高一数学必修一教案 函数-指数(根式)
- 格式:doc
- 大小:177.50 KB
- 文档页数:4
高一数学教案:《指数》教学设计高一数学教案:《指数》教学设计教学目标1.理解分数指数的概念,把握有理指数幂的运算性质.(1) 理解n次方根,n次根式的概念及其性质,能依据性质进行相应的根式计算.(2) 能熟悉到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化.(3) 能利用有理指数运算性质简化根式运算.2.通过指数范围的扩大,使同学能理解运算的本质,熟悉到学问之间的联系和转化,熟悉到符号化思想的重要性,在抽象的符号或字母的运算中提高运算力量.3.通过对根式与分数指数幂的关系的熟悉,使同学能学会透过表面去认清事物的本质.教学建议教材分析(1)本节的教学重点是分数指数幂的概念及其运算性质.教学难点是根式的概念和分数指数幂的概念.(2)由于分数指数幂的概念是借助次方根给出的,而次根式,次方根又是同学刚刚接触到的概念,也是比较生疏的.以此为基础去学习熟悉新学问自然是比较困难的.且次方根,分数指数幂的定义都是用抽象字母和符号的形式给出的,同学在接受理解上也是比较困难的.基于以上缘由,根式和分数指数幂的概念成为本节应突破的难点.(3)学习本节主要目的是将指数从整数指数推广到有理数指数,为指数函数的讨论作好预备.且有理指数幂具备的运算性质还可以推广到无理指数幂,也就是说在运算上已将指数范围推广到了实数范围,为对数运算的出现作好了预备,而使这些成为可能的就是分数指数幂的引入.教法建议(1)根式概念的引入是本节教学的关键.为了让同学感到根式的学习是很自然也很必要的,不妨在设计时可以考虑以下几点:①先以详细数字为例,复习正整数幂,介绍各部分的名称及运算的本质是乘方,让它与同学熟识的运算联系起来,树立起转化的观点.②当复习负指数幂时,由于与乘除共同有关,所以出现了分式,这样为分数指数幂的运算与根式相关作好预备.2.5指数(板书)1. 关于整数指数幂的复习(1)概念既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数指数幂的运算性质.可以找一个同学说出相应的运算性质,老师用投影仪依次打出:(2)运算性质 ; ; .复习后挺直提出新课题,今日在此基础上把指数从整数范围推广到分数范围.在刚才的复习我们已经看到当指数在整数范围内时,运算最多也就是与分式有关,假如指数推广到分指数会与什么有关呢?应与根式有关.学校时虽然也学过一点根式,但不够用,因此有必要先从根式说起.为了加深对符号的熟悉,还可以提出这样的问题:肯定表示一个正数吗? 中的 a定是正数或非负数吗?让同学来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结。
高一数学必修1《指数函数》教案高一数学必修1《指数函数》教案教学目标:1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:1、重点:指数函数的图像和性质2、难点:底数a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。
教学方法:引导——发现教学法、比较法、讨论法教学过程:一、事例引入T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。
什么是函数?S: --------T:主要是体现两个变量的关系。
我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。
我们来看一种球菌的分裂过程:C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。
一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),从函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。
二、指数函数的定义C:定义:函数 y = a x (a>0且a≠1)叫做指数函数,x∈R.。
问题 1:为何要规定 a > 0 且a ≠1?S:(讨论)C: (1)当 a <0 时,a x 有时会没有意义,如 a=﹣3 时,当x= 就没有意义;(2)当 a=0时,a x 有时会没有意义,如x= - 2时,(3)当 a = 1 时,函数值 y 恒等于1,没有研究的必要。
课 题 3.1.2指数函数 上课人课型新授课时间教学重点 指数函数的图象和性质教学难点用数形结合的方法从特殊到一般地探索,概括指数函数的性质学习目标 1.理解指数函数的概念,掌握指数函数的图象与性质;2.归纳总结出比较大小的规律方法;3.体会由特殊到一般的数学思维方式。
备课设计双边活动 一、创设情境,引入概念问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,1个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系式是什么?问题2:放射性物质衰变二者有何共同特点?定义域是什么? 二、解读学习目标1.理解指数函数的概念,掌握指数函数的图象与性质;2.归纳总结出比较大小的规律方法;3.体会由特殊到一般的数学思维方式。
三、预习案核心引领(0,1)x y a a a x R =>≠定义:一般地,函数叫做指数函数,其中是自变量,函数的定义域是。
1.从形式上看指数函数的解析式有何特征? 指数函数是形式化的概念,要判断一个函数是否是指数函数,需抓住三点: ①底数a 大于零且不等于1的常数; ②化简后幂指数有单一的自变量x ;③化简后幂的系数为1,且没有其他的项2.01a a >≠在定义中为什么规定且?=100=x 0,a 2,f(x)111x ,,246x xxxx >⎧⎨≤⎩=-==---(1)当a=1时,f(x)=1为常值函数,无研究必要,(2)当a=0时,f(x)=0无意义,(3)当a<0时,f(x)=a 如(-2),无意义3. 底数a 对指数函数图象的影响了解指数函数的实际背景,抽象出问题的共同特征,并把定义域由正整数集推广到实数集。
让学生明确本节课的目标,每个人目标及其明确地投入课堂中去。
让学生根据预习自测1明确如何判断给定函数是否为指数函数。
让生分类讨论反面情况为什么不考虑,明确这样规定的合理性。
四、学生合作探究讨论、展示、总结、提升、变式、拓展具体要求:1.重点讨论:(1)指数函数的概念,指数函数的图象和性质(求定义域和值域)预习自测2和例1(2)比较两个幂的形式的数大小的方法?例2及拓展2.先组内讨论,再组间讨论或黑板上讨论;3.错误的题目要改错,找出错因,总结题目的规律、方法和易错点,注重多角度考虑问题。
第二章基本初等函数(Ⅰ)一、课标要求:教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.1.了解指数函数模型的实际背景.2.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点).4.通过应用实例的教学,体会指数函数是一种重要的函数模型.5.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.6.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).7.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,a≠1),初步了解反函数的概念和f- -1(x)的意义.8.通过实例,了解幂函数的概念,结合五种具体函数1312,,,y x y x y x y x-====的图象,了解它们的变化情况.二、编写意图与教学建议:1.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.2.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想. 建议教学中重视知识间的迁移与互逆作用.3、教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.4.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担.5.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能..6. 教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.三、教学内容与课时安排的建议本章教学时间约为14课时.2.1指数函数:6课时2.2对数函数:6课时2.3幂函数:1课时小结:1课时§2.1.1 指数(第1—2课时)一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.二.重点、难点1.教学重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂及根式概念的理解三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学设想:第一课时一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零.二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若nx a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n.n 为奇数时,a 的n 次表示,其中n 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的次方根为2±,275-的27-的4次方根不存在.小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.根据n 次方根的意义,可得:n a =n a =a n 的na =一定成立吗?如果不一定成立,那么让学生注意讨论,n 为奇偶数和a 的符号,充分让学生分组讨论.通过探究得到:na =n 为偶数, ,0||,0a a a a a ≥⎧==⎨-<⎩|8|8==-=-=小结:当n再在绝对值算具体的值,这样就避免出现错误:例题:求下列各式的值(1)(1)(2)(3)(4)分析:当n ||a =,然后再去绝对值.n =是否成立,举例说明.课堂练习:1. 求出下列各式的值1)a ≤21,a a =-求的取值范围.3三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时 3.作业:P 59习题2.1 A 组 第1题。
2.5 简单的幂函数-指数根式 教案教学目的1.掌握根式的概念和性质,并能熟练应用于相关计算中。
2.培养培养观察分析、抽象概括能力、归纳总结能力、化归转化能力;教学重点:根式的概念性质。
教学难点:根式的概念。
授课类型:新授课。
课时安排:1课时。
教 具:多媒体、实物投影仪。
教材分析 指数函数是基本初等函数之一,应用非常广泛它是在本章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数。
为了学习指数函数应该将初中学过的指数概念进行扩展,初中代数中学习了正整数指数、零指数和负整数指数的概念和运算性质本节在此基础上学习的运算性质为下一节学习分数指数幂概念和性质做准备。
教学过程一、复习引入1.整数指数幂的概念*)(N n a a a a a an n ∈⋅⋅=个 )0(10≠=a a *),0(1N n a aa n n ∈≠=-。
2.运算性质: )()(),()(),(Z n b a ab Z n m a a Z n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+。
3.注意① n m a a ÷可看作n m a a -⋅ ∴n m a a ÷=n m a a -⋅=n m a -。
② n b a )(可看作n n b a -⋅ ∴n ba )(=n nb a -⋅=n nb a 。
二、讲解新课 1.根式: ⑴计算(可用计算器)①23= 9 ,则3是9的平方根 ;②3)5(-=-125 ,则-5是-125的立方根 ; ③若46=1296 ,则6是1296 的 4次方根 ;④57.3=693.43957 ,则3.7是693.43957的5次方根.⑵定义:一般地,若*),1(N n n a x n ∈>= 则x 叫做a 的n 次方根。
n a 叫做根式,n 叫做根指数,a 叫做被开方数。
例如,27的3次方根表示为327,-32的5次方根表示为532-,6a 的3次方根表示为36a ;16的4次方根表示为!416,即16的4次方根有两个,一个是416,另一个是-416,它们绝对值相等而符号相反.⑶性质:①当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数。
高一数学《指数函数》导语:指数函数是学生在学习了函数的观点、图象与性质后,学习的第一个新的初等函数. 它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。
下边是为您采集的教课设计,希望对您有所帮助。
一.教课目的 :1.知识与技术(1)理解指数函数的观点和意义 ;(2)与的图象和性质 ;(3)理解和掌握指数函数的图象和性质 ;(4)指数函数底数 a 对图象的影响 ;(5)底数 a 对指数函数单一性的影响,并利用它娴熟比较几个指数幂的大小(6)领会详细到一般数学议论方式及数形联合的思想 ;2.感情、态度、价值观(1)让学生认识数学生活,数学又服务于生活的真理 .(2)培育学生察看问题,剖析问题的能力 .二.重、难点要点 :(1)指数函数的观点和性质及其应用 .(2)指数函数底数 a 对图象的影响 ;(3)利用指数函数单一性娴熟比较几个指数幂的大小难点 :(1)利用函数单一性比较指数幂的大小(2)指数函数性质的归纳,归纳及其应用 .三、教法与教具 :①学法 : 察看法、讲解法及议论法.②教具 : 多媒体 .四、教课过程第一课时讲解新课指数函数的定义一般地,函数 (>0 且≠ 1) 叫做指数函数,此中是自变量,函数的定义域为 R.发问 : 在以下的关系式中,哪些不是指数函数,为何?(1)(2)(3)(4)(5)(6)(7)(8)(>1,且)小结 : 依据指数函数的定义来判断说明: 由于 >0,是随意一个实数时,是一个确立的实数,因此函数的定义域为实数集R.若<0,如在实数范围内的函数值不存在 .若=1, 是一个常量,没有研究的意义,只有知足的形式才能称为指数函数,不切合我们在学习函数的单一性的时候,主假如依据函数的图象,即用数形联合的方法来研究. 先来研究 >1 的状况下边我们经过用计算机达成以下表格,而且用计算机画出函数的图象1/8124再研究, 0<<1 的状况,用计算机达成以下表格并绘出函数的图象.x4211/21/4从图中我们看出经过图象看出本质是上的议论 : 的图象对于轴对称,因此这两个函数是偶函数,对吗?②利用电脑软件画出的函数图象.练习 p711,2作业 p76 习题 3-3A 组 2课后反省 :。
高一数学教案根式5篇高一数学教案根式1数学教案-二次根式的除法教学建议知识结构:重点难点分析:是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.教法建议:1. 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.2. 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.3. 引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.教学设计示例一、教学目标1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;2.会进行简单的二次根式的除法运算;3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;4. 培养学生利用二次根式的除法公式进行化简与计算的能力;5. 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;6. 通过分母有理化的教学,渗透数学的简洁性.二、教学重点和难点1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.2.难点:二次根式的除法与商的算术平方根的关系及应用.三、教学方法从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节内容可引导学生自学,进行总结对比.四、教学手段利用投影仪.五、教学过程(一) 引入新课学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的(上述积的算术平方根的性质是由具体例子引出的.)学生观察下面的例子,并计算:由学生总结上面两个式的关系得:类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:(二)新课商的算术平方根.一般地,有(a≥0,b 0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根.让学生讨论这个式子成立的条件是什么a≥0,b 0,对于为什么b 0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.例1 化简:(1) ; (2) ; (3) ;解∶(1)(2)(3)说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.例2 化简:(1) ; (2) ;解:(1)(2)让学生观察例题中分母的特点,然后提出,的问题怎样解决再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决.学生讨论本节课所学内容,并进行小结.(三)小结1.商的算术平方根的性质.(注意公式成立的条件)2.会利用商的算术平方根的性质进行简单的二次根式的化简.(四)练习1.化简:(1) ; (2) ; (3) .2.化简:(1) ; (2) ; (3)六、作业教材P.183习题11.3;A组1.七、板书设计高一数学教案根式2数学教案-二次根式的化简教学建议知识结构重难点分析本节的重点是的化简.本章自始至终围绕着二次根式的化简与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.教法建议1.性质的引入方法很多,以下2种比较常用:(1)设计问题引导启发:由设计的问题1) 、、各等于什么2) 、、各等于什么启发、引导学生猜想出(2)从算术平方根的意义引入.2.性质的巩固有两个方面需要注意:(1)注意与性质进行对比,可出几道类型不同的题进行比较;(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.(第1课时)一、教学目标1.掌握二次根式的性质2.能够利用二次根式的性质化简二次根式3.通过本节的学习渗透分类讨论的数学思想和方法二、教学设计对比、归纳、总结三、重点和难点1.重点:理解并掌握二次根式的性质2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习对比,归纳整理,应用提高,以学生活动为主七、教学过程一、导入新课我们知道,式子 ( )表示非负数的算术平方根.问:式子的意义是什么被开方数中的表示的是什么数答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.二、新课计算下列各题,并回答以下问题:(1) ; (2) ; (3) ;(4) ; (5) ; (6)(7) ; (8)1.各小题中被开方数的幂的底数都是什么数2.各小题的结果和相应的被开方数的幂的底数有什么关系3.用字母表示被开方数的幂的底数,将有怎样的结论并用语言叙述你的结论.答:(1) ; (2) ; (3) ;(4) ; (5) ; (6)(7) ; (8) .1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有( ),用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有( ).一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)答:请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系答:填空:1.当 _________时, ;2.当时,,当时, ;3.若,则 ________;4.当时, .答:1.当时, ;2.当时,,当时, ;3.若,则 ;4.当时, .例1 化简 ( ).分析:可以利用积的算术平方根的性质及二次根式的性质化简.解,因为,所以,所以.指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果.例2 化简 ( ).分析:根据二次根式的性质,当时, .解 .例3 化简:(1) ( ); (2) ( ).分析:根据二次根式的性质,当时, .解 (1) .(2) .注意:(1)题中的被开方数,因为,所以 .(2)题中的被开方数,因为,所以 .这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.例4 化简 .分析:根据二次根式的性质,有.所以要比较与3及1与的大小以确定及的符号,然后再进行化简.解因为,,所以, .所以.三、课堂练习1.求下列各式的值:(1) ; (2) .2.化简:(1) ; (2) ;(3) ( ); (4) ( ).3.化简:(1) ; (2) ;(3) ; (4) ;(5) ; (6) ( ).答案:1.(1)0.1; (2) .2.(1) ; (2) ; (3) ; (4) .3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.四、小结1.二次根式的意义是,所以,因此,其中可以取任意实数.2.化简形如的二次根式,首先可把写成的形式,再根据已知条件中字母的取值范围,确定其结果.3.在化简中,注意运用题设中的隐含条件,如二次根式有意义的条件是被开方,这是隐含条件.五、作业1.化简:(1) ; (2) ;(3) ( ); (4) ( );(5) ; (6) ( , );(7) ( ).2.化简:(1) ;(2) ( );(3) ( , ).答案:1.(1)-30; (2) ; (3) ;(4) ; (5) ; (6) ; (7) .2.(1)2; (2)0; (3) .高一数学教案根式3二次根式一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根2.说出下列各式的意义,并计算:,,,,,,,通过练习使学生进一步理解平方根、算术平方根的概念.观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,,,,表示的是算术平方根.(二)引入新课我们已遇到的,,,这样的式子是我们这节课研究的内容,引出:新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗呢若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2) 是二次根式,而,提问学生:2是二次根式吗显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是二次根式分析:,,,、、、四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a -10时,a+10 又如当0 a 1时,a2-1 0),因此, p= 不是二次根式.例2 x是怎样的实数时,式子在实数范围有意义解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义. 例3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0时,是二次根式.(3) ,且x≠0,∴x 0,当x 0时,是二次根式.(4) ,即,故x-2≥0且x-2≠0, ∴x 2.当x 2时,是二次根式.例4 下列各式是二次根式,求式子中的字母所满足的条件:(1) ; (2) ; (3) ; (4)分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的.条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1 0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1 0,于是,式子是二次根式. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.(三)小结(引导学生做出本节课学习内容小结)1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.2.式子中,被开方数(式)必须大于等于零.(四)练习和作业练习:1.判断下列各式是否是二次根式分析:(2) 中,,是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x 0时,又如当x -1时=,因此(1)(3)(4)不是二次根式,(6)无意义.2.a是怎样的实数时,下列各式在实数范围内有意义五、作业教材P.172习题11.1;A组1;B组1.高一数学教案根式4最简二次根式教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出最简二次根式的概念,然后通过一组例题介绍了化简二次根式的方法.本小节内容比较少(求学生了解最简二次根式的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要最简二次根式来联接.(1)知识结构(2)重难点分析①本节的重点Ⅰ.最简二次根式概念Ⅱ.利用二次根式的性质把二次根式化简为最简二次根式.重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算.二次根式化简的最终目标就是最简二次根式;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为最简二次根式的基础上进行的.因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对最简二次根式概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步.②本节的难点是化简二次根式的方法与技巧.难点分析化简二次根式,实际上是二次根式性质的综合运用.化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.所以对初学者来说,这一过程容易出现符号和计算出错的问题.熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力.③重难点的解决办法是对于最简二次根式这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断.因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对最简二次根式概念理解后应用具体的实例归纳总结出把一个二次根式化为最简二次根式的方法,在观察对比中引导学生总结具体解决问题的方法技巧.另外,化简运算在本节既是重点也是难点,学生在简洁性和准确性上都容易出现问题,因此建议在教学过程中多要求学生观察二次根式的.特点――根据其特点分析运用哪条性质、哪种方法来解答,培养学生的分析能力和观察能力――多要求学生注意每步运算的根据,培养学生的严谨习惯.2.教法建议素质教育和新的教改精神的根本是增强学生学习的自主性和学生的参与意识,使每一个学生想学、爱学、会学。
二 指数与指数函数(§2.5 指数)教学时间: 第一课时课 题: §2.5.1 指数 教学目标:1.理解n 次根式的概念、表示方法。
2.掌握n 次根式的意义和运算性质。
3.培养学生用联系观点看问题。
教学重点:根式的概念和运算性质。
教学难点:根式概念的理解 教学方法:发现教学法 教具准备:投影片1张(回顾性质) 教学过程:(I )复习回顾复习初中已学过的整数指数幂的概念。
1、概念:an =a·a·a……a(n ∈N*)n 个a)0(10≠=a a*),0(1N n a a a nn ∈≠=- 2、运算性质: )()(),()(),(Z n b a ab Z n m a a Z n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+3、两点解释:① n m a a ÷可看作n m a a -⋅ ∴n m a a ÷=n m a a -⋅=n m a -② n b a )(可看作n n b a -⋅ ∴n b a )(=n n b a -⋅=n nba (II )讲授新课根式:我们知道,如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一个数的立方等于a ,那么这个数叫做a 的立方根。
几个例子:如果22=4 ,那么2是4的平方根(由学生答)如果23=8 ,那么2是8的立方根(由学生答)如果24=16 ,那么2是16的4次方根(由学生答)如果35=243 ,那么3是243的5次方根(由学生答)同样道理:如果一个数的n 次方等a (n>1,且n ∈N*),那么这个数叫做a 的n 次方根。
1、定义:若),1(+∈>=N n n a x n 则x 叫做a 的n 次方根。
2、N 次方根的性质:(由平方根与立方根的性质,引导学生总结)① n 为奇数时有:正数的奇次方根是一个正数,负数的奇次方根是一个负数。
高一数学《指数函数》优秀教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
写教案需要注意哪些格式呢?它山之石可以攻玉,下面为您精心整理了5篇《高一数学《指数函数》优秀教案》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
高一数学《指数函数》优秀教案篇一一、教学目标:1、知识与技能(1)理解指数函数的概念和意义;(2)与的图象和性质;(3)理解和掌握指数函数的图象和性质;(4)指数函数底数a对图象的影响;(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小(6)体会具体到一般数学讨论方式及数形结合的思想。
2、情感、态度、价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理。
(2)培养学生观察问题,分析问题的能力。
二、重、难点:重点:(1)指数函数的概念和性质及其应用。
(2)指数函数底数a对图象的影响。
(3)利用指数函数单调性熟练比较几个指数幂的大小。
难点:(1)利用函数单调性比较指数幂的大小。
(2)指数函数性质的归纳,概括及其应用。
三、教法与教具:①学法:观察法、讲授法及讨论法。
②教具:多媒体。
四、教学过程:第一课时讲授新课指数函数的定义一般地,函数(0且≠1)叫做指数函数,其中是自变量,函数的定义域为R。
提问:在下列的关系式中,哪些不是指数函数,为什么?(1)(2)(3)(4)(5)(6)(7)(8)(1,且)小结:根据指数函数的定义来判断说明:因为0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R。
若0,如在实数范围内的函数值不存在。
若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。
先来研究的情况。
下面我们通过用计算机完成以下表格,并且用计算机画出函数的图象。
再研究,01的情况,用计算机完成以下表格并绘出函数的图象。
高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。
课 题:指数-根式
教学目的:
1.掌握根式的概念和性质,并能熟练应用于相关计算中
2.培养培养观察分析、抽象概括能力、归纳总结能力、化归转化能力;
教学重点:根式的概念性质
教学难点:根式的概念
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教材分析: 指数函数是基本初等函数之一,应用非常广泛它是在本章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数
为了学习指数函数应该将初中学过的指数概念进行扩展,初中代数中学习了正整数指数、零指数和负整数指数的概念和运算性质本节在此基础上学习的运算性质为下一节学习分数指数幂概念和性质做准备
教学过程: 一、复习引入:
1.整数指数幂的概念
*)(N n a a a a a a n n
∈⋅⋅=
个 )0(10≠=a a ,0(1N n a a a
n
n ∈≠=- 2.运算性质: )
()(),()()
,(Z n b a ab Z n m a a Z n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+
3.注意
① n m a a ÷可看作n m a a -⋅ ∴n m a a ÷=n m a a -⋅=n m a - ② n b a )(可看作n n b a -⋅ ∴n b a )(=n n b a -⋅=n n
b a 二、讲解新课:
1.根式:
⑴计算(可用计算器)
①23= 9 ,则3是9的平方根 ;
②3)5(-=-125 ,则-5是-125的立方根 ;
③若46=1296 ,则6是1296 的 4次方根 ;
④5
7.3=693.43957 ,则3.7是693.43957的5次方根 .
⑵定义:
一般地,若*),1(N n n a x n ∈>= 则x 叫做a 的n 次方根 n a 叫做根式,n 叫做根指数,a 叫做被开方数
例如,27的3次方根表示为327,-32的5次方根表示为532-,6a 的3次方根表示为36a ;16的4次方根表示为!416,即16的4次方根有两个,一个是416,另一个是-416,它们绝对值相等而符号相反.
⑶性质:
①当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数记作: n a x = ②当n 为偶数时,正数的n 次方根有两个(互为相反数)记作:
n a x ±= ③负数没有偶次方根,
④ 0的任何次方根为0
注:当a ≥0时,n a ≥0,表示算术根,所以类似416=2的写法是错误的. ⑷常用公式
根据n 次方根的定义,易得到以下三组常用公式:
①当n 为任意正整数时,(n a )n =a.例如,(327)3=27,(532-)5=-32.
②当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨
⎧<-≥)0()0(a a a a . 例如,33)2(-=-2,552=2;443=3,2)3(-=|-3|=3.
⑶根式的基本性质:n m np mp a a =,
(a ≥0). 注意,⑶中的a ≥0十分重要,无此条件则公式不成立. 例如3628)8(-≠-. 用语言叙述上面三个公式:
⑴非负实数a 的n 次方根的n 次幂是它本身.
⑵n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a
的n 次幂的n 次方根是a 的绝对值.
⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根
指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变.
三、讲解例题:
例1(课本第71页 例1)求值 ①33)8(-= -8 ; ②2)10(-= |-10| = 10 ; ③44)3(π-= |π-3| =
3-π ; ④)()(2b a b a >-= |a- b| = a- b .
去掉‘a>b ’结果如何?
例2求值:
63125.132)2(;
246347625)1(⨯⨯---++
分析:(1)题需把各项被开方数变为完全平方形式,然后再利用根式运算性质; 解:
负去掉绝对值符号。
上绝对值,然后根据正注意:此题开方后先带2
2)
22(3223|
22||32||23|)22()32())23(()2(2222)3(3222)2(232)3(2
46347625)1(2
22222222=---++=----++=---++=+⨯--+⨯-++∙+=---++
632322
332322
33232233212
5.132)2(62223
6262263623
63=⨯⋅⋅⋅⨯⋅⨯⨯⨯⋅⨯⨯⨯⨯⨯==== 四、练习:
五、小结 本节课学习了以下内容:
1.根式的概念;
2.根式的运算性质:
①当n 为任意正整数时,(n a )n =a.
②当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨
⎧<-≥)0()0(a a a a . ⑶根式的基本性质:
n m np mp a a =,
(a ≥0). 六、课后作业:
七、板书设计(略) 八、课后记:。