zbxt选修2-3概率复习题2013-5-13
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
选修2-3《概率》测试题一、选择题1.10件产品中有3件次品,从10件产品中任取2件,取到次品的件数为随机变量,用X 表示,那么X 的取值为 ( )A. 0,1B. 0,2C. 1,2D. 0,1,22.设随机变量X 等可能的取值1,2,3,…,n ,如果3.0)4(=<X P ,那么 ( )A. 3n =B. 4n =C. 9n =D. 10n =3.在15个村庄中,有7个村庄不太方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率等于46781015C C C 的是 ( ) A. (2)P X = B. (2)P X ≤ C. (4)P X = D. (4)P X ≤4.盒子里有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知它不是白球,则它是黑球的概率为 ( )A. 15B.25C. 13D. 235.将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是 ( )A. 5216B.25215C. 31216D. 912166.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A. 0.1536B. 0.1808C. 0.5632D. 0.9728则()E X 等于 ( ) 7.已知随机变量X 的分布为A. 0B. 0.2C. -1D. -0.38.随机变量(,)Y B n p ,且() 3.6E Y =,() 2.16V Y =,则此二项分布是 ( )A. (4,0.9)BB. (9,0.4)BC. (18,0.2)BD. (36,0.1)B二、填空题9.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.49.7 ,去掉一个最高分和一个最低分后,则所剩数据的平均值是 ,方差是 .10.某射手射击1次,击中目标的概率是0.9 .她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中X -1 0 1 P0.5 0.3 0.2。
选修2-3第二章概率综合练习(二)一.选择题1.已知随机变量ξ服从二项分布ξ~B (n ,P ),且 Eξ=7,D ξ=6,则P 等于( ) A .71 B .61 C .51 D .41 2.设离散型随机变量ξ满足Eξ=-l ,D ξ=3,则E[3(ξ-2)]等于( )A .9B .6C .30D .363.设15000件产品中有1000件次品,从中抽取150件进行检查,则查得次品数的数学期望为( ) A .15 B .10 C .20 D .5 4.已知随机变量的的分布列为则D E 等于( )A .0B .0.8C .2D .15.抛掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数ξ的期望是( )A .103 B .559 C .809 D .5096.已知随机变量ξ满足ξD =2,则()=+32ξD ( )A .2B .4C .5D .8 7.某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是 p , 则该部门一天中平均需要服务的对象个数是 ( )A .n p (1-p )B .n pC .nD .p (1-p )8.设随机变量ξ的概率分布为P (ξ=k )=p k ·(1-p )1-k (k=0,1),则Eξ、D ξ的值分别是( )A .0和1B .p 和p 2C .p 和1-pD .p 和(1-p )p 9.事件在一次试验中发生次数ξ的方差ξD 的最大值为( )A .1B .21 C .41 D .2 10.口袋中有5只球,编号为5,4,3,2,1,从中任取3个球,以ξ表示取出球的最大号码,则=ξE( )A .4B .5C .4.5D .4.7511.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交保险金( ) A .a p )1(- B .a p )1(+ C .a p )21.0(+ D .a p )1.0(+ 12.A 、B 两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A 、B 两队在每场比赛中获胜的概率均为21,ξ为比赛需要的场数,则=ξE ( ) A .1673 B .1693 C .1893 D .1873二.填空题13.从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为 .14.一射手对靶射击,直到第一次命中为止,每次命中率为0.6,现在共有4颗子弹,命中后尚余子弹数目ξ的期望为 .15.对三架机床进行检验,各机床产生故障是相互独立的,且概率分别为1P 、2P 、3P ,ξ为产生故障的仪器的个数,则=ξE .16.某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是___________(元) ξ 1 2 3P 0.4 0.2 0. 4 投资成功 投资失败 192次 8次三.解答题17.A、B两个试验方案在某科学试验中成功的概率相同,已知A、B两个方案至少一个成功的概率为0.36,(1)求两个方案均获成功的概率;(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列及数学期望.18.某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。
概率 同步练习一、选择题(第小题5分)1.在某一试验中事件A 出现的概率为p ,则在n 次试验中A 出现k 次的概率为( )A 1-k pB ()k n kp p --1 C 1-()kp -1 D ()k n k kn p p C --12.设随机变量ξ服从分布B(n,p),且E(ξ)=1.6,V(ξ)=1.28则( )A n=8,p=0.2B n=4,p=0.4C n=5,p=0.32D n=7,p=0.45 3、在10个球中有个6红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率是( ) A 53 B 52 C 101 D 954、箱中有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第四次取球之后停止的概率为( )A.C 35 ·C 14C 45B.(59)3×(49)C. 35 ×14D.C 14(59)3×(49) 5、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为( )A 、P 3B 、(1—P)3C 、1—P 3D 、1—(1-P)3 6.一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次击中的概率是( )A 、13B 、23C 、14D 、257、已知在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,则经过4次测试恰好将2个次品全部找出的概率( )A.51 B.154 C.52 D.1514 8、一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( )1536.0.A 1808.0.B 5632.0.C 9728.0.D二、填空题(第小题5分)9、在含有5件次品的100件产品中,任取3件,则取到的次品数X 的分布列为 .10、某自然保护区内有n 只大熊猫,从中捕捉t 只体检并加上标志再放回保护区,1年后再从这个保护区内捕捉m 只大熊猫(设该区内大熊猫总数不变)则其中有s 只大熊猫是第2次接受体检的概率是 。
第二章 概率 同步练习(一)一、选择题:(本大题共10小题,每小题5分,共50分)1.将一颗骰子抛掷两次,设抛掷的最大点数为ξ,则)3(≤ξP 的值是 ( ) A .32B .21 C .31 D . 412.已知:),,(~2δμN X 且,5=X E ,4=X D 则≈≤<)73(x P ( )A .0.045 6B .0.50C .0.682 6D .0.95443.数字1、2、3、4、5任意排成一列,如果数字)5,4,3,2,1(=k k 恰好排在第k 个位置,则称为一个巧合数,设巧合数为ξ,则)1(=ξP 的值是 ( )A .3011B . 61C .83D .121 4.如图,这是一个城镇的街道网络图,某人从A 到B 最短的行走方式是向东或向北行走, 经过哪个街道都是等可能的,则这个人经过线段CD 的概率是( )A .285 B .31C .51D .41 AD CB向东→←向北5.某厂生产电子元件,其产品的次品率为%p ,现从一大批这类产品中任意地连续取出3件,奖品数为ξ,则)2(≤ξP 的值是 ( )A .223)1(3)1(3)1(p p p p p -+-+-B .3)%]100[(1p --C .2%))%](100[(3p p -D .3%)(1p -6.在5道题中有2道选修题和3道必修题.如果不放回地依次取出2道题,则第1次和第2次都抽到必修题的概率是 ( )A .259 B .53 C .103 D .104 7.某人的“QQ ”密码共7位数字,每位数字都是从0~9中任选的一个,他上网时忘记了中间的一位数字,他任意选数字,则不超过3次选对的概率是 ( )A .103 B .72 C .31 D .528.有8张卡片,其中6张标有数字2,有2张标有数字5,从中随机抽取3张卡片,设3张卡片上的数字之和为X ,则随机变量X 的均值EX 是 ( )A .7.80B .8.25C .9.02D .8.249.某篮球运动员罚球命中率为0.8,命中得1分,没有命中得0分,则他罚球1次的得分X 的方差为 ( )A .0.20B .0.18C .0.16D .0.14 10.根据气象预报,在某地区近期有小沙尘暴的概率为41,有大沙尘暴的概率为1001,该地区某勘探工地上有一台大型勘探设备,遇到大沙尘暴时要损失60 000元,遇到小沙尘暴时要损失10 000元,为了保护勘探设备,有三种应急方案:方案 措施、费用 损失(元)方案1 运走勘探设备,搬运费用为3 800元1X 方案2 建防护帐篷,建设费用为2 000元,但防护帐篷只能防小沙尘暴2X 方案3 不采取任何措施,但愿不发生沙尘暴3X这三种方案的平均损失分别为E 1X 、E 2X 、E 3X ,则它们的大小关系是 ( ) A .E 3X <E 2X <E 1X B . E 3X <E 1X <E 2XC .E 2X <E 1X <E 3XD .E 2X <E 3X < E 1X二、填空题(本大题共4小题,每小题6分,共24分)11.某篮球运动员的罚球命中率为0.7,若连续罚球三次,则得分的概率为 .12.盒中有6个白球和4个黑球,从中任意取出3个,设X 是其中的黑球数,则=≥)1(X P .13.设离散型随机变量),1,4.0(~N X 则=≤)4.0(X P .14.在一副扑克牌的13张梅花中,不放回地连续抽取2次,每次抽1张牌,则恰好在第2次抽取到梅花Q 的概率为 .三、解答题(本大题共5题,共76分)15.对某种抗禽流感的抗生素进行临床试验,试验表明抗生素对禽流感患者的治愈率为75%,现给12名患者同时用这种抗生素,求至少有10人被治愈的概率. (15分)16.某旅游城市有甲、乙两个五星级宾馆,根据多年来的业绩记录显示:甲、乙两个宾馆一年中满员(出租率%称为满员)的天数所占比例分别是18%和9024%,两个宾馆同时满员的天数的比例为12%,求(1)乙宾馆满员时,甲宾馆也满员的概率;(2)甲宾馆满员时,乙宾馆不满员的概率.(15分)17.如图,由三个同心圆组成的靶子,它们的半径比为1:2:3,制定如下法则:第一次射击只要在大圆范围内,称为命中;第二次射击时,只要在中圆范围内,称为命中;第三次射击必须在小圆范围内,才称为命中,已知某射手第一次射击的命中率为0.5,如果第一次未射中,则要进行第二次射击;如果第二次还未射中,则要进行第三次射击.已知射击的命中率与环的半径的平方成正比,求该射手命中靶子的概率.(射击命中后射击立即停止)(15分)18.售票窗口有10台电脑各自独立地运行,因修理协调等原因,每台电脑停机的概率为0.2 求:(1)电脑同时停机的台数X的分布列;(2)10台电脑恰好有1台停机的概率;(3)10台电脑至多有2台停机的概率.(15分)19.某学校高二年级进行数学∙选修2-3模块考试评价,考试成绩拟合正态分布,且X~N).75(2如果规定考试成绩低于60分为考试评价不合格,对低于60不,15低于45的学生再组织本模块补考;对低于45分的学生本模块必须重修.(1) 模块考试评价不合格的人数占多少?(2) 重修数学∙选修2-3的学生的人数占多少?(3) 若本年级选修数学∙选修2-3的学生是1 000名学生,则至少要准备补考试卷多少份?(16分)参考答案一、选择题1.D 2.C 3.C 4.A 5.D 6.C 7.A 8.B 9.C 10.D 二、填空题11.0.973 12.65 13.0.5 14.131 三、解答题15.解:设“一患者被治愈”的事件为A ,则P (A )=0.75,则 )12()11()10()10(=+=+==≥ξξξξP P P P12121211111122101012)43()41()43()41()43(C C C ++=3907.00317.01267.02323.0=++≈16.设“甲宾馆满员”事件为A ,“乙宾馆满员”事件为B ,依题意;18.0)(=A P24.0)(=B P ,12.0)(=AB P .所以:(1)5.024.012.0)()()|(===B P AB P B A P (2)33.067.01)|(,67.018.012.0)()()|(=-≈∴≈==A B P A P AB P A B P 17.设三次射中靶子的事件依次为321,,A A A ,则,1815.03)(21=⇒=⋅=k k A P ,922)(22=⋅=k A P 5.03)(23=⋅=k A P 因此,该射手命中靶子的概率为:6327.01819721922121)()()(321211=⨯⨯+⨯+=++=A A A P A A P A P P18.解:依题意:随机变量),2.0,10(~B X 则(1)电脑同时停机的台数X 的分布列是:)10,...,2,1,0(8.02.0)(1010=⨯==-k C k X P k k k(2)10台电脑恰好有恰好有1台停机的概率是:2684.08.02.0)1(91110≈⨯==C X P (3)10台电脑至多有2台停机的概率是:82210911101000108.02.08.02.08.02.0)2(⨯+⨯+⨯=≤C C C X P6778.03020.02684.01074.0=++=19. 设学生的考试成绩为随机变量X ,且)15,75(~2N X ,则,15,75==σμ (1)考试成绩在60~90分的人数所占的比例为,6826.0)15751575(=+≤≤-X P 考试不合格的人数所占的比例是:)60(<X P %87.15)6826.01(21=-=(2)考试成绩在45~105分的人数所占的比例为,9544.0)10545(=≤≤X P 所以重修数学∙选修2-3的学生的人数所占的比例是:)60(<X P %28.2)9544.01(21=-=(3)至少准备补考试卷的份数是:1000136%)28.2%87.15(≈-⨯份.。
高中数学选修2-3随机变量及其分布(分布列)精选题目(附答案)一、条件概率1.在区间(0,1)内随机取一个数x ,若A =⎩⎨⎧⎭⎬⎫x 0<x <12,B =⎩⎨⎧⎭⎬⎫x 14<x <34,则P (B |A )等于( )A.12B.14 C.13 D.34解析:选A P (A )=121=12,∵A ∩B =⎩⎨⎧⎭⎬⎫x 14<x <12, ∴P (AB )=141=14, ∴P (B |A )=P (AB )P (A )=1412=12.2.有20件产品,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件,求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.解:记第一次抽到次品为事件A,第二次抽到次品为事件B.(1)第一次抽到次品的概率为P(A)=520=14.(2)第一次和第二次都抽到次品的概率为P(AB)=P(A)P(B)=1 19.(3)在第一次抽到次品的条件下,第二次抽到次品的概率为P(B|A)=119÷14=419.3.抛掷5枚硬币,在已知至少出现了2枚正面朝上的情况下,问:正面朝上数恰好是3枚的条件概率是多少?解:法一:记至少出现2枚正面朝上为事件A,恰好出现3枚正面朝上为事件B,所求概率为P(B|A),事件A包含的基本事件的个数为n(A)=C25+C35+C45+C55=26,事件B包含的基本事件的个数为n(B)=C35=10,P(B|A)=n(AB)n(A)=n(B)n(A)=1026=5 13.法二:事件A,B同上,则P(A)=C25+C35+C45+C5525=2632,P(AB)=P(B)=C3525=1032,所以P(B|A)=P(AB)P(A)=P(B)P(A)=513.4.已知甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,若目标被击中,则它是被甲击中的概率是________.解析:令事件A,B分别表示甲、乙两人各射击一次击中目标,由题意可知P(A)=0.6,P(B)=0.5,令事件C表示目标被击中,则C=A∪B,则P(C)=1-P(A)P(B)=1-0.4×0.5=0.8,所以P(A|C)=P(AC)P(C)=0.60.8=0.75.答案:0.755.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回地取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回地取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回地取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.解析:①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B ⎝ ⎛⎭⎪⎫6,23,其方差为6×23×⎝ ⎛⎭⎪⎫1-23=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球},则P (A )=23,P (AB )=4×36×5=25,所以P (B |A )=P (AB )P (A )=35,故③错;④每次取到红球的概率P =23,所以至少有一次取到红球的概率为1-⎝ ⎛⎭⎪⎫1-233=2627,故④正确. 答案:①②④二、相互独立事件的概率1.A ,B ,C 三名乒乓球选手间的胜负情况如下:A 胜B 的概率为0.4,B 胜C 的概率为0.5,C 胜A 的概率为0.6,本次竞赛按以下顺序进行:第一轮:A 与B ;第二轮:第一轮的胜者与C ;第三轮:第二轮的胜者与第一轮的败者;第四轮:第三轮的胜者与第二轮的败者.求:(1)B 连胜四轮的概率;(2)C 连胜三轮的概率.解:(1)要B 连胜四轮,以下这些相互独立事件须发生:第一轮B 胜A ,第二轮B 胜C ,第三轮B 再胜A ,第四轮B 再胜C .根据相互独立事件同时发生的概率公式,得所求概率为P =(1-0.4)×0.5×(1-0.4)×0.5=0.09.故B连胜四轮的概率为0.09.(2)C连胜三轮应分两种情况:①第一轮A胜B,则第二轮C胜A,第三轮C 胜B,第四轮C胜A,得C连胜三轮的概率为P1=0.4×0.6×(1-0.5)×0.6=0.072;②第一轮B胜A,则第二轮C胜B,第三轮C胜A,第四轮C胜B,得C 连胜三轮的概率为P2=(1-0.4)×(1-0.5)×0.6×(1-0.5)=0.09.由于①②两种情况是两个互斥事件,所以所求概率为P=P1+P2=0.072+0.09=0.162.故C连胜三轮的概率为0.162.2.红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求P(ξ≤1).解:(1)设“甲胜A”为事件D,“乙胜B”为事件E,“丙胜C”为事件F,则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式,知P(D)=0.4,P(E)=0.5,P(F)=0.5.红队至少两人获胜的事件有DE F,D E F,D EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DE F)+P(D E F)+P(D EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意,知ξ的可能取值为0,1,2,3.P(ξ=0)=P(D E F)=0.4×0.5×0.5=0.1,P(ξ=1)=P(D E F)+P(D E F)+P(D E F)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,所以P(ξ≤1)=P(ξ=0)+P(ξ=1)=0.45.三、离散型随机变量的分布列及均值、方差求离散型随机变量X的均值与方差的步骤:(1)理解X的意义,写出X可能的全部取值;(2)求X取每个值的概率或求出函数P(X=k);(3)写出X的分布列;(4)由分布列和均值的定义求出E(X);(5)由方差的定义,求D(X).1.设离散型随机变量ξ的概率分布列如下:则p的值为()A.12 B.16C.13 D.14解析:选A因为15+15+110+p=1,所以p=12,故选A.2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为()A.310 B.112C.12 D.1112解析:选D设事件A为“无人中奖”,则P(A)=C57C510=112,则至少有1个人中奖的概率P=1-P(A)=1-112=1112.3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为()A.0.3 B.0.5C.0.1 D.0.2解析:选A由Y=2X-1<6,得X<3.5,∴P(Y<6)=P(X<3.5)=P(X=1)+P(X=2)+P(X=3)=0.3.4.若离散型随机变量X的分布列为则X 的数学期望E (X )=( ) A.32 B .2 C.52 D .3解析:选A 由数学期望的公式可得:E (X )=1×35+2×310+3×110=32.5.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,且两人是否击中相互不受影响,则恰有一人击中敌机的概率为( )A .0.9B .0.2C .0.7D .0.5解析:选D 设事件A ,B 分别表示甲、乙飞行员击中敌机,则P (A )=0.4,P (B )=0.5,且A 与B 互相独立,则事件恰有一人击中敌机的概率为P (A B +A B )=P (A )[1-P (B )]+[1-P (A )]P (B )=0.5,故选D.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方是2分,对方得1分.求乙队得分X 的分布列及均值.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-23×23=827,P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-232×12=427. 所以,甲队以3∶0,3∶1,3∶2胜利的概率分别是827,827,427.(2)设“乙队以3∶2胜利”为事件A 4,由题意知各局比赛结果相互独立,所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意知随机变量X 的所有可能取值为0,1,2,3,根据事件的互斥性得 P (X =0)=P (A 1∪A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以E (X )=0×1627+1×427+2×427+3×327=79.7.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列、均值及方差.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28种,当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1.X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为E (X )=(-2)×114+(-1)×514+0×27+1×27=-314.D (X )=⎝ ⎛⎭⎪⎫-2+3142×114+⎝ ⎛⎭⎪⎫-1+3142×514+⎝ ⎛⎭⎪⎫3142×27+⎝ ⎛⎭⎪⎫1+3142×27≈0.88. 8.一台机器生产某种产品,如果生产出一件甲等品可获得50元,生产出一件乙等品可获得30元,生产出一件次品,要赔20元.已知这台机器生产出甲等品、乙等品和次等品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期可获利________元.解析:设生产一件该产品可获利X 元,则随机变量X 的取值可以是-20,30,50.依题意,得X 的分布列为故E (X )=-20×0.1+30×0.3+50×0.6=37.9.(本小题满分10分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令X 表示走出迷宫所需的时间.(1)求X 的分布列; (2)求X 的均值.解:(1)X 的所有可能取值为1,3,4,6.P (X =1)=13,P (X =3)=16,P (X =4)=16,P (X =6)=13,所以X 的分布列为(2)E (X )=1×13+3×16+4×16+6×13=72.10.(本小题满分12分)已知某高中共派出足球、排球、篮球三个球队参加市学校运动会,他们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的分布列.解:(1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为 P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23=19, P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×23=718,P (X =2)=12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×23+12×⎝ ⎛⎭⎪⎫1-13×23=718,P (X =3)=12×13×23=19, ∴随机变量X 的分布列为(2)根据题意知得分Y =5X +2(3-X )=6+3X , ∵X 的可能取值为0,1,2,3.∴Y 的可能取值为6,9,12,15,取相应值的概率分别为 P (Y =6)=P (X =0)=19,P (Y =9)=P (X =1)=718, P (Y =12)=P (X =2)=718,P (Y =15)=P (X =3)=19. ∴随机变量Y 的分布列为11.(本小题满分12分)北京市政府为做好APEC 会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率;(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利—80元).已知一箱中有该海产品4件,记一箱该海产品获利ξ元,求ξ的分布列,并求出均值E (ξ).解:(1)设“该海产品不能销售”为事件A , 则P (A )=1-⎝ ⎛⎭⎪⎫1-16×⎝ ⎛⎭⎪⎫1-110=14.所以,该海产品不能销售的概率为14.(2)由已知,可知ξ的可能取值为-320,-200,-80,40,160. P (ξ=-320)=⎝ ⎛⎭⎪⎫144=1256,P (ξ=-200)=C 14×⎝ ⎛⎭⎪⎫143×34=364,P (ξ=-80)=C 24×⎝ ⎛⎭⎪⎫142×⎝ ⎛⎭⎪⎫342=27128,P (ξ=40)=C 34×14×⎝ ⎛⎭⎪⎫343=2764,P (ξ=160)=⎝ ⎛⎭⎪⎫344=81256.所以ξ的分布列为E (ξ)=-320×1256-200×364-80×27128+40×2764+160×81256=40.四、二项分布在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n .这时称X 服从二项分布,记为X ~B (n ,p ).当X ~B (n ,p )时,E (X )=np ,D (X )=np (1-p ).1. 某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题.(1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得-10分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).解:(1)记甲、乙、丙分别答对此题为事件A ,B ,C ,由已知,得P (A )=34,[1-P (A )][1-P (C )]=112,∴P (C )=23.又P (B )P (C )=14,∴P (B )=38. ∴该单位代表队答对此题的概率 P =1-⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-38×⎝ ⎛⎭⎪⎫1-23=9196. (2)记X 为该单位代表队必答题答对的道数,Y 为必答题的得分,则X ~B ⎝ ⎛⎭⎪⎫10,9196, ∴E (X )=10×9196=45548.而Y =20X -10×(10-X )=30X -100, ∴E (Y )=30E (X )-100=1 4758≈184. 2.某运动员投篮命中率为p =0.6. (1)求投篮1次时命中次数X 的均值; (2)求重复5次投篮时,命中次数Y 的均值. 解:(1)投篮1次,命中次数X 的分布列如表:则E (X )=p =0.6.(2)由题意,重复5次投篮,命中的次数Y 服从二项分布, 即Y ~B (5,0.6).则E (Y )=np =5×0.6=3.3.(本小题满分12分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?解:法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”. 因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1-415=1115, 即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的均值为E (2X 1),选择方案乙抽奖累计得分的均值E (3X 2).由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25, 所以E (X 1)=2×23=43,E (X 2)=2×25=45, 从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含“X =0”“X =2”“X =3”三个两两互斥的事件. 因为P (X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P (X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P (X =3)=⎝⎛⎭⎪⎫1-23×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83,E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.五、正态分布1.正态分布N1(μ1,σ21),N2(μ2,σ22),N3(μ3,σ23)(其中σ1,σ2,σ3均大于0)所对应的密度函数图象如图所示,则下列说法正确的是()A.μ1最大,σ1最大B.μ3最大,σ3最大C.μ1最大,σ3最大D.μ3最大,σ1最大解析:选D在正态曲线N(μ,σ2)中,x=μ为正态曲线的对称轴,结合图象可知,μ3最大;又参数σ确定了曲线的形式:σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”.故由图象知σ1最大.故选D.2. (1)已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值为( )A .0.1B .0.2C .0.4D .0.6(2)2018年1月某校高三年级1 600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~N (100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中数学成绩不低于120分的学生人数约为( )A .80B .100C .120D .200(3)若随机变量ξ~N (2,σ2),且P (ξ>3)=0.158 7,则P (ξ>1)=________. 解析:(1)∵随机变量X 服从正态分布N (2,σ2),∴正态曲线的对称轴是x =2,∵P (0<X <4)=0.8,∴P (X >4)=12×(1-0.8)=0.1,故选A.(2)∵X ~N (100,σ2),∴其正态曲线关于直线x =100对称,又∵数学成绩在80分到120分之间的人数约占总人数的34,∴由对称性知,数学成绩不低于120分的学生人数约为总人数的12×⎝ ⎛⎭⎪⎫1-34=18,∴此次考试中数学成绩不低于120分的学生人数约为18×1 600=200.故选D.(3)∵随机变量ξ~N (2,σ2),∴正态曲线关于x =2对称,∵P (ξ>3)=0.158 7,∴P (ξ>1)=P (ξ<3)=1-0.158 7=0.841 3.答案:(1)A (2)D (3)0.841 33.某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502), 所以μ=500,σ=50,所以P=(550<x≤600)=12[P(500-2×50<x≤500+2×50)-P(500-50<x≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398人.4.(本小题满分12分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100),已知成绩在90分以上(含90分)的学生有12人.(1)试问此次参赛学生的总数约为多少人?(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?解:(1)设参赛学生的成绩为X,因为X~N(70,100),所以μ=70,σ=10.则P(X≥90)=P(X≤50)=12[1-P(50<X<90)]=12[1-P(μ-2σ<X<μ+2σ)]=12×(1-0.954 4)=0.022 8,120.022 8≈526.因此,此次参赛学生的总数约为526人.(2)由P(X≥80)=P(X≤60)=12[1-P(60<X<80)]=12[1-P(μ-σ<X<μ+σ)]=12×(1-0.682 6)=0.158 7,得526×0.158 7≈83.因此,此次竞赛成绩为优的学生约为83人.六、茎叶图为了搞好世界大学生夏季运动会的接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高绘成如图所示的茎叶图(单位:cm).若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列.解: (1)根据茎叶图知,“高个子”有12人,“非高个子”有18人.用分层抽样的方法,每个人被抽中的概率是530=16,所以选中的“高个子”有12×16=2(人),“非高个子”有18×16=3(人).用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A -表示“没有‘高个子’被选中”,则P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)由茎叶图知,“女高个子”有4人,“男高个子”有8人.依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,p (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为。
【最新整理,下载后即可编辑】选修2-3第二章概率质量检测(二)时间:120分钟 总分:150分第Ⅰ卷(选择题,共60分)1.某射手射击所得环数ξ的分布列如下:已知ξ)A .0.2B .0.4C .0.6D .0.82.若X 的分布列为则D (X )等于( A .0.8 B .0.25 C .0.4 D .0.23.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为35,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为( )A.36125B.54125C.81125D.271254.设随机变量X ~N (μ,σ2),且P (X <c )=P (X >c ),则c 的值为( )A .0B .1C .μ D.μ25.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率P (A |B ),P (B |A )分别是( )A.6091,12B.12,6091C.518,6091D.91216,126.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( )A.16625B.96625C.624625D.46257.已知X 的分布列为且Y =aX +3,E (Y )=3,则a 为( )A .-1B .-12C .-13D .-148.已知变量x 服从正态分布N (4,σ2),且P (x >2)=0.6,则P (x >6)=( )A .0.4B .0.3C .0.2D .0.19.设由“0”,“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( )A.25B.34C.12D.1810.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210×⎝ ⎛⎭⎪⎪⎫162×⎝ ⎛⎭⎪⎪⎫568 B .C 110×16×⎝ ⎛⎭⎪⎪⎫569+⎝ ⎛⎭⎪⎪⎫5610 C .C 110×16×⎝ ⎛⎭⎪⎪⎫569+C 210×162×⎝ ⎛⎭⎪⎪⎫568 D .以上都不对 11.已知随机变量X ~B (6,0.4),则当η=-2X +1时,D (η)=( )A .-1.88B .-2.88C .5.76D .6.7612.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没售出的鲜花以每束1.6元处理.据前5年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是( )A.706 D .720元第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为________.14.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为________.15.如果一个随机变量ξ~B ⎝ ⎛⎭⎪⎪⎫15,12,则使得P (ξ=k )取得最大值的k 的值为________.16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.18.(12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ012 3P6125a b24125(1)(2)求p,q的值;(3)求数学期望E(ξ).19.(12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数.)20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A,乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.22.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.答案1.B ∵E(ξ)=7x+8×0.1+9×0.3+10y=7(0.6-y)+10y+3.5=7.7+3y,∴7.7+3y=8.9,∴y=0.4.2.B 由题意知0.5+a=1,E(X)=0×0.5+a=a=0.5,所以D(X)=0.25.3.C 设此班次公共汽车准时到站的天数为随机变量X,则此班次公共汽车至少有2天准时到站的概率为P (X =2)+P (X =3)=C 23⎝ ⎛⎭⎪⎪⎫352×25+C 33⎝ ⎛⎭⎪⎪⎫353=81125. 4.C 因为P (X <c )=P (X >c ),由正态曲线的对称性知μ=c .5.A 由题意得事件A 包含的基本事件个数为6×5×4=120,事件B 包含的基本事件个数为63-53=91,在B 发生的条件下A 发生包含的基本事件个数为C 13A 25=60,在A 发生的条件下B 发生包含的基本事件个数为C 13A 25=60,所以P (A |B )=6091,P (B |A )=60120=12.故正确答案为A. 6.B 若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 26=25.现有4人参与摸奖,恰有3人获奖的概率是C 34⎝ ⎛⎭⎪⎪⎫253×35=96625. 7.C E (X )=1×16+2×23+3×16=2, 由Y =aX +3,得E (Y )=aE (X )+3.所以73=2a +3,解得a =-13. 8.A 因为P (x >2)=0.6,所以P (x <2)=1-0.6=0.4.因为N (4,σ2),所以此正态曲线关于x =4对称,所以P (x >6)=P (x <2)=0.4.故选A.9.C 因为P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=14,所以P (A |B )=P A ∩B P B =12. 10.D P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010×⎝ ⎛⎭⎪⎪⎫160×⎝ ⎛⎭⎪⎪⎫5610+C 110×16×⎝ ⎛⎭⎪⎪⎫569+C 210×⎝ ⎛⎭⎪⎪⎫162×⎝ ⎛⎭⎪⎪⎫568. 11.C 由已知D (X )=6×0.4×0.6=1.44,则D (η)=4D (X )=4×1.44=5.76.12.A 节日期间这种鲜花需求量的均值E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450,则E (η)=E (3.4ξ-450)=3.4E (ξ)-450=3.4×340-450=706(元).13.370解析:加工出来的零件的合格品率为⎝ ⎛⎭⎪⎪⎫1-170×⎝ ⎛⎭⎪⎪⎫1-169×⎝ ⎛⎭⎪⎪⎫1-168=6770, 所以次品率为1-6770=370. 14.1解析:区间(-3,-1)和区间(3,5)关于x =1对称(-1的对称点是3,-3的对称点是5),所以正态分布的数学期望就是1.15.7,8解析:P (ξ=k )=C k 15⎝ ⎛⎭⎪⎪⎫1215,则只需C k 15最大即可,此时k =7,8.16.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,所以该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .所以该部件的使用寿命超过1 000小时的概率为⎝ ⎛⎭⎪⎪⎫12×12+12×12+12×12×12=38. 17.解:(1)由题可得,至少购买甲、乙两种商品中的一种的概率为p =1-(1-0.5)(1-0.6)=0.8.(2)ξ可能的取值有0,1,2,3,p (ξ=0)=(1-0.8)3=0.008,p (ξ=1)=C 13(1-0.8)20.8=0.096,p (ξ=2)=C 23(1-0.8)10.82=0.384,p (ξ=3)=0.83=0.512.故ξ的分布列为ξ18.解:记事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3.由题意知P (A 1)=45,P (A 2)=p ,P (A 3)=q . (1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119125. (2)由题意知 P (ξ=0)=P (A 1A 2A 3)=15(1-p )(1-q )=6125, P (ξ=3)=P (A 1A 2A 3)=45pq =24125. 整理得pq =625,p +q =1. 由p >q ,可得p =35,q =25. (3)由题意知a =P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A1A 2A 3)=45(1-p )(1-q )+15p (1-q )+15(1-p )q =37125,b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=58125. 所以E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=95.19.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×42+2×84+3×12=28. 20.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P (A 2)=0.003×50=0.15,P (B )=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064,P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B 1.8,方差D (X )=3×0.6×(1-0.6)=0.72.21.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25, 且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315. (2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因P (X =0)=P (E F )=13×25=215, P (X =100)=P (E F )=13×35=315, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=615, 故所求的分布列为数学期望为E (X )=0×15+100×15+120×415+220×615=300+480+1 32015=2 10015=140.22.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备.(1)D=A1·B·C+A2·B+A2·B·C.P(B)=0.6,P(C)=0.4,P(A i)=C i×0.52,i=0,1,2,2所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=20.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.。
选修2-3第二章概率质量检测(二)时间:120分钟总分:150分第Ⅰ卷(选择题,共60分)1.某射手射击所得环数ξ的分布列如下:已知ξA.0.2 B.0.4 C.0.6 D.0.82.若X的分布列为则D(X)等于(A.0.8 B.0.25 C.0.4 D.0.23.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为35,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为()A.36125 B.54125C.81125 D.271254.设随机变量X~N(μ,σ2),且P(X<c)=P(X>c),则c的值为()A.0 B.1 C.μ D.μ25.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率P (A |B ),P (B |A )分别是( )A.6091,12B.12,6091C.518,6091D.91216,12 6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( )A.16625B.96625C.624625D.4625 7.已知X 的分布列为且Y =aX +3,E (Y )=73,则a 为( )A .-1B .-12C .-13D .-148.已知变量x 服从正态分布N (4,σ2),且P (x >2)=0.6,则P (x >6)=( )A .0.4B .0.3C .0.2D .0.19.设由“0”,“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( )A.25B.34C.12D.1810.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568 B .C 110×16×⎝ ⎛⎭⎪⎫569+⎝ ⎛⎭⎪⎫5610C .C 110×16×⎝ ⎛⎭⎪⎫569+C 210×162×⎝ ⎛⎭⎪⎫568 D .以上都不对11.已知随机变量X ~B (6,0.4),则当η=-2X +1时,D (η)=( ) A .-1.88 B .-2.88 C .5.76 D .6.76 12.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没售出的鲜花以每束1.6元处理.据前5年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是( )A.706D .720元第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为________.14.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为________.15.如果一个随机变量ξ~B ⎝⎛⎭⎪⎫15,12,则使得P (ξ=k )取得最大值的k 的值为________.16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.18.(12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p ,q (p >q ),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为(1)(2)求p ,q 的值; (3)求数学期望E (ξ).19.(12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望.(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.)20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.22.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.答案1.B ∵E (ξ)=7x +8×0.1+9×0.3+10y =7(0.6-y )+10y +3.5=7.7+3y ,∴7.7+3y =8.9,∴y =0.4.2.B 由题意知0.5+a =1,E (X )=0×0.5+a =a =0.5,所以D (X )=0.25.3.C 设此班次公共汽车准时到站的天数为随机变量X ,则此班次公共汽车至少有2天准时到站的概率为P (X =2)+P (X =3)=C 23⎝ ⎛⎭⎪⎫352×25+C 33⎝ ⎛⎭⎪⎫353=81125.4.C 因为P (X <c )=P (X >c ),由正态曲线的对称性知μ=c . 5.A 由题意得事件A 包含的基本事件个数为6×5×4=120,事件B 包含的基本事件个数为63-53=91,在B 发生的条件下A 发生包含的基本事件个数为C 13A 25=60,在A 发生的条件下B 发生包含的基本事件个数为C 13A 25=60,所以P (A |B )=6091,P (B |A )=60120=12.故正确答案为A.6.B 若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 26=25.现有4人参与摸奖,恰有3人获奖的概率是C 34⎝ ⎛⎭⎪⎫253×35=96625.7.C E (X )=1×16+2×23+3×16=2, 由Y =aX +3,得E (Y )=aE (X )+3. 所以73=2a +3,解得a =-13.8.A 因为P (x >2)=0.6,所以P (x <2)=1-0.6=0.4.因为N (4,σ2),所以此正态曲线关于x =4对称,所以P (x >6)=P (x <2)=0.4.故选A.9.C 因为P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=14,所以P (A |B )=P (A ∩B )P (B )=12.10.DP (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010×⎝ ⎛⎭⎪⎫160×⎝ ⎛⎭⎪⎫5610+C 110×16×⎝ ⎛⎭⎪⎫569+C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568.11.C 由已知D (X )=6×0.4×0.6=1.44,则D (η)=4D (X )=4×1.44=5.76.12.A 节日期间这种鲜花需求量的均值E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450,则E (η)=E (3.4ξ-450)=3.4E (ξ)-450=3.4×340-450=706(元).13.370解析:加工出来的零件的合格品率为 ⎝ ⎛⎭⎪⎫1-170×⎝ ⎛⎭⎪⎫1-169×⎝ ⎛⎭⎪⎫1-168=6770,所以次品率为1-6770=370. 14.1解析:区间(-3,-1)和区间(3,5)关于x =1对称(-1的对称点是3,-3的对称点是5),所以正态分布的数学期望就是1.15.7,8解析:P (ξ=k )=C k 15⎝ ⎛⎭⎪⎫1215,则只需C k 15最大即可,此时k =7,8.16.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,所以该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .所以该部件的使用寿命超过1 000小时的概率为⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38.17.解:(1)由题可得,至少购买甲、乙两种商品中的一种的概率为p =1-(1-0.5)(1-0.6)=0.8.(2)ξ可能的取值有0,1,2,3, p (ξ=0)=(1-0.8)3=0.008,p (ξ=1)=C 13(1-0.8)20.8=0.096, p (ξ=2)=C 23(1-0.8)10.82=0.384,p (ξ=3)=0.83=0.512. 故ξ的分布列为ξ18.解:记事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3. 由题意知P (A 1)=45,P (A 2)=p ,P (A 3)=q .(1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119125.(2)由题意知P (ξ=0)=P (A 1A 2A 3)=15(1-p )(1-q )=6125, P (ξ=3)=P (A 1A 2A 3)=45pq =24125. 整理得pq =625,p +q =1. 由p >q ,可得p =35,q =25.(3)由题意知a =P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=45(1-p )(1-q )+15p (1-q )+15(1-p )q =37125,b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=58125.所以E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=95.19.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.20.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064,P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.分布列为因为X ~B ,方差D (X )=3×0.6×(1-0.6)=0.72.21.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615,故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615=300+480+1 32015=2 10015=140.22.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1·B ·C +A 2·B +A 2·B ·C .P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )=P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C )=P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4)=0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X =3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.。
高中数学学习材料马鸣风萧萧*整理制作选修2-3第二章概率知识与方法测试一.选择题:1.设随机变量ξ的分布列为P (ξ=k )=c (31)k,k =1,2,3,则c 的值为( ) (A )1 (B )913 (C )1113 (D )27132.设离散型随机变量ξ的概率分布如右:则p 的值为( ) (A )21 (B )61 (C ) 31(D )413.某产品40件,其中次品数3件,现从中任取2件,则其中至少有一件次品的概率是( ) (A )0.1462 (B )0.1538 (C )0.9962 (D )0.8538 4.设离散型随机变量ξ的概率分布如右: 则其数学期望E ξ等于( ) (A )1 (B )0.6 (C )2+3m (D )2.4 5.设随机变量ξ等可能取值1,2,3,……,n ,如果P (ξ<4)=0.3,那么( )(A )n =3 (B )n =4 (C )n =10 (D )n 不能确定6.一个家庭中有两个小孩,已知其中有一个是女孩,则这时另一个是女孩的概率是( ) (A )41 (B )31(C )43 (D )217.两个气象台同时作天气预报,如果他们与预报准确的概率分别为0.8与0.9,那么在一次预报中,两个气象台都没预报准确的概率为( )(A )0.72 (B )0.3 (C )0.02 (D )0.038.有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的次品件数的数学期望值是( ) (A )n (B )(n -l)M N (C ) n M N (D )(n +l) MN9.已知随机变量ξ的分布列如右,则Dξ等于( ).(A )2912 (B )31144 (C )2318 (D )17914410.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病ξ 1234 P6131 61 pξ 1 3 5 P 0.5 m 0.2 ξ 1234P4131 61 41的发病率为0.02.设发病的牛的头数为ξ,则Dξ等于( ) (A )0.196 (B )0.2 (C )0.8 (D )0.804 二.填空题: 11.设随机变量ξ只能取5,6,7,……,16这12个值,且取每一个值的概率均相等,则P (ξ>8)= ; P (6<ξ≤14)= .12.离散型随机变量ξ服从参数为n 和p 的二项分布,且E ξ=8,D ξ=1.6,则n = ,p = . 13.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,敌机被击中的概率为 。
选修 2-3 第二章概率质量检测 (二)时间: 120分钟总分: 150分第Ⅰ卷 (选择题,共 60 分)题号123456789101112答案一、选择题 ( 每小题 5 分,共 60 分)1.某射手射击所得环数ξ 的分布列如下:ξ78910P x y已知A.ξ 的数学期望B.E(ξ)=,则C.Dy 的值为(.)2.若X的分布列为X01P a则D( X)等于()A.B.C.D.3.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为35,则他在 3 天乘车中,此班次公共汽车至少有 2 天准时到站的概率为()4.设随机变量X~N( μ,σ2) ,且P( X<c) =P( X>c) ,则c的值为()A.0B.1C.μ5.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个 6 点”,则条件概率P( A| B),P( B| A)分别是() 160601,2,91,91,26.箱中装有标号为 1,2,3,4,5,6 且大小相同的 6 个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是 4 的倍数,则获奖.现有 4 人参与摸奖,恰好有 3 人获奖的概率是()7.已知X的分布列为X123P121636 7且 Y=aX+3,E( Y)=3,则 a 为()111A.- 1 B .-2C.-3 D .-48.已知变量x服从正态分布N(4 ,σ2) ,且P( x>2) =,则P( x>6)=()A.B.C.D.9.设由“ 0”,“1”组成的三位数组中,若用A表示“第二位数字为‘ 0’的事件”,用B表示“第一位数字为‘ 0’的事件”,则P( A| B)等于()10.把 10 个骰子全部投出,设出现 6点的骰子的个数为X,则P( X≤2)=()1012581059510211A.C ×6×6B.C×6×6 +65 92125811C.C10×6×6+C10×6× 6D.以上都不对11.已知随机变量X~B(6, ,则当η=-2X+1 时,D( η) =()A.-B.-C.D.12.节日期间,某种鲜花的进价是每束元,售价是每束 5 元,节后对没售出的鲜花以每束元处理.据前 5 年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是()ξ200300400500P元 B .690 元 C .754 元 D .720 元第Ⅱ卷 ( 非选择题,共 90 分)二、填空题 ( 每小题 5 分,共 20 分)13.加工某一零件需经过三道工序,设第一、二、三道工序的次111品率分别为70,69,68,且各道工序互不影响,则加工出来的零件的次品率为 ________.14.已知正态总体的数据落在区间 ( -3,-1) 内的概率和落在区间(3,5) 内的概率相等,那么这个正态总体的数学期望为________.115.如果一个随机变量ξ~B15,2,则使得P(ξ=k)取得最大值的 k 的值为________.16.某一部件由三个电子元件按下图方式连接而成,元件 1 或元件2 正常工作,且元件 3 正常工作,则部件正常工作.设三个电子元件的使用寿命 ( 单位:小时 ) 均服从正态分布N(1 000,50 2) ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过 1 000 小时的概率为 ________.三、解答题 ( 写出必要的计算步骤,只写最后结果不得分,共70分)17.(10 分) 设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的 1 位顾客至少购买甲、乙两种商品中的一种的概率;(2)记ξ 表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ 的分布列及期望.18.(12 分) 某同学参加 3 门课程的考试.假设该同学第一门课程4取得优秀成绩的概率为5,第二、第三门课程取得优秀成绩的概率分别为p,q( p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123P6a b24 125125(1)求该生至少有 1 门课程取得优秀成绩的概率;(2)求 p,q 的值;(3)求数学期望 E(ξ).19.(12分) 一盒中装有9 张各写有一个数字的卡片,其中 4 张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是 3. 从盒中任取3 张卡片.(1)求所取 3 张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求 X 的分布列与数学期望.( 注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数. )20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续 3 天里,有连续 2 天的日销售量都不低于 100 个且另 1 天的日销售量低于50 个的概率;(2)用 X表示在未来3天里日销售量不低于100个的天数,求随机变量 X 的分布列,期望 E( X)及方差 D( X).21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功2 3的概率分别为3和5. 现安排甲组研发新产品A,乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品 A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100 万元.求该企业可获利润的分布列和数学期望.22.(12 分) 设每个工作日甲、乙、丙、丁 4 人需使用某种设备的概率分别为 ,,, ,各人是否需使用设备相互独立.(1)求同一工作日至少 3 人需使用设备的概率;(2) X 表示同一工作日需使用设备的人数,求 X 的数学期望.答案1.B ∵E ( ξ) =7x +8×+ 9×+ 10y =7-y ) +10y +=+ 3y ,∴+3y =,∴ y = .2.B 由题意知+ a = 1,E ( X ) =0×+ a =a =,所以 D ( X ) =. 3.C 设此班次公共汽车准时到站的天数为随机变量X ,则此班2 3 次公共汽车至少有 2 天准时到站的概率为 P( X =2) +P( X =3) =C53223 3 3 81×5+C5=125.34.C 因为 P ( X <c ) =P ( X >c ) ,由正态曲线的对称性知 μ=c .5.A 由题意得事件 A 包含的基本事件个数为 6×5×4= 120,事件 B 包含的基本事件个数为63-53=91,在 B 发生的条件下 A 发生包1 2含的基本事件个数为 CA =60,在 A 发生的条件下 B 发生包含的基本35事件个数为1 26060 1CA =60,所以 P ( A | B ) =91,P ( B | A ) =120=2. 故正确答案3 5为 A.6.B若摸出的两球中含有 4,必获奖,有 5 种情形;若摸出的两球是 2,6 ,也能获奖.故获奖的情形共 6 种,获奖的概率为622= .C5632 33 96现有 4 人参与摸奖,恰有3 人获奖的概率是 4×5=625.C 51 2 17.C E ( X ) =1×6+2×3+3×6=2,由 Y =aX +3,得 E ( Y ) =aE ( X ) +3.71 所以 =2 +3,解得=- .3 a a38.A 因为 P ( x >2) =,所以 P ( x <2) =1-= . 因为 N (4 ,σ2) ,所 以此正态曲线关于 x =4 对称,所以 P ( x >6) =P ( x <2) =. 故选 A.9.C 因为 P ( B ) = 1×2×2 1,P ( A ∩B ) =1×1×2 1 = = ,所以 P ( A | B )2×2×2 2 2×2×2 4P A ∩B 1=P B=2.1 0 5 1010.D P ( X ≤2) = P ( X =0) +P ( X =1) +P ( X =2) =C 10 × 6 × 61 1 5 92 × 1 2 5 8+C×6× 6+C 6× 6 .101011.C 由已知 D ( X ) =6××=,则 D ( η) =4D ( X ) =4×= .12.A 节日期间这种鲜花需求量的均值E ( ξ) =200×+ 300×+400×+ 500×= 340( 束) .设利润为 η,则 η=5ξ+(500 -ξ) -500×= ξ-450,则 E ( η)= E ξ-450)= ( ξ) -450=× 340- 450=706( 元) .解析:加工出来的零件的合格品率为11 1671-70 × 1-69 × 1-68 =70,67 3所以次品率为 1-70=70.14.1解析:区间 ( -3,-1) 和区间 (3,5) 关于 x =1 对称 ( - 1 的对称点是 3,- 3 的对称点是 5) ,所以正态分布的数学期望就是 1.15.7,8k 1 15k最大即可,此时k=7,8.解析: P( ξ=k) =C2,则只需 C1515解析:设元件 1,2,3 的使用寿命超过 1 000 小时的事件分别记为1A,B,C,显然 P( A)=P( B)=P( C)=2,所以该部件的使用寿命超过1 000的事件为 ( AB+AB+AB) C.所以该部件的使用寿命超过 1 000 小时的概率为1 1 1 1 1 1 1 32×2+2×2+2×2×2=8.17.解:(1) 由题可得,至少购买甲、乙两种商品中的一种的概率为p=1-(1-(1-=.(2)ξ 可能的取值有0,1,2,3,p(ξ=0)=(1-3=,1p(ξ=1)=C3(1-=,2p(ξ=2)=C3(1-=,p(ξ=3)==.故ξ 的分布列为ξ0123pξ的数学期望 E(ξ)=3×=.18.解:记事件A i表示“该生第i 门课程取得优秀成绩”,i =1,2,3.4由题意知 P( A1)=5,P( A2)=p,P( A3)=q.(1)由于事件“该生至少有 1 门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有 1 门课程取得优秀成绩的概率是1-6119P(ξ=0)=1-125=125.(2)由题意知16P(ξ=0)=P( A 1 A 2A 3)=5(1-p)(1-q)=125,424123=5pq=125.P(ξ=3)=P( A A A )6整理得 pq=25,p+q=1.3 2由p>q,可得 p=5,q=5.(3)由题意知 a=P(ξ=1)=P( A1 A 2 A 3)+ P( A 1A2 A 3)+P( A 1 A411375(1-p)(1-q)+5p(1-q)+5(1-p)q=125,2A3)=58 b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=125.所以 E(ξ)=0×P(ξ=0)+1× P(ξ=1)+2× P(ξ=2)+93×P( ξ=3) =5.19.解: (1) 由古典概型中的概率计算公式知所求概率为33C4+C3 5P=3= .C849(2) X的所有可能值为1,2,3 ,且21317CC+C454,P( X=1)=3=C42911121343CCC+CC+C342363,P( X=2)=3=C984211C2C7P( X=3)=3=,故 X 的分布列为C129X123P 17431 4284121743147从而 E( X)=1×42+2×84+3×12=28.20.解:(1) 设A表示事件“日销售量不低于100 个”,A表示事12件“日销售量低于50 个”,B表示事件“在未来连续 3 天里有连续 2天日销售量不低于100 个且另一天销售量低于50 个”.因此 P( A1)=++×50=,P( A2)=×50=,P( B)=×××2=.(2)X 可能取的值为0,1,2,3,相应的概率为03P( X=0)=C·(1-=,312P( X=1)=C·(1-=,32-=,P( X=2)=C3·(13P( X=3)=C3·=.分布列为X0123P因为 X~B(3,,所以期望 E( X)=3×=,方差 D( X)=3××(1-=.21. 解:记E={ 甲组研发新产品成功} ,F={ 乙组研发新产品成21 3 2功 } .由题设知 P ( E ) =3,P ( E ) =3,P ( F ) =5,P ( F ) =5,且事件 E 与 F ,E 与 F , E 与 F , E 与 F 都相互独立.(1) 记 H ={ 至少有一种新产品研发成功} ,则 H = E F ,于是1 22P ( H ) =P ( E ) P ( F ) =3×5=15,2 13故所求的概率为 P ( H ) =1-P ( H ) =1-15=15.(2) 设 企 业 可 获 利 润 为 X ( 万 元 ) , 则 X 的 可 能 取 值 为0,100,120,220.1 2 2因 P ( X =0) =P ( E F ) =3×5=15,1 33 P ( X =100) =P ( E F ) =3×5=15,2 24 P ( X =120) =P ( EF ) =3×5=15,2 36P ( X =220) =P ( EF ) =3×5=15,故所求的分布列为X 0 100 120 220P2 3 4 6 151515152346数学期望为 E ( X ) = 0× 15 + 100× 15+ 120× 15 + 220× 15= 300+480+1 320 2 100 =140.15 =1522.解: 记 A i 表示事件:同一工作日乙、丙中恰有 i 人需使用设备, i =0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少 3 人需使用设备.(1)D=A1·B·C+A2· B+A2· B ·C.iP( B)=, P( C)=, P( A i)=C2×, i =0,1,2,所以 P( D)=P( A1·B· C+A2·B+A2· B ·C)=P( A1·B·C)+P( A2·B)+P( A2· B ·C)=P( A1) P( B) P( C)+P( A2) P( B)+P( A2) P( B ) P( C)=.(2)X 的可能取值为0,1,2,3,4,其分布列为P( X=0)=P( B ·A0· C)=P( B ) P( A0) P( C)=(1 -×× (1 -=,P( X=1)=P( B·A0· C+ B ·A0· C+ B ·A1· C)=P( B) P( A0) P( C)+P( B ) P( A0) P( C)+ P( B ) P( A1) P( C)=×× (1 -+ (1 -××+ (1 -× 2×× (1 -=,P( X=4)=P( A2·B·C)=P( A2) P( B) P( C)=××=, P( X=3)=P( D)-P( X=4)=,P( X=2)=1-P( X=0)-P( X=1)-P( X=3)-P( X=4)=1----=,数学期望 E( X)=0×P( X=0)+1×P( X=1)+2×P( X=2)+3×P( X=3) +4×P( X=4)=+ 2×+ 3×+ 4×= 2.。
北师大版选修2-3第二章概率期末复习卷一、单选题1.某工厂有A ,B 两套生产线,每周需要维护的概率分别为0.2和0.25,且每周A ,B 两套生产线是否需要进行维护是相互独立的,则至多有一套生产线需要维护的概率为( ) A .0.95 B .0.6C .0.35D .0.152.若随机变量()5,X B p ,()54D X =,则()E X =( )A .15 B .14C .1516D .523.已知某随机变量ξ服从正态分布N (1,32),则P (27ξ-<<)为( )(附:若随机变量ξ服从正态分布N (μ,2σ),则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)A .87.22%B .13.59%C .27.18%D .81.85%4.已知离散型随机变量12,ζζ的分布列为则下列说法一定正确的是( ) A .()()12E E ζζ> B .()()12E E ζζ< C .()()12D D ζζ>D .()()12D D ζζ<5.在5道题中有3道理科试题和2道文科试题.如果不放回地依次抽2道题,则第一次和第二次都抽到理科题的概率是( ) A .25B .12C .35D .3106.已知随机变量()2~1,X N σ,若()00.6P X ≥=,则()2PX >=( )A .0.2B .0.4C .0.6D .0.8个球,所取的3个球中至少有1个红球的概率为( )A .12125B .16 C .98125D .568.随机变量X 的分布列如下表所示,若()1E X =,则()31D X +=( )A .9B .7C .5D .39.甲乙两个两位同学同时看了天气预报,甲说明天下雨的概率是80%,乙说如果明天下雨则后天下雨的概率是40%,如果甲乙说的都是对的,那么明天和后天都会下雨的概率是( ) A .50%B .40%C .32%D .20%10.某工厂的一台流水线生产质量稳定可靠,已知在正常工作状态下生产线上生产的零件内径尺寸Z (单位:m μ)服从正态分布()60,4N .甲、乙两名同学正进行尺寸测量练习.甲、乙对各自抽取的5个零件测量零件内径尺寸(单位:m μ)如下,甲同学测量数据:59,60,62,63,65;乙同学测量数据:52,53,55,57,62.则可以判断( ) A .甲、乙两个同学测量都正确 B .甲、乙两个同学测量都错误 C .甲同学测量正确,乙同学测量错误D .甲同学测量错误,乙同学测量正确11.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( ) A .甲与丙相互独立 B .甲与丁相互独立 C .乙与丙相互独立D .丙与丁相互独立12.某中学高一年级和高二年级进行篮球比赛,赛制为3局2胜制,若比赛没有平局,且高二队每局获胜的概率都是112p p ⎛⎫<< ⎪⎝⎭,记比赛的最终局数为随机变量X ,则( )A .2(2)P X p ==B .(3)(1)P X p p ==-C .5()2E X < D .1()4D X >二、填空题13.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,若1()3E X =,则234a b c ++=_________.X 1- 0 1p ab c14.根据天文学有关知识,当且仅当一颗恒星的“赤纬”数值大于58-︒,能在扬州的夜空中看到它.下表列出了10颗恒星的“赤纬”数值:星名天狼星老人星南门二大角星织女一五车二参宿七南河三水委一参宿四赤纬16.7-︒ 52.7-︒ 60.8-︒ 19.2︒ 38.8︒ 46︒ 8.2-︒ 5.2︒ 57.2-︒ 7.4︒现有四名学生从这10颗恒星中各随机选择1颗进行观测,其中有X 人能在扬州的夜空中看到观测目标,则X 的数学期望为___________.15.某班为响应校团委发起的“青年大学习”号召组织了有奖知识竞答活动,第一环节是一道必答题,由甲乙两位同学作答,每人答对的概率均为0.7,两人都答对的概率为0.5,则甲答对的前提下乙也答对的概率是________.(用分数表示)16.用X ,Y ,Z 三个不同的元件连接成如图系统,毎个元件是否正常工作相互独立,已知X ,Y ,Z 正常工作的概率均为13,则系统正常工作的概率为___________.三、解答题17.甲、乙两所学校之间进行排球比赛,采用五局三胜制(先赢3局的学校获胜,比赛结束),约定比赛规则如下:先进行男生排球比赛,共比赛两局,后进行女生排球比赛.按照以往比赛经验,在男生排球此赛中,每局甲校获胜的概率为23,乙校获胜的概率为13,在女生排球比赛中,每局甲校获胜的概率为13,乙校获胜的概率为23.每局比赛结果相互独立.(1)求甲校以3:1获胜的概率;(2)记比赛结束时女生比赛的局数为ξ,求ξ的概率分布.18.为促进物资流通,改善出行条件,驻某县扶贫工作组引入资金新建了一条从该县到市区的快速道路.该县脱贫后,工作组为了解该快速道路的交通通行状况,调查了行经该道路的各种类别的机动车共1000辆,对行车速度进行统计后,得到如图所示的频率分布直方图:(1)试根据频率分布直方图,求样本中的这1000辆机动车的平均车速(同一组中的数据用该组区间的中点值代替);(2)设该公路上机动车的行车速度v 服从正态分布()2,N μσ,其中μ,2σ分别取自该调查样本中机动车的平均车速和车速的方差2s (经计算2210.25s =).(i )请估计该公路上10000辆机动车中车速不低于85千米/时的车辆数(精确到个位): (ii )现从经过该公路的机动车中随机抽取10辆,设车速低于85千米/时的车辆数为X ,求X 的数学期望.附注:若()2~,N ξμσ,则()0.6827P μσξμσ-<≤+=,()220.9545P μσξμσ-<≤+=,()330.9973P μσξμσ-<≤+=.参考数据:229841=.19.2020年是全面建成小康社会之年,是脱贫攻坚收官之年.莲花村是乡扶贫办的科学养鱼示范村,为了调查该村科技扶贫成果,乡扶贫办调查组从该村的养鱼塘内随机捕捞两次,上午进行第一次捕捞,捕捞到60条鱼,共105kg ,称重后计算得出这60条鱼质量(单位kg )的平方和为200.41,下午进行第二次捕捞,捕捞到40条鱼,共66kg .称重后计算得出这40条鱼质量(单位kg )的平方和为117.(1)请根据以上信息,求所捕捞100条鱼质量的平均数z 和方差2s ; (2)根据以往经验,可以认为该鱼塘鱼质量X 服从正态分布()2,N μδ,用z 作为μ的估计值,用2s 作为2δ的估计值.随机从该鱼糖捕捞一条鱼,其质量在[]1.21,3.21的概率是多少?(3)某批发商从该村鱼塘购买了1000条鱼,若从该鱼塘随机捕捞,记ξ为捕捞的鱼的质量在[]1,21,3.21的条数,利用(2)的结果,求ξ的数学期望.附:(1)数据1t ,2t ,…n t 的方差()22221111n n i i i i s t tt nt n n ==⎛⎫=-=- ⎪⎝⎭∑∑, (2)若随机变量X 服从正态分布()2,N μδ,则()0.6827P X μδμδ-≤≤+=;()22P X μδμδ-≤≤+0.9545=;()330.9973P X μδμδ-≤≤+=.20.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由. 21.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X 近似地服从正态分布()218,140N ,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率.22.某学校高一年级进行班级之间的中国历史知识竞赛活动,甲、乙两位同学代表各自班级以抢答的形式展开,共五道题,抢到并回答正确者得一分,答错则对方得一分,先得三分者获胜.每一次抢题甲、乙两人抢到每道题的概率都是12,甲、乙正确回答每道题的概率分别为35,45,且两人各道题是否回答正确均相互独立. (1)比赛开始,求甲先得一分的概率; (2)求甲获胜的概率;(3)问:若将题干中的抢答五道题改为抢答三道题,先得两分者获胜,其余条件不变,则对甲更有利还是更不利?请说明理由.参考答案1.A 【分析】由相互独立事件概率计算公式可得结果. 【详解】由题可得至多有一套生产线需要维护的概率0.20.750.80.250.750.80.95P =⨯+⨯+⨯=. 故选:A. 2.D 【分析】根据二项分布的期望与方程的计算公式,由题中条件,列出方程,即可求出结果. 【详解】 因为()5,XB p ,()54D X =,则()()5514D X p p =-=,解得12p =,所以()552E X p ==. 故选:D. 3.D 【分析】由P (27ξ-<<)(2)P =-<<+,结合所给条件,即可得解.【详解】因为p (-2<ξ<4) ()68.26%P =-<<+=μσξμσ, p (-5<ξ<7)= (22)95.44%P μσξμσ-<<+=, 所以p (-2<ξ<7)=68.26%+12(95.44%-68.26%)=81.85%, 故选:D. 4.D 【分析】利用公式计算出两个随机变量的期望和方程后可得正确的选项. 【详解】()()1216512453,344E E ζζ+++++====,故()()12E E ζζ=, ()()2222222121325124592,9 2.544D E ζζ+⨯++++=-==-=,()()12D D ζζ<,故选:D. 5.D 【分析】根据题意,设A 事件为第一次抽到理科试题,B 事件为第二次抽到理科试题,进而()()()3135210P AB P A P B ==⨯=.【详解】设A 事件为第一次抽到理科试题,B 事件为第二次抽到理科试题, 所以第一次和第二次都抽到理科题的概率是()()()3135210P AB P A P B ==⨯=. 故选:D. 6.B 【分析】利用正态密度曲线的对称性可得出()()()2010P X P X P X >=<=-≥,即可得解. 【详解】因为随机变量()2~1,X N σ,则()()()20100.4P X P X P X >=<=-≥=.故选:B. 7.D 【分析】根据题意,该问题符合超几何分布,利用超几何分布概率公式计算所取的3个球中没有1个红球的概率,进而可得答案. 【详解】根据题意,该问题符合超几何分布,其基本事件总数为310C , 其中所取的3个球中没有1个红球的基本事件为36C ,所求概率为36310C 1511C 66-=-=.故选:D. 8.C 【分析】利用离散型随机变量的分布列、数学期望的性质,列出方程组,求出a ,b ,由此能求出方差,再根据方差的性质计算可得. 【详解】解:依题意可得1161110163a b a b ⎧++=⎪⎪⎨⎪-⨯+⨯+⨯=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩,所以()22211111151013633329D X ⎛⎫⎛⎫⎛⎫=--⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()()25313959D X D X +==⨯= 故选:C 9.C 【分析】根据条件概率的概率公式计算可得; 【详解】解:记明天下雨为事件A ,后天下雨为事件B ,依题意可得()80%P A =,()|40%P B A =,所以()()()|80%40%32%P AB P B A P A =⋅=⨯= 故选:C 10.C 【分析】根据3σ原则可确定()54660.9974P Z <<=,可知甲同学测量数据正确,乙同学测量数据中发生了小概率事件,可认为其测量数据错误. 【详解】()60,4ZN ,()330.9974P Z μσμσ∴-<<+=,即()54660.9974P Z <<=;甲同学测量的数据均落在()54,66之间,测量数据正确;乙同学测量的数据中有两个数据落在()54,66之外,即小概率事件发生,知其测量错误. 故选:C. 11.B 【分析】根据独立事件概率关系逐一判断 【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁, ,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B 【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立 12.C 【分析】根据实际意义得2X =或3.求得概率后判断AB ,由期望公式计算出期望可判断C ,由均值求出方差可判断D . 【详解】赛制为3局2胜制,比赛没有平局,因此随机变量X 的可能值为2或3,222(2)(1)221P X p p p p ==+-=-+,A 错;222(3)(1)(1)(1)(1)(1)22P X p p p p p p p p p p p p ==-+-+-+--=-+,B 错;222215()2(221)3(22)2222()22E X p p p p p p p =-++-+=-++=--+,因为112p <<,所以5()(2,)2E X ∈,C 正确; 记2222p p t -++=,5(2,)2t ∈,2222()4(221)9(22)1010456E X p p p p p p t =⨯-++⨯-+=-++=-,222251()()()56()24D XE X E X t t t =-=--=--+,因为5(2,)2t ∈,所以1()4D X <,D 错. 故选:C . 【点睛】结论点睛:本题考查随机变量的概率分布列与数学期望、方差等概念.随机变量的期望与方差之间有关系:[]22()()()D X E X E X =-.13.103【分析】利用离散型随机变量的分布列、数学期望的性质、等差数列性质,列出方程组,求出a ,b ,c ,即得解.【详解】 由题意知:1213a b c b a c a c ⎧⎪++=⎪=+⎨⎪⎪-+=⎩, 解得16a =,13b =,12c =, 所以111102342+3+4=6323a b c ++=⨯⨯⨯.故答案为:103【点睛】关键点睛:解答本题的关键是根据已知列出关于,,a b c 的方程组. 14.3.6 【分析】利用二项分布可求数学期望. 【详解】大于58-︒的有9个,小于58-︒的有1个 在扬州能看到的概率为910,9~4,10X B ⎛⎫⎪⎝⎭,()94 3.610E X =⨯=.故答案为:3.6. 15.57【分析】记事件A:甲答对,事件B:乙答对,分别求出()()P A P AB ,,利用条件概率公式直接求解. 【详解】记事件A:甲答对,事件B:乙答对, 则有:()()()0.7,0.5PA PB P AB ===,所以()()()0.550.77P AB P B A P A ===. 故答案为:5716.527【分析】系统正常工作的情况是X 正常工作,同时,Y Z 中至少一个能正常工作,由此利用相互独立事件概率乘法公式和对立事件概率计算公式能求出系统正常工作的概率. 【详解】系统正常工作的情况是X 正常工作,同时,Y Z 中至少一个能正常工作,因为X ,Y ,Z 正常工作的概率均为13, 所以系统正常工作的概率为:2115[1(1)]3327P =--=,故答案为:527. 【点睛】关键点点睛:该题考查的是有关概率的求法,正确解题的关键是用好相互独立事件概率乘法公式和对立事件概率计算公式等基础知识. 17.(1)427;(2)分布列答案见解析. 【分析】(1)根据相互独立事件概率乘法公式计算出所求概率.(2)根据相互独立事件概率乘法公式计算出所求分布列. 【详解】(1)甲校以3:1获胜,则甲校在第四局获胜,前三局胜两局,2122111221484C 3333333818127P ⎛⎫=⋅⋅⋅⋅+⨯⨯=+=⎪⎝⎭. (2)ξ的所有可能取值为1,2,3,()2221122133339P ξ⎛⎫⎛⎫==⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,()2124122211210227333333327P C ξ⎛⎫⎛⎫==+⋅⋅⋅⋅+⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭, ()4101131272727P ξ==--=, 故ξ的概率分布为:18.(1)70.5千米/时;(2)(i )1587辆,(ii )()8.4135E X =. 【分析】(1)利用频率直方图,确定各组中点值i a ,由6110()i ii v a f ==∑即可求平均车速.(2)由题设易知(70.5,210.25)vN ,(i )(85)()P v P v μσ≥=≥+,结合所提供的三段区间概率值求概率,进而求10000辆机动车中车速不低于85千米/时的车辆数. (ii )由(i )知车速低于85千米/时的概率,则(10,0.84135),X B 利用二项分布的期望公式即可求期望. 【详解】 (1)由图知:(450.01550.015650.02750.03850.015950.01)1070.5v =⨯+⨯+⨯+⨯+⨯+⨯⨯=千米/时.∴这1000辆机动车的平均车速为70.5千米/时. (2)由(1)及题设知:(70.5,210.25)vN ,则70.5,14.5μσ==,(i )1()(85)()0.158652P v P v P v μσμσμσ--≤≤+≥=≥+==,∴10000辆机动车中车速不低于85千米/时的车辆数100000.158651587⨯≈辆. (ii )由(2)知:车速低于85千米/时的概率为10.158650.84135P =-=,故(10,0.84135),X B∴()100.841358.4135E X =⨯=.19.(1) 1.71z =,20.25s =;(2)0.84;(3)840. 【分析】(1)根据题目中的数据先求出平均数,再结合给出的方差公式()22211n i i s t nt n =⎛⎫=- ⎪⎝⎭∑可求得方差.(2)根据题意可得()~ 1.71,0.25X N ,则()()1.21 3.213P X P X μδμδ≤≤=-≤≤+,根据题目给出的数据,结合正态分布曲线的性质可得答案.(3) 由(2)可得鱼的质量在[]1,21,3.21的概率为0.84,则()~1000,0.84B ξ,由二项分布的数学期望公式可得答案. 【详解】 解:(1)105661.716040z +==+,22200.41117 1.710.25100s +=-=.(2)该鱼塘鱼质量满足()2~,X N μδ,其中 1.71μ=,20.25δ=,即()~ 1.71,0.25X N则()0.682702P X μδ-≤≤=,()0.9973032P X μδ≤≤+=∴()()1.21 3.213P X P X μδμδ≤≤=-≤≤+.()()0.68270.99730030.842P X P X μδμδ+=-≤≤+<≤+==(3)由(2)可得鱼的质量在[]1,21,3.21的概率为0.84. 由题意可知()~1000,0.84B ξ,由二项分布的数学期望公式可得,ξ的数学期望为()10000.84840Eξ=⨯=.20.(1)见解析;(2)B类.【分析】(1)通过题意分析出小明累计得分X的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X的所有可能取值为0,20,100.()010.80.2P X==-=;()()200.810.60.32P X==-=;()1000.80.60.48P X==⨯=.所以X的分布列为(2)由(1)知,()00.2200.321000.4854.4E X=⨯+⨯+⨯=.若小明先回答B问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100.()010.60.4P Y==-=;()()800.610.80.12P Y==-=;()1000.80.60.48P X==⨯=.所以()00.4800.121000.4857.6E Y=⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B类问题.21.(1)不能;17.6;(2)37.【分析】(1)利用直方图求得一、二等品所占比例的和,比较即可判定结论;利用各组的中间值乘以相应频率,求和即得活动前质量指标值的均值的估计值,利用正态分布求得“质量提升月”活动后该企业生产的这种产品的质量指标值的均值,作差即得所求;(2)先求得一、二、三等品的频率分别,得到分层抽样的方法抽取8件,一、二、三等品的件数,再考虑从这8件中随机抽取4件,抽取的4件产品中,一、二、三等品都有的情况,利用先分类后分步的思想,利用组合计数求得相应事件的方法种数,即可得所求概率.【详解】解:(1)根据抽样调查数据可知:一、二等品所占比例的估值0.2000.3000.2600.0900.025=++++0.8750.92=<,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定.“质量提升月”活动前该企业生产的这种产品的质量指标值的均值约为:1700.0251800.11900.2⨯+⨯+⨯2000.32100.262200.092300.025200.4+⨯+⨯+⨯+⨯=.“质量提升月”活动后该企业生产的这种产品的质量指标值X近似地服从正态分布()218,140N,则()218E X=.∴“质量提升月”活动后的质量指标值的均值比活动前大约提升了218200.417.6=-=.(2)由频率分布直方图可知:一、二、三等品的频率分别为:0.375,0.5,0.125.故在样本中,按产品等级用分层抽样的方法抽取8件,一、二、三等品的件数分别为:3,4,1.再从这8件中随机抽取4件,抽取的4件产品中,一、二、三等品都有的情况有2种:①一、二、三等品的件数分别为:2,1,1.②一、二、三等品的件数分别为:1,2,1.故所求概率2111213413414837C C C C C CPC+==.22.(1)25;(2)9923125;(3)对甲更有利,理由见解析.【分析】(1)记甲得一分为事件M.M发生有两种可能:抢到题且答对,乙抢到题且答错,从而求得概率.(2)由(1)知,在每道题的抢答中甲、乙得一分的概率分别为25,35,设两人共抢答了X道题比赛结束,且甲获胜.根据比赛规则,X的所有可能取值分别为3,4,5,分别计算出(3)P X=,(4)P X=,(5)P X=,相加即甲获胜的概率.(3)先求得改变规则后甲获胜的概率,然后与(2)中的概率比较即可.【详解】解:(1)每道题的抢答中,记甲得一分为事件M .M 发生有两种可能:抢到题且答对,乙抢到题且答错,∴13112()25255P M =⨯+⨯=, ∴比赛开始,甲率先得一分的概率为25. (2)由(1)知,在每道题的抢答中甲、乙得一分的概率分别为25,35, 设两人共抢答了X 道题比赛结束,且甲获胜. 根据比赛规则,X 的所有可能取值分别为3,4,5,则328(3)5125P X ⎛⎫=== ⎪⎝⎭,3133272(4)C 55625P X ⎛⎫⎛⎫===⎪⎪⎝⎭⎝⎭, 232432432(5)C 553125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 则甲获胜的概率992(3)(4)(5)3125P P X P X P X ==+=+==. (3)由(1)(2)知改变规则后甲获胜的概率22112232441100(2)(3)C 5551253125P P X P X ⎛⎫⎛⎫⎛⎫==+==+== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 而110099231253125>, 即1P P >此时甲获胜的概率更大了,对甲更有利. 【点睛】关键点点睛:根据竞赛规则,分别把每种规则下对应的甲得分情况分清楚,然后计算获胜概率即可.。
选修2-3第二章概率单元质量检测(一)时间:120分钟 总分:150分 第Ⅰ卷(选择题,共60分)1.若随机变量ξ的分布列如下表所示,则p 1等于( )A.0B.215C.115 D .12.已知离散型随机变量ξ等可能取值1,2,3,…,n ,若P (1≤ξ≤3)=15,则n 的值为( )A .3B .5C .10D .153.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332D.3644.两人同时向一敌机射击,甲的命中率为15,乙的命中率为14,则两人中恰有一人击中敌机的概率为( )A.720B.1220C.121D.2205.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为( )A.49B.29C.427D.227 6.若随机变量ξ的分布列为,其中m ∈(0,1) ) A .E (ξ)=m ,D (ξ)=n 3 B .E (ξ)=n ,D (ξ)=n 2 C .E (ξ)=1-m ,D (ξ)=m -m 2 D .E (ξ)=1-m ,D (ξ)=m 2 7.如图所示是当ξ取三个不同值ξ1,ξ2,ξ3的三种正态曲线N (0,σ2)的图象,那么σ1,σ2,σ3的大小关系是( )A .σ1>1>σ2>σ3>0B .0<σ1<σ2<1<σ3C .σ1>σ2>1>σ3>0D .0<σ1<σ2=1<σ38.设一随机试验的结果只有A 和A ,P (A )=p ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 出现,0,A 不出现,则ξ的方差为( ) A .p B .2p (1-p ) C .-p (1-p ) D .p (1-p ) 9.盒子中有10个大小相同的球,其中只有2个是红球,甲、乙两位同学各取一个不放回,已知甲先取出一个红球,则乙再取到红球的概率为( )A.15B.110C.19 D .010.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)等于( )A.34B.25C.23D.3511.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为( )A .(90,100]B .(95,125]C .(100,120]D .(105,115]12.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A,3个球标有字母B ,第二个盒子中有红球和白球各5个,第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A 的球,则在第二号盒子中任取一个球;若第一次取得标有字母B 的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为( )A .0.59B .0.54C .0.8D .0.15第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知随机变量ξ~B (5,13),随机变量η=2ξ-1,则E (η)=________.14.已知A 、B 、C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (A B )=________.15.设离散型随机变量X ~N (0,1),则P (X ≤0)=________;P (-2<X <2)=________.16.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动.(1)求男生甲或女生乙被选中的概率;(2)设A =“男生甲被选中”,B =“女生乙被选中”,求P (B )和P (B |A ).18.(12分)某中学学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列; (2)求第二次训练时恰好取到一个新球的概率.19.(12分)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率; (2)假设这名射手射击5次,求有3次连续击中目标,另外2次没有击中目标的概率.20.(12分)为了某项大型活动能够安全进行,警方从武警训练基地挑选防爆警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选,假定某基地有4名武警战士(分别记为A 、B 、C 、D )拟参加挑选,且每人能通过体能、射击、反应的概率分别为23,23,12.这三项测试能否通过相互之间没有影响.(1)求A 能够入选的概率;(2)规定:按入选人数得训练经费(每入选1人,则相应的训练基地得到3 000元的训练经费),求该基地得到训练经费的分布列与数学期望.21.(12分)2010年上海世博会大力倡导绿色出行,并提出在世博园区参观时可以通过植树的方式来抵消因出行产生的碳排放量.某游客计划在游园期间种植n 棵树,已知每棵树是否成活互不影响,成活率都为p (0<p <1),用X 表示他所种植的树中成活的棵数,X 的数学期望为E (X ),方差为D (X ).(1)若n =1,求D (X )的最大值;(2)已知E (X )=3,标准差D (X )=32,试求n 与p 的值,并写出X 的分布列.22.(12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求:(1)恰好打满2局比赛就停止的概率;(2)比赛停止时已打局数ξ的分布列与数学期望E (ξ).答案1.B2.D 由于ξ等可能取值1,2,3,…,n ,∵P (1≤ξ≤3)=P (ξ=1)+P (ξ=2)+P (ξ=3)=1n +1n +1n =3n =15,∴n =15.3.D P =38×8=364.4.A 所求事件的概率为15×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-15×14=320+420=720.5.A 连续测试3次,其中恰有1次通过的概率为P =C 13(13)1(1-13)2=49.6.C ∵m +n =1,∴E (ξ)=n =1-m ,D (ξ)=m (0-n )2+n (1-n )2=m -m 2.7.D 当μ=0,σ=1时,正态曲线f (x )=12π·e -x 22.在x =0时,取最大值12π,故σ2=1.由正态曲线的性质,当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”;σ 越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.8.D ξ服从二点分布,即特殊的二项分布N (1,p ),由二项分布的方差公式得D (ξ)=p (1-p ).9.C 甲、乙两位同学各取一个不放回,甲先取一个是红球,包含的基本事件数为2×9=18,甲先取出一个红球,乙再取到红球包含的基本事件数为2×1=2,故所求概率为218=19.10.B 设P (ξ=1)=x 1,P (ξ=2)=x 2,则 ⎩⎨⎧x 1+x 2+15=1x 1+2x 2=1,∴⎩⎪⎨⎪⎧x 1=35x 2=15.D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.11.C ∵X ~N (110,52),∴μ=110,σ=5,∵5760=0.95≈P (μ-2σ<X <μ+2σ)=P (100<X ≤120),∴选C. 12.A 试验成功包括两类:①从第一个盒子中取标有字母A 的球,从第二个盒子中取一个红球;②从第一个盒子中取标有字母B 的球,从第三个盒子中取一个红球.故试验成功的概率为710×510+310×810=0.59.13.73解析:E (ξ)=53,E (η)=2E (ξ)-1=73. 14.13解析:依题意得⎩⎪⎨⎪⎧P (A )·P (B )=16,(1-P (B ))·P (C )=18,P (A )·P (B )·(1-P (C ))=18,解得P (A )=13,P (B )=12.∴P (A B )=23×12=13.15.12 0.954解析:正态曲线的对称轴为x =0, ∴P (X ≤0)=P (X >0)=12;P (-2<X <2)=P (μ-2σ<X <μ+2σ)=0.954. 16.23解析:ξ所有可能的取值为0,1,2,P (ξ=0)=2×23×3=49,P (ξ=1)=C 12×C 123×3=49,P (ξ=2)=13×3=19,故E (ξ)=0×49+1×49+2×19=23. 17.解:(1)设C =“甲、乙都不被选中”,则 P (C )=C 34C 36=420=15;所以所求概率为P (C )=1-P (C )=1-15=45.(2)P (B )=C 25C 36=1020=12,P (A )=C 25C 36=1020=12.P (A ∩B )=C 14C 36=420=15.P (B |A )=P (A ∩B )P (A )=1512=25.18.解:(1)ξ的所有可能取值为0,1,2,设“第一次训练时取到i 个新球(即ξ=i )”为事件A i (i =0,1,2). 因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以P (A 0)=P (ξ=0)=C 23C 26=15;P (A 1)=P (ξ=1)=C 13C 13C 26=35;P (A 2)=P (ξ=2)=C 23C 26=15,所以ξ的分布列为(2)设“从6B ,则“第二次训练时恰好取到一个新球”就是事件A 0B +A 1B +A 2B ,而事件A 0B 、A 1B 、A 2B 互斥, 所以P (A 0B +A 1B +A 2B )=P (A 0B )+P (A 1B )+P (A 2B )=15×C 13C 13C 26+35×C 12C 14C 26+15×C 15C 26=3875.即第二次训练时恰好取到一个新球的概率为3875.19.解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23, 在5次射击中,恰有2次击中目标的概率为 P (X =2)=C 25×⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-233=40243.(2)设A i =“第i 次射击击中目标”,i =1,2,3,4,5,A =“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”,则P (A )=P (A 1A 2A 3A 4A 5)+(A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. 20.解:(1)设A 通过体能、射击、反应分别记为事件M 、N 、P ,则A 能够入选包含以下几个互斥事件:MN P ,M N P ,M NP ,MNP .∴P (A )=P (MN P )+P (M N P )+P (M NP )+P (MNP )=23×23×12+23×13×12+13×23×12+23×23×12=1218=23.所以,A 能够入选的概率为23.(2)记ξ表示该训练基地得到的训练经费,则ξ的所有可能值为0,3 000,6 000,9 000,12 000.由(1)知,每个人入选的概率都为23,则 P (ξ=0)=⎝ ⎛⎭⎪⎫1-234=181,P (ξ=3 000)=C 14⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫133=881, P (ξ=6 000)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827,P (ξ=9 000)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫13=3281,P (ξ=12 000)=C 44⎝ ⎛⎭⎪⎫234=1681, ξ的分布列为E (ξ)=3 000×881+6 000×827+9 000×3281+12 000×1681=8 000, 所以,该基地得到训练经费的数学期望为8 000元.21.解:(1)当n =1时,随机变量满足二点分布, D (X )=p (1-p )=-⎝ ⎛⎭⎪⎫p -122+14,即当p =12时,D (X )有最大值14. (2)∵X ~B (n ,p ),∴E (X )=np ,D (X )=np (1-p ),即np =3,np (1-p )=32,解得,n =4,p =34, 所以P (X =k )=C k 4⎝ ⎛⎭⎪⎫34k ·⎝ ⎛⎭⎪⎫144-k,k =0,1,2,3,4, 即X 的分布列为22.解:令k k k 们都是相互独立的.(1)恰好打满2局比赛就停止的概率 P (A 1A 2)+P (B 1B 2)=122+122=12. (2)ξ的所有可能值为2,3,4,5,6, 由(1)有P (ξ=2)=12,P (ξ=3)=P (A 1C 2C 3)+P (B 1C 2C 3)=123+123=14. P (ξ=4)=P (A 1C 2B 3B 4)+P (B 1C 2A 3A 4) =124+124=18.P (ξ=5)=P (A 1C 2B 3A 4A 5)+P (B 1C 2A 3B 4B 5) =125+125=116,P (ξ=6)=P (A 1C 2B 3A 4C 5)+P (B 1C 2A 3B 4C 5)=125+125=116, 故有分布列为从而E (ξ)=2×12+3×14+4×18+5×116+6×116=4716(局).。
第二章概率§2、1、1离散型随机变量一、预习检测1、一个口袋装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸出一个球,得到白球”这个现象是()A、必然现象B、随机现象C、不可能发生D、不能确定是哪种现象2、以下四个随机变量中,是离散型随机变量的是()⑴某电话亭内的一部电话使用的次数X;⑵黄河某水位监测站所测水位记为X;⑶一个数轴上随机运动的质点,它在数轴上的位置X⑷某人射击一次,击中目标的环数记为X;A、⑴⑵⑷ B ⑶⑷ C ⑴⑷ D ⑴⑶3、下列随机变量中不是离散型随机变量的是()A、从n只编号(0号到n-1号)的球中任取一只,被抽出的球的号码X;B、量一批电阻的阻值在950欧~1050欧之间;C、掷5枚硬币,正面向上的硬币个数;D、电信局在某日内接到电话呼叫次数;4、6件产品在有2件次品,从中任取一件,则下列是随机变量的是()A、取到产品的个数B、取到正的品个数C、取到正品的概率D、取到次品的概率5、如果随机变量X的所有可能的则称X为离散型随机变量。
6、下列描述正确的是⑴用随机变量所表示的随机试验的结果一定是一个数;⑵用随机变量的取值只能有有限个⑶随机变量的取值只能是自然数⑷随机变量的取值可以是全体实数7、下列随机试验结果可以用离散型随机变量表示的是⑴某篮球运动员在某场比赛中的得分⑵某中学学生的体重⑶一名同学的高考分数8、50件产品中有3件次品,从中任取3件,次品件数的取值集合是二、双基落实1、抛掷的均匀硬币一次,随机变量为()A、出现正面的次数B、出现正面或反面的次数C、掷硬币的次数D、出现正反面次数之和2、如果抛掷2颗骰子,所得点数之和记为X,那么X=4表示的随机实验结果是()A、两颗都是4点B、1颗是1点,另一颗是3点C、两颗都是2点D、1颗是1点,另一颗是3点或2颗都是2点3、一个代中装有5个白球和3个红球,从中任取3个,则随机变量为()A、所取球的个数B、其中含白球的个数C、所取白球和红球的总数D、袋中球的总数4、将一颗均匀骰子掷两次,随机变量为()A、第一次出现的点数B、第二次出现的点数C、两次出现点数之和D、两次出现相同点的种数5、某人投篮4次,投中次数记为X,则X所有可能取值是6、从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数。
选修2-3第二章概率综合练习(一)一.选择题:1.下列说法不正确的是( )A .某辆汽车一年中发生事故的次数是一个离散型随机变量B .正态分布随机变量等于一个特定实数的概率为0C .公式EX =np 可以用来计算离散型随机变量的均值D .从一副扑克牌中随机抽取5张,其中梅花的张数服从超几何分布 2.设随机变量的ξ的分布列为P (ξ=k )=nk(k =1, 2, 3, 4, 5, 6),则P (1.5<ξ<3.5)=( ) A .215 B .214 C .212 D .2113. 甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为( ).A .0.8B .0.65C .0.15D .0.5 4. 已知离散型随机变量ξ的概率分布如右:则其数学期望E ξ等于( ).A .1B .0.6C .m 32+D .2.45. 设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是( )A .E ξ=0.1B .D ξ=0.1C .P (ξ=k )=0.01k ·0.9910-k D .P (ξ=k )=C k10·0.99k ·0.0110-k 6.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设ξ为取出的次数,求P (ξ=4)=( ).A .4528 B .4514 C .151 D .1547. 一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4 8. 某家具制造商购买的每10块板中平均有1块是不能用于做家具的,一组5块这样的板中有3块或4块可用的概率约为( )A .0.40B .0.3C .0.07D .0.29.已知X ~N (-1,2σ),若P (-3≤X ≤-1)=0.4,则P (-3≤X ≤1)=( )A .0.4B .0.8C .0.6D .无法计算10. 一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( )A .C 1012(83)10·(85)2 B .C 911(83)9(85)2·83 C .C 911(85)9·(83)2 D .C 911(83)9·(85)2 11.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D ξ等于( )A .0.2B .0.8C .0.196D .0.804 12.在同样条件下,用甲乙两种方法测量某零件长度(单位mm ),由大量结果得到分布列如下: 甲乙则( )A .甲测量方法比乙好B .乙测量方法比甲好C .甲乙相当D .不能比较二、填空题:13.一批产品中,有10件正品和5件次品,现对产品逐个进行检测,如果已检测到前3次均为正品,则第4次检测的产品仍为正品的概率是___ __. 14.正态总体的概率密度函数f (x )=2)3(221--x eπ,x ∈R 的图象关于直线 对称;f (x )的最大值为 .15.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤7)= .16.一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有1个是正确答案.每题选择正确得2分,不选或错选得0分,满分是100分.学生甲选对任一题的概率为0.8,他在这次测试中成绩的期望为 ,标准差为 . 三、解答题:17.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人. (1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.18.把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求ξ的分布列.19.某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的车辆,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为0.1,0.2,0.4,且各车是否发生事故相互独立。
数学选修2-3复习题数学选修2-3通常涵盖了概率论、统计学、线性代数等数学分支的基础知识。
以下是一些复习题,帮助学生巩固和复习这些知识点:一、概率论基础1. 抛掷一枚均匀硬币,求正面朝上的概率。
2. 一个袋子里有5个红球和3个蓝球,随机抽取两个球,求至少有一个红球的概率。
3. 描述什么是互斥事件,并给出两个互斥事件的例子。
4. 假设一个事件A的概率是0.3,事件B的概率是0.5,如果A和B是互斥的,求A和B同时不发生的概率。
二、统计学基础1. 给出一组数据:2, 4, 6, 8, 10,计算这组数据的平均值、中位数和众数。
2. 描述什么是标准差,并解释它在数据分析中的作用。
3. 给出一个正态分布的数据集,求其均值和标准差。
4. 解释什么是相关系数,并说明它如何反映两个变量之间的线性关系。
三、线性代数基础1. 解释什么是向量,并给出一个二维向量的例子。
2. 给出两个向量\[ \vec{a} = (3, 2) \]和\[ \vec{b} = (-1, 4) \],计算它们的点积。
3. 解释什么是矩阵,并给出一个2x2矩阵的例子。
4. 给出两个矩阵A和B,如果A是2x3矩阵,B是3x2矩阵,计算它们的乘积AB。
四、综合应用题1. 一个班级有30名学生,其中15名男生和15名女生。
如果随机选择4名学生组成一个小组,求小组中至少有2名女生的概率。
2. 一家公司对员工的满意度进行了调查,得到了以下数据:非常满意(5分)有10人,满意(4分)有20人,一般(3分)有15人,不满意(2分)有5人。
计算员工满意度的平均分和标准差。
3. 一个三维空间中的向量\[ \vec{v} = (1, 2, 3) \],求它的模长。
4. 给定一个线性方程组:\[\begin{align*}x + 2y - z &= 4, \\3x - y + 2z &= 1, \\2x + y + z &= 6,\end{align*}\]使用矩阵方法求解这个方程组。
概率复习
1.A 、B 、C 、D 、E 五人排一个5天的值日表,每天由一人值日,每人可以值多天或不值,但相邻的两天不
能由同一人值,那么值日表的排法种数为 ( )
A .120
B .324
C .720
D .1 280
2.在(1+x +x 2)(1-x)10的展开式中,含x 4
项的系数是 ( )
A .135
B .-135
C .375
D .-117
3.(2010·安顺模拟)某班级要从5名男生、3名女生中选派4人参加某次社区服务,如果要求至少有一名
女生,那么选派的4人中恰好有2名女生的概率为 ( )
A.27
B.49
C.511
D.613
4.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的
火炬手的编号能组成以3为公差的等差数列的概率为 ( )
A.151
B.168
C.1306
D.1408 5.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加.当甲乙同
时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为
( )
A .360
B .520
C .600
D .720
6.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两
个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是
A.5
B.9
C.10
D.25
7.(2010·烟台模拟)若(ax 2-1x
)9的展开式中常数项为84,则a =__________,其展开式中二项式系数之和为________.(用数字作答)
8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若
取出的4个球的数字之和为10,则不同的排法种数是________.
9.一个口袋里有2个红球和4个黄球,从中随机地连取3个球,每次取一个,记事件A 为“恰有一个红
球”,事件B 为“第3个是红球”.
求:(1)不放回时,事件A 、B 的概率;
(2)每次抽后放回时,A 、B 的概率.
10. 一只盒子装有4只乒乓球,其中3只一等品,1只二等品,从中取产品两次,每次任取一只,作不放
回抽样。
设事件A 为“第一次取到的是一等品”, 事件B 为“第二次取到的是一等品”,试求条件概率
()P B A 。
11.从混有5张假钞的20张50元钞票中任意抽取2张,将其中1张放在验钞机上检验,发现是假钞,求两张都是假钞的概率。
12.从一付不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第一次抽到A,求第二次也抽到A的概率。
13.n张彩票中有一个中奖票.
①已知前面1
K 个人没摸到中奖票,求第K个人摸到的概率;
②求第K个人摸到的概率.
14.盒中有红球5个,蓝球11个,红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球,现从中任取一球,假设每个球摸到的可能性相同.若已知取到的球是玻璃球,问它是蓝球的概率是多少?
15.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率.
16.甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率.
17.袋中装有8只红球 , 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.
(1)取出的两只球都是红球;
(2)取出的两只球都是黑球;
(3)取出的两只球一只是红球,一只是黑球;
(4)第二次取出的是红球.。