沿BF AE ,翻折到AME ∆和BNF ∆的位置,得到一个以、、、、、M F E B A N 为顶点的空间五面体.(1)证明//:MN 平面;ABCD(2)若2=MG ,求平面AME 与平面EGN 所成锐二面角的余弦值.20.(12分)在平面直角坐标系xOy 中,已知两定点11(0,)(0,)33M N -,,平面内的动点P 在y 轴上的射影为1P ,且1||||MN MP NM NP +=+,记点P 的轨迹为C . (1)求点P 的轨迹方程C ;(2)设点),1,2(),1,0(A F 以A 为圆心,||AF 为半径的圆A 与直线1-=y 相切于点,B 过F 作斜率大于0的直线与曲线C 在第一象限交于点Q ,与圆A 交于点.H 若直线QB QA QH ,,的斜率成等差数列,且E 为QB 的中点,求QFB ∆和QHE ∆的面积比.21.(12分)已知函数()ln ().au x x a R x=-∈ (1)若曲线)(x u 与直线0=y 相切,求a 的值. (2)若,21e a e <<+设,ln |)(|)(xxx u x f -=求证:()f x 有两个不同的零点12,x x ,且 21x x e -<.(e 为自然对数的底数)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,已知曲线M 的参数方程为12cos 12sin x y ββ=+⎧⎨=+⎩β(为参数),以原点为极 点,x 轴正半轴为极轴建立极坐标系,直线1l 的极坐标方程为=θα,直线2l 的极坐标方程为=+2πθα.(1)写出曲线M 的极坐标方程,并指出它是何种曲线;(2)设1l 与曲线M 交于C A 、两点,2l 与曲线M 交于D B 、两点,求四边形ABCD 面积的取值范围.23.(10分)【选修4-5:不等式选讲】 已知函数)()(R x x x f ∈=.(1)求不等式4)1()1(≤++-x f x f 的解集;M (2)若,,M b a ∈证明.4)()(2:+≤+ab f b a f2018届重庆市高三第二次模拟考试卷数学(理)答案一、选择题. 1-5:BACDB 6-10:ADDBA 11、12:CB二、填空题.13.2 14.C 15.66 16.22三、解答题.17.解:(1)n a =.2421)21(2222121n n n n n n n-=--=++-+ ………… 5分(2)222log (4)(1)(1)n n n n n b a n n n =-+-⋅=+-⋅.10100)14(2)1001(100501100=-++⋅=∴∑=k k S ……………… 12分18.解:(1)两人得分之和不大于35分,即两人得分均为17分,或两人中1人17分,1人18分,;16502921001121626=+=C C C C P ……………… 3分 (2)18508.02101.020030.019034.018012.017006.0160=⨯+⨯+⨯+⨯+⨯+⨯=X (个)5分 又,13,1692≈≈s S 所以正式测试时,182,13,195=-∴==σμσμ (ⅰ),8413.026826.011)182(=--=>∴ξP 16836.168220008413.0≈=⨯∴(人) … 7分(ⅱ)由正态分布模型,全年级所有学生中任取1人,每分钟跳绳个数195以上的概率为0.5,即,125.0)5.01()0(),5.0,3(~303=-⋅==∴C P B ξξ122233333(1)0.5(10.5)0.375,(2)0.5(10.5)0.375,(3)0.50.125;P C P C P C ξξξ==⋅⋅-===⋅⋅-===⋅=∴ξ的分布列为.5.15.03)(=⨯=X E ……… 12分19.解:(1)⊄AB CD AB ,// 平面//,AB EFNM ∴平面,EFNM 又⊂AB 平面,ABNM 平面 ABNM 平面,MN EFNM =;//AB MN ∴⊄MN 平面//,MN ABCD ∴平面.ABCD ……………… 5分(2)取AE 中点,O 连接,,,MG OG MO 由勾股定理逆定理易证,OG MO ⊥O ME MA ,= 为AE 中点,.AE MO ⊥∴又⊥∴=OM O OG AE , 平面,ABCD如图,分别以OM OG OA 、、为z y x 、、轴建立空间直角坐标系 显然平面AME 的一个法向量()0,1,01=n ,)0,0,1(-E ,).0,1,0(G法一:取BF 中点记为H ,由(1)知//MN 平面,ABCD 故N 到平面ABCD 的距离,1===NH OM dN 在平面ABCD 的射影与H 重合,易得点N 的坐标为).1,2,2(-法二:连接,,HN OH 由(1)知,//AB MN 又,//,//OH MN AB OH ∴ 由 ,552cos cos =∠=∠HMN MHO 可得,22=MN 即OHNM 为矩形. N 在平面ABCD 的射影与H 重合,易得点N 的坐标为).1,2,2(-法三:由最小角定理可得,3,21cos cos cos π=∠∴=∠∠=∠MAB EAG MAO MAB可得,2AG MN =().1,2,22-=+=+=∴AG OM MN OM ON设平面EGN 的一个法向量为()),1,2,1(),0,1,1(,,,2-===z y x n则有⎩⎨⎧=++-=+020z y x y x ,可取().3,1,12-=n设平面AME 与平面EGN 所成锐二面角为θ .1111cos cos ==∴θ…… 12分 20.解:(1)设(,)P x y ,则1(0,)P y121(0,)(0,)(0,1)33MN MP y y ∴+=++=+,21(0,)(,)(,1)33NM NP x y x y +=-+-=- 由1||||MN MP NM NP +=+可得222(1)(1)y x y +=+-即24x y =.24C x y ∴=的轨迹方程为:. ……… 4分 (2)设2(,)4t Q t ,由2,QF QB QA k k k +=得222111444222t t t t t t -+-+=--,得2t =+t =舍) Q ∴,1,QF k =………… 8分90QFB ∴∠=且易得(2,3)H ,11(31)422QFB S FQ FB ∴=⋅=⋅+⋅+……………… 10分 又1112222222QHE QHB S S HB ∆∆===,: 2.QFB QHE S S ∴==…… 12分 21.解:(1)设切点)0,(0x P ,)('2x x a x u -+=.,002x a x x a k -=∴=-+=∴ 又切点在函数)(x u 上,,0)(0=∴x u 即,1ln 0ln 000-=⇒=-x x x a.1,10ea e x -=∴=∴ ……………… 4分(2)证明:不妨设12x x <, 21()0a u x x x'=--<,所以()u x 在(0,)+∞上单调递减, 又()10,(2)ln 202a au e u e e ee=->=-<, 所以必存在0(,2)x e e ∈,使得0()0u x =,即,ln 00x x a =⎪⎩⎪⎨⎧>--≤<--=∴00,ln ln 0,ln ln )(x x x x x a x x x x x x x ax f . 6分①当00x x <≤时,222211ln ln (1)1(1)()0a x x x a x x a f x x x x x x---+---+'=---=≤<, 所以()f x 在区间0(0,]x 上单调递减,注意到1()10a f e ee=-->,00000ln ln ()ln 0x x a f x x x x x =--=-<所以函数()f x 在区间0(0,]x 上存在零点1x ,且10e x x <<. ………… 9分 ②当0x x >时,22211ln ln (1)()0a x x x a f x xx x x -++-'=+-=> 所以()f x 在区间0(,)x +∞上单调递增,又0ln ln ln )(0000000<-=--=x x x x x a x x f , 且ln 21ln 241411(2)ln 2ln 21ln 20222252522a e f e e e e e e e e e=-->--->->->, 所以()f x 在区间0(,2)x e 上必存在零点2x ,且022x x e <<.综上,()f x 有两个不同的零点1x 、2x ,且21212x x x x e e e -=-<-=. ……… 12分22.解:(1)由12cos 12sin x y ββ=+⎧⎨=+⎩(β为参数)消去参数β得:22(1)(1)4x y -+-=,将曲线M 的方程化成极坐标方程得:2-2(sin cos )20ρρθθ+-=, ∴曲线M 是以)1,1(为圆心,2为半径的圆. …………… 5分(2)设12||,||OA OC ρρ==,由1l 与圆M 联立方程可得22(sincos )20ρραα-+-=1212+=2(sin cos )=2ρρααρρ∴+⋅-,,∵O ,A ,C 三点共线,则12||||AC ρρ=-==①, ∴用+2πα代替α可得||BD =, 121,=2ABCD l l S ⊥∴⋅四边形2sin 2[0,1]ABCD S α∈∴∈四边形. ……………… 10分23.解:(1)2,1112,112,1x x x x x x x -<-⎧⎪-++=-≤<⎨⎪≥⎩由];2,2[411-=⇒≤++-M x x ……………… 5分 (2)法一:要证42+≤+ab b a ,只需证()()2244a b ab +≤+,即证()222484816a ab b ab ab ++≤++,ab ab 88≤只需证()2224416a b ab +≤+,即证()()22440a b --≥由(1),2,2≤≤b a :上式显然成立,故原命题得证. 法二:b a b a +≥+ ,∴要证42+≤+ab b a 只需证422+≤+ab b a ,即证()()220a b --≥ 由(1),2,2≤≤b a :上式显然成立,故原命题得证.。
齐齐哈尔市2018届高三第二次模拟考试数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1M x x =<,{}20N x x x =-<,则( )A .M N ⊆B .N M ⊆C .{}1MN x x =< D .{}0MN x x =>2.设(2)(3)3(5)i xi y i +-=++(i 为虚数单位),其中,x y 是实数,则x yi +等于( ) A .5 B 13.22.23.某高校调查了320名学生每周的自习时间(单位:小时),制成了下图所示的频率分布直方图,其中自习时间的范围是[]17.530,,样本数据分组为[]17.520,,[]2022.5,,[]22.525,,[]2527.5,,[]27.530,.根据直方图,这320名学生中每周的自习时间不足22.5小时的人数是( )A .68B .72C .76D .80 4.521(1)(1)x x-+的展开式中2x 的系数为( ) A .15 B .-15 C.5 D .-55.已知双曲线22221(0,0)x y a b a b -=><5F ,过点F 与x 轴垂直的直线与双曲线的两条渐近线分别交于点M ,N ,若OM N ∆的面积为20,其中O 是坐标原点,则该双曲线的标准方程为( )A .22128x y -= B .22148x y -= C.22182x y -= D .22184x y -= 6.某空间几何体的三视图如下图所示,则该几何体的体积为( )A .4+2πB .2+6π C.4+π D .2+4π 7.执行如下图的程序框图,若输入a 的值为2,则输出S 的值为( )A .3.2B .3.6 C. 3.9 D .4.98.等比例数列{}n a 的前n 项和为n S ,公比为q ,若6359,62S S S ==则,1a =( ) A.2 C.5.3 9.已知函数()cos(2.)0,2f x x πωωϕ⎛⎫=+><⎪⎝⎭的最小正周期为π,将其图象向右平移6π个单位后得函数()cos 2.g x x =的图象,则函数()f x 的图象( )A .关于直线23x π=对称B .关于直线6x π=对称 C.关于点2-03π⎛⎫ ⎪⎝⎭,对称 D .关于点5-012π⎛⎫ ⎪⎝⎭,对称 10.已知三棱柱111ABC A B C -的六个顶点都在球O 的球面上,球O 的表面积为194π,1AA ⊥平面,5,12,13ABC AB BC AC ===,则直线1BC 与平面11AB C 所成角的正弦值为( )A.52 B .7352 C.5226 D .22611.已知椭圆2222=10)x y a b a a+>>(的短轴长为2,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB ∆,点P 为椭圆上的任意一点,则1211+PF PF 的取值范围为( )A .[]12, B.C.⎤⎦D .[]14,12.已知对任意21,x e e ⎡⎤∈⎢⎥⎣⎦不等式2xa e x >恒成立(其中 2.71828...e =,是自然对数的底数),则实数a 的取值范围是( )A .02e ⎛⎫ ⎪⎝⎭, B .0e (,) C.(,2)e -∞- D .24(,)e -∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知实数,x y 满足条件40,220,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩的最小值为-8,则实数=a .14.若函数()f x 是偶函数0x ≥时,()1(1)f x g x =+,则满足(21)1f x +<的实数x 取值范围是.15. 已知平行四边形ABCD 中,2AD =,120BAD ∠=,点E 是CD 中点,1AE BD ∙=,则BD BE ∙=. 16.已知数列{}n a 的前n 项和为n S ,且24a =,4=30S ,2n ≥时,112(1)n n n a a a +-+=+,则{}n a 的通项公式n a =.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中a b c 、、分别为角A B C 、、所对的边,已知sin 12sin sin 2cos B A C C*=- (I)求角B 的大小;(Ⅱ)若1,7a b ==求ABC ∆的面积.18.在四棱锥A DBCE -中,底面DBCE 是等腰梯形,2BC DE =,,BD DE CE ADE ==∆是等边三角形,点F 在AC 上.且3AC AF =. (I )证明://AD 平面BEF ;(Ⅱ)若平面ADE ⊥平面BCED ,求二面角A BE F --的余弦值.19.近年来,随着科学技术迅猛发展,国内有实力的企业纷纷进行海外布局,如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外设多个分支机构需要国内公司外派大量80后、90后中青年员工.该企业为了解这两个年龄层员工对是否愿意接受外派工作的态度随机调查了100位员工,得到数据如下表:(Ⅰ)根据调查的数据,判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄层有关”,并说明理由;(Ⅱ)该公司选派12人参观驻海外分支机构的交流体验活动,在参与调查的80后员工中用分层抽样方法抽出6名,组成80后组,在参与调查的90后员工中,也用分层抽样方法抽出6名,组成90后组 ①求这12 人中,80后组90后组愿意接受外派的人数各有多少?②为方便交流,在80后组、90后组中各选出3人进行交流,记在80后组中选到愿意接受外派的人数为x ,在90 后组中选到愿意接受外派的人数为y ,求x y <的概率. 参考数据:参考公式:(2=()()()()n ad bc K a b c d a c b d -++++),其中n a b c d =+++20. 设抛物线的顶点为坐标原点,焦点F 在y 轴的正半轴上,点A 是抛物线上的一点,以A 为圆心,2为半径的圆与y 轴相切,切点为F . (I)求抛物线的标准方程:(Ⅱ)设直线m 在y 轴上的截距为6,且与抛物线交于P ,Q 两点,连接QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程. 21.已知函数-1()1x f x k nx x=-,且曲线()y f x =在点1(1))f (,处的切线与y 轴垂直. (I)求函数()f x 的单调区间; (Ⅱ)若对任意(0,1)(1,)x e ∈(其中e 为自然对数的底数),都有()11(0)1f x a x x a+>>-恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为=sin cos ρθθ+,点P 的曲线C 上运动.(I)若点Q 在射线OP 上,且4OP OQ ∙=,求点Q 的轨迹的直角坐标方程; (Ⅱ)设34,4M π⎛⎫⎪⎝⎭,求MOP ∆面积的最大值. 23.选修4-5:不等式选讲设0,0a b >>,且222a b ab +=,求证: (Ⅰ)332a b +≥;(Ⅱ)55()()4a b a b ++≥齐齐哈尔市2018届高三第二次模拟考试数学试卷(理科)一、选择题1.B {}{}2001N x x x x x M =-<=<<⊆2.A 2)(3)3(5)i xi y i +-=++(,6(32)3(5)x x i y i ++-=++,4,5y x yi =+=3.B 3200.02+0.07 2.5=72⨯⨯(). 4.C 24555C C -=.5.A 由5c a =22222225,5,4b c a a b a a=+==,∴渐近线方程为2y x =±,则(,2)M c c -,-,2)N c c -(,∴ 14202OMNS C C ∆=⨯⨯=,210,c ∴=222,8a b ==,∴双曲线方程为22128x y -=. 6.D 该几何体是一个三棱柱与一个圆柱的组合体,体积=22+12=2+4V ππ⨯⨯.7.C 21,122k S ==+=;282,2=33k S ==+;8219=3=+=346k S ,;1921074,6530k S ==+=;1072117=5=+==3.930630k S ,.输出=3.9S . 8.B 显然1q ≠±,由639S S =得31+9q =,38,2q q ∴==,又5151(12)=62212a S a -==-,. 9.D ()cos(2)3f x x π=+.10.C 由222+AB BC AC =知AB BC ⊥,设球半径为1,R AA x =,则由1AA ⊥平面ABC 知22213(2)x R +=,又24194R ππ=,5x ∴=,从而11AB C ∆的面积为,又1ABB ∆面积为252,设点B 到平面11AB C 的距离为d,则1125=12335⨯⨯⨯,d ∴=,113BC =,∴直线1BC 与平面11AB C所成角正弦值为1d BC =11.D 由22222,b a b c ==+,12()22a cb -=,得2,1,3a b c ==1212111122(4)a a PF PF PF PF PF PF ∴+==-,又12-32+3PF ≤12111+4PF PF ∴≤≤. 12.A 由2xae x >得12121,x nx nx a a x >>,令21()nx f x x =,则22(11)'()0,0nx f x x e x -=><<, ()f x ∴在1,e e ⎡⎤⎢⎥⎣⎦是增函数,在2,e e ⎡⎤⎣⎦上是减函数,12()f e a e >=,02e a ∴<<. 二、填空题13.-2 作出约束条件40,220,0,0x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩表示的可行域,(0,0),(0,1),(2,2),(4,0)OABC O A B C ,y ax z =-+,平移直线y ax =-至点40(,)时,min 4z a =,由48a =-,得2a =-. 14.-54(,)-9219,54x x <+<-<< 15.13 由1AE BD ∙=,得1(+)()12AD AB AD AB ∙-=, 设AB m =,所以2114+122m m -=,解得3m =, 所以22131319()+4+23+13222222BD BE AD AB AD AD AB AB ∙=-=-∙=⨯⨯⨯=. 16.2n 由112(1)n n n a a a +-+=+得112n n n n a a a a +--=-+,{}1n n a a +∴-是公差为2的等差数列, 又3122(1)10a a a +=+=,412344=1430S a a a a a +++=+=,416a ∴=, 又4232(1)a a a +=+,39a ∴=,11a ∴=,213a a ∴-=, 所以132(2)21n n a a n n --=+-=-, 累加法得2n ≥时,2112211()()...()(21)(23)...1n n n n n a a a a a a a a n n n ---=-+-++-+=-+-++=,又11a =,所以2n a n =. 三、解答题 17.解:(Ⅰ)由sin 12sin sin 2cos B A C C=-及sin sin()A B C =+得2sin cos 2sin()sin 2sin cos 2cos sin B C B C C B C C C =+-=+-,2cos sin sin B C C ∴=,又在ABC ∆KH ,sin 0C ≠,1cos 2B ∴=,0<<,3B B ππ∴= (Ⅱ)在ABC ∆中,由余弦定理,得2222cos b a c ac B =+-21,,713a b B c c π===∴=+-260c c ∴--=0c >,3c ∴=, ABC ∴∆的面积133sin 2S ac B ==. 18.解:(Ⅰ)连接DC ,交BE 于点G ,连接FG .∵在等腰梯形DBCE D 中,,2BD DE CE BE DE ===,//BC DE ∴,2CG BC DG DE ∴==, 3AC AF =,2CFAF∴=, CF CGAF DG∴=,//AD FG ∴, 又AD ⊄平面BEF ,FG ⊂平面BEF ,所以//AD 平面BEF . (Ⅱ)取DE 中点O ,取BC 中点H ,连接,AO OH ,显然AO DE ⊥, 又平面ADE ⊥平面BCED ,平面ADE平面BCED DE =,所以,AO ⊥平面BCED .由于O H 、分别为DE 、BC 中点,且在等腰梯形DBCE 中,2BC DE =,则OH DE ⊥,故以O 为原点,以OD 方向为x 轴,OH 方向为y 轴,以OA 方向为z 轴,建立下图所示空间直角坐标系.设=2(0)BC a a >,可求各点坐标分别为33,0,0,0,000,02a B a C a a E A ⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭、、、, 可得33333,,,0,,,022a a AB a a a AE a ⎛⎫⎛⎫⎛⎫=-=--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭、、BE=224++(2,0,0),-,333BF BC CF BC CA a a a ⎛⎫⎛⎫===-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面ABE 的一个法向量为111(,,)u x y z =,由00AB u AE u ∙=∙=、可得1111102202ax ay a x ⎧+-=⎪⎪⎨⎪-=⎪⎩, 令11z =可得1x =13y =,则(u =.设平面FBE 的一个法向量为222(,,)v x y z =,由00BE v BF v ∙=∙=、可得2222233-0,2430,3a x ax ⎧=⎪⎪⎨⎪-=⎪⎩令2y 2231,x z =-=则,3(3,v =-. 从而31133331133cos ,1311313131333u v u v u v ∙====∙⨯++⨯, 则二面角A BE F --的余弦值为1113. 19.解:(Ⅰ)由22()=()()()()n ad bc K a b c d a c b d -++++可得其观测值2100(20204020)400400100 2.778 2.706604060405760000k ⨯⨯-⨯⨯⨯==≈≥⨯⨯⨯所以在犯错误的概率不超过0.1的前提下认为“是否愿意接受外派与年龄有关”. (Ⅱ)①由分层抽样知80后组中,愿意接受外派人数为3, 90后组中,愿意接受外派人数为4, ②“x y <”包含“0,1x y ==”“0,2x y ==”“0,3x y ==”“1,2x y ==”“1,3x y ==”“2,3x y ==”六个互斥事件.且031213342(0,1)3310066C C C C P x y C C ===⨯=,0321333420,2)3310066C C C CP x y C C ====⨯=(, 0330133420,3)3310066C C C C P x y C C ====⨯=(,1221273342=1,2)3310066C C C CP x y C C ===⨯=(,123093342=1,3)3310066C C C C P x y C C ===⨯=(,213093342=2,3)3310066C C C CP x y C C ===⨯=(,所以13127991()1002P x y +++++<==.20.解:(Ⅰ)设所求抛物线方程为22(0)x py p =>,由以A 为圆心,2为半径的圆与y 轴相切,切点为F ,所以=2p ,即该抛物线的标准方程为24x y =.(Ⅱ)由题知,直线m 的斜率存在,不妨设直线1122:6,(,),(,)m y kx P x y Q x y =+,由264y kx x y =+⎧⎨=⎩,消y 得24240x kx --=,即1212424x x k x x +=⎧⎨∙=-⎩.抛物线在点121(,)4x P x 处的切线方程为1121()42x x y x x -=-,令1y =-,得12412x x x -=,所以241,1)21x Rx --(,而,,Q F R 三点共线,所以QFFR k k =,及01F(,),得212211142412xx x x ---=-,即1222(4)(4)16012x x x x --+=,整理得2212121212)4()216160x x x x x x x x ⎡⎤-+-++=⎣⎦(,将*()式代入得214k =,即12k =±,故所求直线m 的方程为162y x =+或162y x =-+. 21.解:(Ⅰ)()f x 的定义域为(0,)+∞,因为2211'()k kx f x x x x-=-=, 由题意知,'(1)=0f ,211,'()x k f x x-∴==,所以由'()0f x >得1x >,由'()0f x <01x <<, ()f x ∴的单调减区间为01(,),单调增区间为(1,)+∞. (Ⅱ)由(Ⅰ)知1()11f x nx x =-+,()111111111(1)1f x nx nx x x x x x x x x ∴+=-++=-----,法一:设1()1nxm x x =-,则211'()(1)x x nx m x x x --=-, 令()11n x x x nx =--,则'()1111n x nx nx =--=-,1x ∴>时,'()0n x <,()n x ∴在[)1+∞,上递减,()(1)0n x n ∴≤=,(]1,x e ∴∈时,'()0m x <,()m x ∴在(]1e ,上是减函数,(]1,x e ∴∈时,1()()1m x m e e >=-由题意知,111a e ≤-,又0,1a a e >∴≥-, 下证1,01a e x ≥-<<时,111nx x a>-成立, 即证11a nx x <-成立,令)11x a nx x ϕ=-+(,则'()1a a xx x xϕ-=-=, 由1,1a e x x ≥-<<,'()0,()x x ϕϕ∴>∴在(]01,是增函数,(0,1)x ∴∈时,()(1)0x ϕϕ<=,11a nx x ∴<-成立,即111nx x a>-成立,∴正数a 的取值范围是[)1,e -+∞. 法二:①当(0,1)x ∈时,11(0)1nx a x a>>-可化为110(0)a nx x a -+<>, 令()11(0)g x a nx x a =-+>,则问题转化为验证()0g x <对任意(0,1)x ∈恒成立.'()1(0)a a x g x a x x-=-=>,令'()0g x >,得0x a <<,令'()0g x <,得x a >, 所以函数()g x 在(0,)a 上单调递增,在,)a +∞(上单调递减.()i 当01a <<时,下面验证()110((0,1))g a a na a a =-+>∈.设()11(01)T x x nx x x =-+<<,则'()11110(01)T x nx nx x =+-=<<<.所以()T x 在01(,)上单调递减,所以()(1)0T x T >=.即()0((0,1)g a a >∈.故此时不满足()0g x <对任意(0,1)x ∈恒成立;)ii (当1a ≥时,函数()g x 在01)(,上单调递增.故()(1)0g x g <=对任意(0,1)x ∈恒成立,故1a ≥符合题意, 综合()i )ii (得1a ≥. ②当(1,)x e ∈时,11(0)1nx a x a>>-,则问题转化为验证()0h x >对任意(1,)x e ∈恒成立. '()1(0)a a x h x a x x-=-=>, 令'()0h x >得 0x a <<; 令'()0h x <,得x a >, 所以函数()h x 在(0,)a 上单调递增,在,)a +∞(上单调递减.()i 当a e ≥时,()h x 在1,)e (上是增函数,所以()(1)0h x h >= )ii (当1a e <<时,()h x 在1,)a (上单调递增,在(,)a e 上单调递减,所以只需()0h e ≥,即1a e ≥-()iii 当11a <≤时,()h x 在1,)e (上单调递减,则需()0h e ≥.因为()0h e a e =+-<不符合题意.综合()i )ii (()iii ,得1a e ≥-. 综合①②,得正数a 的取值范围是[)1,+e -∞22.解:(Ⅰ)设(,),(1,)(>0,10)Q P ρθρθρρ>,则1=sin cos ρθθ+, 又4OP OQ ∙=,14ρρ∴=,14ρρ∴=,4sin cos θθρ∴=+,11 cos sin 4ρθρθ∴+= 将cos ,sin x y ρθρθ==代入得,点Q 轨迹方程为4x y +=(Ⅱ)设(,)(>0)P ρθρ则3=cos sin ,4,4M πρθθ⎛⎫+ ⎪⎝⎭, MOP ∴∆的面积13224sin 22422S πρθρθθ⎛⎫=⨯-=+ ⎪⎝⎭2cos sin )2(1sin 2)22θθθ+=+≤当且仅当sin 21θ=时,取“=”,取=4πθ即可,MOP ∴∆面积的最大值为22(用直角坐标方程求解,参照给分)23. 解:(Ⅰ)220,0,2a b a b ab >>+=,33332222)2()()a b a b a b ab a a b b b a ∴+-=+--=-+-(222=)()()()0a b a b a b a b --=-+≥(,332a b ∴+≥.(Ⅱ)5566553323355()()()2a b a b a b a b ab a b a b a ab ++=+++=+-++ 3324224332222=()(2)()()a b ab a a b b a b ab a b ++-+=++-, 330,0,2,a b a b >>+≥552)(2=4a b a b ∴++≥(.。
哈尔滨市第六中学2018届高三第二次模拟考试理科数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整,字迹清楚;(3)请在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效; (4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足3(1)()2i z i i --= (i 为虚数单位),则z 的共轭复数为( )A .1i -B .12i +C .1i -D .12i -2.已知集合A ={x |2()lg(6)f x x x =-+},B ={x |()g x x m -,若A B ≠∅I ,则实数m 的取值范围是( )A .(−∞,3)B .(−2,3)C .(−∞,−2)D .(3,+∞)3.已知双曲线22221x y a b -= (a >0,b >0)的右顶点与抛物线2y =8x 的焦点重合,且其离心率e =32,则该双曲线的方程为( )A .22145y x -= B .22154x y -= C .22145x y -= D .22154y x -= 4.已知在各项均为正数的等比数列{n a }中,13a a =16,3a +4a =24,则5a =( )A .128B .108C .64D .32 5.已知α是第四象限角,且1sin cos 5αα+=,则tan 2α=( )A .13 B .13- C .12D .12-6.已知命题p :存在n R ∈,使得()f x =22n nnx+是幂函数,且在(0,)+∞上单调递增; 命题q :“2,23x R x x ∃∈+>”的否定是“2,23x R x x ∀∈+<”.则下列命题为真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝7.函数()f x =2ln ||2x x +的图象大致为( )A .B .C .D .8.如图所示的程序框图的思路源于数学史上一个著名数列“斐波那契数列”, 执行该程序,若输入6n =,则输出C =( ) A .5 B .8 C .13 D .219.从,,,,A B C D E 五名歌手中任选三人出席某义演活动,当三名歌手中有A 和B 时,A 需排在B 的前面出场(不一定相邻),则不同的出场方法有( )A .51种B .45种C .42种D .36种10.已知某几何体的三视图如图所示,则该几何体的内切球的体积为( )A .14π B .34C .12π D .3211.正方形ABCD 的四个顶点都在椭圆22221x y a b+=上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( ) A .51(0,)2 B .51(,1)2 C .31,1)2- D . 31(0,)2 12.已知()f x '为函数()f x 的导函数,且()f x =212x −(0)f x +(1)f '1x e -, ()g x = ()f x −212x x +,若方程2()x g x a -−x =0在(0,+∞)上有且仅有一个根,则实数a 的取值范围是( )A . (0,1]B .(−∞,−1]C . (−∞,0)∪{1}D .[1,+∞)第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每题5分.)13.一个煤气站有5个阀门控制对外输送煤气,使用这些阀门必须遵守以下操作规则:(i)如果开启1号阀门,那么必须同时开启2号阀门并且关闭5号阀门;(ii)如果开启2号阀门或者5号阀门,那么要关闭4号阀门;(iii)不能同时关闭3号阀门和4号阀门.现在要开启1号阀门,则同时开启的2个阀门是 .14.若实数x ,y 满足约束条件42y x y x y k ≤⎧⎪≤-+⎨⎪≥⎩,且22x y μ=++的最小值为4-,则k = .15.若9290129(1)(1)(1)x a a x a x a x =+-+-++-L ,则7a 的值为 . 16.已知首项为13的数列{n a }的前n 项和为n S ,定义在[1,+∞)上恒不为零的函数()f x ,对任意 的x ,y ∈R ,都有()f x ·()f y =()f x y +.若点(n ,n a )(n ∈N *)在函数()f x 的图象上,且不 等式2m +23m<n S 对任意的n ∈N *恒成立,则实数m 的取值范围为______________三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足(2)cos cos c b A a B -=. (1)求角A 的大小;(2)若D 为BC 上一点,且满足2,23BD DC AD ==u u u r u u u r3,b =求a .18.(本小题满分12分)如图1,已知在梯形ABCD 中,//AB CD ,,E F 分别为底,AB CD 上的点,且EF AB ⊥,112,22EF EB FC EA FD ====,沿EF 将平面AEFD 折起至平面AEFD ⊥平面EBCF ,如图2所示.(1)求证:平面ABD ⊥平面BDF ;(2)若二面角B −AD −F 的大小为60°,求EA 的长度.图图1 图219.(本小题满分12分)小张经营一个抽奖游戏。
安徽省淮北市2018届高三第二次模拟考试理科数学一、选择题(本大题共12小题,共60.0分)1.已知全集,集合,则=()A.[2,3)B.(2,4)C.(3,4]D.(2,4]2.复数,则等于()A. B. C. D.3.设中变量x,y满足条件,则z的最小值为()A. B. C. D.4.已知数列{ a n}的前n项和为S n ,点( n,S n)在函数f( x)=的图象上,则数列{ a n} 的通项公式为()A. B. C. D.5.过点引直线与圆相交于两点,为坐标原点,当面积取最大值时,直线的斜率为 ( )A. B. C. D.6.将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有()A.24种B.28种C.32种D.16种7.下列四个结论:①命题“若是周期函数,则是三角函数”的否命题是“若是周期函数,则不是三角函数”;②命题“”的否定是“③在中,“”是“”的充要条件;④当时,幂函数在区间上单调递减.其中正确命题的个数是()A.1个B.2个C.3个D.4个8.阅读如图所示的程序框图,若输入m=2018,则输出S等于()A.10072B.10082C.10092D.201829.已知函数满足对恒成立,则函数()A.一定为奇函数B.一定为偶函数C.一定为奇函数D.一定为偶函数10.已知函数若函数只有一个零点,则实数a的取值范围是( )A. B. C. D.11.已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为()A. B. C. D.12.如图,已知点为的边上一点,,为边的一列点,满足,其中实数列中,,则的通项公式为()A. B. C. D.二、填空题(本大题共1小题,共5.0分)13.函数在区间上的最大值是.14.设常数,的二项展开式中项的系数为40,记等差数列的前n项和为,已知,,则.15.已知,抛物线的焦点为,直线经过点且与抛物线交于点,且,则线段的中点到直线的距离为.16.已知函数,存在,,则的最大值为( ).三、解答题(本大题共8小题,共96.0分)17.(本小题满分12分)在中,边分别是内角所对的边,且满足,设的最大值为.(Ⅰ)求的值;(Ⅱ)当为的中点时,求的长.18.(本小题满分 12 分)从某企业生产的某种产品中抽取 100 件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.(Ⅰ)求这些产品质量指标值落在区间内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.19.(本小题满分12分)已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC =∠ACD=90°,∠EAC=60°,AB=AC=AE.(Ⅰ)若P是BC的中点,求证:DP∥平面EAB.(Ⅱ)求平面EBD与平面ACDE所成的锐二面角θ的余弦值.20.(本小题满分12分)已知点,P是上任意一点,P在轴上的射影为,,动点的轨迹为C,直线与轨迹交于,两点,直线,分别与轴交于点,.(Ⅰ)求轨迹的方程;(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21.(本小题满分12分)已知函数 . (Ⅰ)时,求的单调区间和极值;(Ⅱ)时,求的单调区间( III )当时,若存在,使不等式成立,求的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲.已知在三角形ABC中, AB=AC. 以 AB 为直径的圆O 交 BC 于 D ,过D 点作 O 的切线交 AC 于 E .求证:(Ⅰ) DE垂直于AC(Ⅱ) BD2=CE ·CA23.(本小题满分10分)选修4—4:坐标系与参数方程.已知直线为参数), 曲线(为参数).(Ⅰ)设与相交于两点,求;(Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线 ,设点是曲线上的一个动点,求它到直线的距离的最小值.24.(本小题满分10分)选修4—5:不等式选讲.设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对任意,不等式的解集为空集,求实数的取值范围.安徽省淮北市2018届高三第二次模拟考试理科数学答案1. 【分析】本题主要考查了交集的运算,首先化简两个集合,再利用补集与交集的运算法则计算出结果.【解答】解:由题意得:A={y|2≤y≤4},B={x|3≤x≤4}.则={x|2≤x<3}.故选A.2. 【分析】本题主要考查了复数的运算,首先利用复数的运算法则把z化简为最简结果,再利用求模公式计算出结果.【解答】解:.故答案为B.3. 【分析】本题主要考查了线性规划的基本运算,由直线交点计算出结果即可.【解答】解:的最小值,即求2x+y的最小值,当取K点时为最小值,平移直线y=-2x到K(1,1)时取得最小值为2x+y=2+1=3,即Z最小值=8.故选C.4. 【分析】本题主要考查了定积分的运算和数列的知识,首先由定积分的知识求出f(x)的函数关系式,再利用数列的前n项和与通项公式之间的关系求解.【解答】解:∵f( x)= =,∴当n=1时,.当n≥2时,.当n=1时不符合上式.则.故选D.5. 【分析】本题主要考查了直线与圆的位置关系,利用基本不等式求出当圆心到直线的距离为1时,三角形的面积最大,从而利用点到直线的距离求解.【解答】解:由题意可知直线l的斜率一定存在,设直线l的方程为y=k(x-2).则圆心到直线l的距离d=.S=.当且仅当,即时取等号.∴=1.解得:k=.故选C.6. 【分析】不同主要考查了组合的应用.把给出的问题分为两类:其中一位同学得到两本小说,其中一位同学得到1本小说和1本诗集,进而解答此题.【解答】解:因为没命同学至少1本书,则一定有两个同学得到两本书,这两本书可能是2本小说,也可能是1本小说和1本诗集,则不同的分法为.故选D.7. 【分析】本题主要考查了命题的真假的判定. ①用否命题的定义进行判定;②根据特称命题的否定是全称命题进行判定;③在由三角形的性质进行判定;④由幂函数的性质进行判定.【解答】解:①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f (x)不是周期函数,则f(x)不是三角函数”,故①错误;②命题“”的否定是“对于任意x∈R,x2-x-1≥0”,故②正确;③在△ABC中,“sin A>sin B”等价为a>b,等价为“A>B”,则,“sin A>sin B”是“A>B”成立的充要条件,故③正确.④当时,幂函数在区间上单调递减,是正确的.则正确命题的个数为3.故选C.8. 【分析】本题主要考查了程序框图与算法的循环结构,由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,S=1,不满足退出循环的条件,i=3;第二次执行循环体,S=4,不满足退出循环的条件,i=5;第三次执行循环体,S=9,不满足退出循环的条件,i=7;…第n次执行循环体,S=n2,不满足退出循环的条件,i=2n+1;…第1008次执行循环体,S=10082,不满足退出循环的条件,i=2018;第1009次执行循环体,S=10092,满足退出循环的条件,故输出的S值为:10092故选C.9. 【分析】本题主要考查的是三角函数的图像与性质.利用已知的等式确定出的一条对称轴.从而利用“左加右减,上加下减”的平移规律,以及偶函数的定义进行解答.【解答】解:由条件可知,即的一条对称轴.又是由向左平移个单位得到的,所以关于对称,即为偶函数.应选D.10. 【分析】本题主要考查了函数的零点的知识,分析已知的条件,把方程的零点的问题转化为两个函数的交点的问题,从而求出a的取值范围.【解答】解:∵只有一个零点,∴方程只有一个根,∴函数y=f(x)与y=x+a的图象只有一个交点,函数图象如下所示:由图象可知 .故选B.11. 【分析】本题主要考查了由三视图由体积的知识.由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,分别求出相应的体积,相减可得答案. 【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,故选C.12. 【分析】本题主要考查了向量以及数列的知识.由向量的运算法则得出,证明{a n+1}是以2为首项,3为公比的等比数列,即可得出结论.【解答】故选D.13本题主要考查了导数的应用.利用导数确定出函数的单调区间,进而求出最大值.【解答】解:∵,∴y′=1-2sinx.所以,故答案为.14【解答】故答案为10.15可得,从而求出线段AB的中点到直线的距离. 【解答】解:故答案为.16【解答】解:故答案为.17. 解:(Ⅰ)由题设及正弦定理知,,即.由余弦定理知,,在上单调递减,的最大值.(2)根据题意:利用余弦定理又因为D是AC的中点,所以AD等于,所以18. 解:(Ⅰ)设区间内的频率为,则区间,内的频率分别为和依题意得解得.所以区间内的频率为.(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以服从二项分布,其中.由(Ⅰ)得,区间内的频率为,将频率视为概率得因为的所有可能取值为0,1,2,3,且,,,.所以的分布列为:所以的数学期望为.19. 证明:(1)取AB的中点F连接DP、PF、EF,则FP∥AC,.取AC的中点M,连接EM、EC,∵AE=AC且∠EAC=60°,∴△EAC是正三角形,∴EM⊥AC.∴四边形EMCD为矩形,∴.∴ED∥FP且ED=FP,四边形EFPD是平行四边形.∴DP∥EF,而EF⊂平面EAB,DP⊄平面EAB,∴DP∥平面EAB.(2)过B作AC的平行线l,过C作l的垂线交l于G,连接DG,∵ED∥AC,∴ED∥l,l是平面EBD与平面ABC所成二面角的棱.∵平面EAC⊥平面ABC,DC⊥AC,∴DC⊥平面ABC,又∵l⊂平面ABC,∴l⊥平面DGC,∴l⊥DG,∴∠DGC是所求二面角的平面角.20. 解:(Ⅰ)设, ∴,∵.∴∵P在上,∴所以轨迹的方程为.(Ⅱ)因为点的坐标为因为直线与轨迹C于两点,,设点(不妨设),则点.联立方程组消去得.所以,则.所以直线的方程为.因为直线,分别与轴交于点,,令得,即点.同理可得点.所以.设的中点为,则点的坐标为.则以为直径的圆的方程为,即.令,得,即或.故以为直径的圆经过两定点,.21. 解:(Ⅰ)时,令解得,当时,当时,所以的单调递减区间是,单调递增区间是;所以的极小值是,无极大值;( II )① 当时,,令解得:,或.令解得:,所以当时,的单调递减区间是,,单调递增区间是;② 当时,,在上单调递减;③ 当时,,令解得:,或令解得:,所以当时,的单调递减区间是,,单调递增区间是;( III )由( II )知,当时,在上单调递减.所以,因为存在,使不等式成立,所以,即整理得,因为,所以所以,所以,的取值范围是.22. 证明:(1)连接OD、AD.∵DE是⊙O的切线,D为切点,∴OD⊥DE.∵AB是⊙O的直径,∴AD⊥BC.又AB=AC,∴BD=DC.∴OD∥AC,DE⊥AC.(II)由(I)得D为BC中点,所以.所以.有得.23. 解:(I)的普通方程为的普通方程为联立方程组解得与的交点为, ,则.(II)的参数方程为为参数).故点的坐标是,从而点到直线的距离是,由此当时, 取得最小值,且最小值为.24. 解:(Ⅰ)当时,等价于.①当时,不等式化为,无解;②当时,不等式化为,解得;③当时,不等式化为,解得.综上所述,不等式的解集为.(Ⅱ)因为不等式的解集为空集,所以因为,当且仅当时取等号.所以.因为对任意,不等式的解集为空集,所以令,所以.当且仅当,即时等号成立所以.所以的取值范围为.。